An Interactive Regret-Based Genetic Algorithm for Solving Multi-Objective Combinatorial Optimization Problems - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

An Interactive Regret-Based Genetic Algorithm for Solving Multi-Objective Combinatorial Optimization Problems

Nawal Benabbou
Cassandre Leroy
  • Fonction : Auteur
Thibaut Lust

Résumé

We propose a new approach consisting in combining genetic algorithms and regret-based incremental preference elicitation for solving multi-objective combinatorial optimization problems with unknown preferences. For the purpose of elicitation, we assume that the decision maker's preferences can be represented by a parameterized scalarizing function but the parameters are initially not known. Instead, the parameter imprecision is progressively reduced by asking preference queries to the decision maker during the search to help identify the best solutions within a population. Our algorithm, called RIGA, can be applied to any multi-objective combinatorial optimization problem provided that the scalarizing function is linear in its parameters and that a (near-)optimal solution can be efficiently determined when preferences are known. Moreover, RIGA runs in polynomial time while asking no more than a polynomial number of queries. For the multi-objective traveling salesman problem, we provide numerical results showing its practical efficiency in terms of number of queries, computation time and gap to optimality.
Fichier principal
Vignette du fichier
AAAI-BenabbouN.7957.pdf (425.64 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02445320 , version 1 (20-01-2020)

Identifiants

  • HAL Id : hal-02445320 , version 1

Citer

Nawal Benabbou, Cassandre Leroy, Thibaut Lust. An Interactive Regret-Based Genetic Algorithm for Solving Multi-Objective Combinatorial Optimization Problems. The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20), Feb 2020, New York, United States. ⟨hal-02445320⟩
143 Consultations
150 Téléchargements

Partager

More