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Abstract 

The growth of zirconium alloys under irradiation is a phenomenon experimentally identified and 
associated with the development beyond a threshold dose of dislocation loops with vacancy character 
having a Burgers vector with a component parallel to the c axis. In this work, by combining atomic 
simulations (DFT and empirical potential) and continuous modeling, we show that prismatic stacking fault 
pyramids or bipyramids whose base rests on the basal plane of the hcp structure are likely precursors to 
the formation of c vacancy loops. In other words, these would not be formed by progressive accretion of 
vacancies but rather by collapse of the pyramids or bipyramids beyond a certain size. This mechanism 
could explain the fact that the ‹c› vacancy loops are never observed below a size of the order of 10 nm and 
their appearance at high fluence. 
 

I. Introduction 

Zirconium alloys are used as fuel cladding or as guide tube in fuel assembly of Light Water Reactor 
(LWR). In the core, neutron irradiation generates a large number of vacancies and self-interstitials (SIAs) 
which cluster in dislocation loops. Zirconium-made components change their dimensions under 
irradiation. Unlike steels or nickel-based alloys, they do not swell and the dimensional change called 
growth is essentially volume conservative though a small volume increase has been observed under 
particular experimental conditions [1]. Experimental observations show that above a threshold dose those 
alloys are prone to an accelerated growth called “breakaway” [2]. It is well established that two types of 
dislocation loops ‹a› and ‹c› which differ by their Burgers vector are directly responsible for the growth of 
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zirconium alloys under irradiation. In particular, ‹c› loops appearance is correlated with breakaway [3] 
(see [4] and [5] for review). 

Many authors have studied defect clusters in post-irradiation microstructure of zirconium alloys by using 
transmission electron microscopy (TEM), a compilation of observations being given by Griffiths [5]. For 
neutron-irradiated zirconium alloys for low irradiation dose (< 5×1025 nm-2) at temperatures between 250 
and 400°C, numerous studies [2–13] reveal a high density (typically between 5×1021 and 5×1022 m-3) of 

perfect dislocation loops of vacancy or interstitial nature with Burgers vector  
�� 〈112�0〉 (‹a›-type) of 

diameter between 5 and 20 nm. The three ‹a› Burgers vectors are equally represented and the proportion 
of ‹a› vacancy loops increases with the irradiation temperature [5,9]. The loop habit plane is close to the 
first-order prismatic plane 	101�0
 but the ‹a› loops are not pure edge and are aligned in rows parallel to 
the basal plane (‘corduroy contrast’) [5,6]. Increasing the irradiation temperature T induces a decrease in 
the loop density � and an increase of the loop size �̅ [9] (for a neutron-irradiated Zy-2 up to a fluence of 
1×1025 nm-2, 8 nm < �̅ < 10 nm and 8×1021 < � < 5×1022 m-3 at T = 350 °C whereas 16 nm < �̅ < 23 nm 
and 4×1021 < � < 2×1022 m-3 at T = 400 °C). For fluence higher than 5×1025 nm-2, existence of ‹c› 
component loops was evidenced [3,5,8,14–16]: they are usually faulted, of the vacancy type and located in 

the basal plane with a Burgers vector 
�� 〈202�3〉 having a component parallel to the ‹c› axis. Loops with a 

Burgers vector 
�� [0001] have also been identified [7]. The ‹c› component loops are much larger than the 

‹a› loops, their lowest observed diameter is around 10 nm [11] but their density is much lower. Whatever 
the irradiation conditions, there is coexistence of these ‹c› component loops with more numerous and 
smaller ‹a› loops. In order to observe these ‹c› loops by TEM, the g=0002 diffraction vector is used to 
make ‹a› loops invisible. From all the obtained data, it turns out that zirconium is extremely resistant to 
void formation during neutron irradiation [5,17] which may be due to the fact that vacancy type loops are 
easily formed. 

Cluster Dynamics (CD) methods [12,18] or the Production Bias Model (PBM) [19] were used to model 
microstructure evolution and the resultant growth of zirconium alloys under irradiation. Christien et al. 
[18] developed a CD model assuming a diffusion anisotropy difference (DAD) [20] between vacancies 
and SIAs. They also hypothesized that ‹c› dislocation loops nucleate on small iron clusters. Indeed, the 
experimental results of De Carlan et al. [21] show a greater ‹c›-loop density close to the intermetallic 
precipitates Zr(Cr,Fe)2. However, the nucleation rate of ‹c› dislocation loops was arbitrarily fixed. In the 
case of the PBM, Barashev et al. [19] used ‹a› and ‹c›-loop densities as fitting parameters. On the whole, 
in each of these approaches, the nucleation of ‹c› loops was adjusted to numerically reproduce the 
experimental results, whereas a physical and detailed description of the mechanism leading to their 
formation is still missing. 

In order to improve the knowledge of these microstructural defects, atomic-scale simulations were 
performed. Kulikov et al. [22] modelled ‹c› dislocation loops using a tight-binding potential based on Zr 
properties at equilibrium. Their results showed that loops with extrinsic and intrinsic I1 basal fault can be 
stabilized. Varvenne et al. [23] also simulated these two types of loop using Mendelev and Ackland 
potential [24] and calculated their formation energies. They used a line tension model [25] to extrapolate 
their data to larger loop diameters and showed that the formation of ‹a› dislocation loops was energetically 
favorable. 

Voskoboinikov et al. [26] simulated displacement cascades by molecular dynamics (MD) in zirconium to 
identify residual defects using a short-range manybody potential [27]. They identified various 
configurations of vacancy clusters among which stacking fault pyramids with six faulted interfaces in the 
pyramidal planes and an extrinsic fault on the basal plane but no ‹c› loop. Di [28] also observed these 



pyramids in the displacements cascades obtained with the EAM potential developed by Mendelev and 
Ackland [24], but with an intrinsic basal fault. 

The goal of this paper is to determine if the pyramids formed in displacements cascades can play the role 
of precursor for the formation of ‹c› loops. For this purpose, we used various atomistic simulation 
methods such as Density Functional Theory (DFT) and empirical potential EAM (Embedded Atom 
Method) detailed in section II to explore the mechanisms of ‹c›-loop formation. By using the EAM 
potential, the simulation results revealed that a perfect ‹c› loop can be generated from the collapse of a 
bipyramid, as shown in section III, but such a transition cannot be evidenced in DFT calculations due to 
the size of the defects for which this transition may occur. As a consequence, DFT data were used to 
parameterize mesoscopic laws describing the formation energy of loops and pyramids. These mesoscopic 
laws are established in section IV and allowed to investigate the relative stability of these defects at larger 
sizes. The results are discussed in section V. 

II. Methods 

The ab initio calculations presented in this paper are based on the density functional theory (DFT) 
implemented within the VASP code (Vienna Ab initio Simulation Package) [29] and are performed in 
GGA (Generalized Gradient Approximation) with PW91 (Perdew Wang 91) exchange-correlation 
functional [30]. The density functional or Kohn-Sham equations are solved with projector-augmented-
wave (PAW) potentials [31] including 4 electrons in the valence band. The plane-wave cutoff energy in 
the expansion of the wave functions is set to 270 eV. The integration of the Brillouin zone is performed 
with Methfessel-Paxton smearing scheme [32] with a smearing value of 0.2 eV. The size of the supercell 
depends on the size of the defect cluster and is up to 15×15×11 unit cells containing 4950 atoms. The k-
point grids are 1×1×1 in case of large supercells which contain more than 800 atoms (cf. Table 1). 
Calculations are performed at constant volume with lattice parameters a = 3.23 Å and c = 5.59 Å. The 
energies are corrected with the ANETO program [33] in order to remove the elastic interactions of the 
defect with its periodic images. 

Table 1: Size of the supercells (x × y × z hexagonal primitive cells composed of 2 Zr atoms) as well as the 
associated k-point grids. 

Supercell 4×4×3 5×5×4 9×9×5 12×12×8 15×15×8 15×15×8 

Number of atoms 96 200 810 2304 3600 4950 
k-points 4×4×4 3×3×3 2×2×2 1×1×1 1×1×1 1×1×1 

 
The EAM potential # 3 developed by Mendelev and Ackland [24] is used in Molecular Statics (MS) 
calculations since it reproduces reasonably well the bulk properties, such as the elastic constant and some 
other small-scale quantities such as the prismatic and basal fault energies. All the MS calculations are 
performed with the LAMMPS code (Large-scale Atomic Molecular Massively Parallel Simulator [34]) 
and the conjugate gradient algorithm is used to minimize the system energy. Like in the DFT calculations, 
the size of the supercell depends on the size of the defect. The largest simulation defect contains 40 000 
vacancies embedded in 300×300×300 unit cells (54 million atoms). 

With these methods, it is possible to determine different quantities of interest such as the formation energy 
and the eigenstrain of a defect [35]. The calculation of these properties is detailed in Appendix A and 
Appendix B. 



III. Characterization of the calculated defects 

‹c› perfect dislocation loops and stacking fault bipyramids 

In order to build perfect ‹c› loops of Burgers vector ��� = [0001], two atomic layers A and B of hexagonal 
form, each containing the same number of atoms (cf. Figure 1-a), were removed from the perfect crystal. 
This initial configuration was then relaxed by DFT and EAM calculations. 

An unexpected result was first obtained in DFT: instead of conserving a perfect ‹c› loop structure, the 
initial configuration evolved towards a hexagonal bipyramid with stacking faults along the first order 
pyramidal planes (cf. Figure 1-b) and no stacking fault in the basal plane. An example of such an 
evolution is represented in Figure 1 for a defect containing 96 vacancies. This specific pyramidal structure 
results from the collapse of the atoms above and below the removed atomic layers to fill this empty space. 
This type of evolution was observed in the whole range of defect sizes simulated in DFT (up to 138 
vacancies). 

MS calculations also showed a similar collapse of the atoms with the formation of the same type of 
bipyramids around the initial loop. However, at larger defect sizes not investigated in DFT, MS 
calculations revealed that the bipyramid shape changes. The stacking fault along the pyramidal plane 
gradually disappears as the defect size increases and an almost perfect basal loop is obtained for around 
40 000 vacancies in the defect (cf. Figure 2). The transition from the bipyramid to the perfect loop starts 
for an initial loop diameter of 20 nm, corresponding to 5 000 vacancies. Then, MS simulations show that a 
critical size of the defect has to be reached in order to observe this transition. These MS results allow to 
interpret those obtained in DFT: the largest defect cluster simulated in DFT contains 138 vacancies, a 
number probably below the critical size, which explains why bipyramids are stabilized in DFT instead of 
perfect loops. 

This progressive transition exhibited in MS calculations is an interesting result because it suggests an 
original mechanism, in which stacking fault bipyramids could play the role of precursor for the formation 
of ‹c› loops, a scenario which has never been proposed before to describe dislocation nucleation in 
zirconium. However, due to the limited precision of the EAM potential used in MS, it would be necessary 
to establish if the same conclusions hold in DFT to confirm such a scenario. Unfortunately, according to 
the MS results, it would be necessary to perform DFT calculations with millions of atoms in the 
simulation box which is unreachable nowadays. Then, an alternative approach already used in [23] would 
consist in using physically-based mesoscopic laws to describe the formation energies of loops and 
pyramids adjusted on DFT calculations. Comparing the formation energies of these different objects 
should allow to conclude on their relative stabilities. In this procedure, it is then required (i) to establish 
these mesoscopic laws, which is done in section IV, and (ii) to collect the DFT data on which the 
mesoscopic laws are adjusted, which is the purpose of this section. Since the transition shown in Figure 2 
exhibits the peculiar role of bipyramids and perfect loops, all the results concerning their formation 
energies as a function of the number of vacancies are represented in Figures 5 and 6. In the case of 
bipyramids, the MS values are higher than the DFT ones whatever the size of the defect. For perfect loops, 
only MS results are reported in Figures 5 and 6 since these objects could not be stabilized in DFT 
calculations. 

Even if some perfect loops were experimentally observed in zirconium, the majority of ‹c› loops are 
faulted with a Burgers vector ��� = 1/6〈202�3〉. It would then be interesting to determine if faulted ‹c› loops 
could also be formed from 3-dimensional defects such as pyramids. In order to investigate this scenario, it 
is required to calculate the formation energies of these objects, which is the aim of the following part. 

Stacking fault pyramids and ‹c› faulted loops I1 



In order to build these objects, the first step is to remove a hexagonal atomic layer in the basal plane of the 
hcp structure. The atoms constituting the pyramid are then selected beforehand (they are those atoms 
inside the object delimited by the prismatic planes that contain the sides of the removed hexagon) to 
perform translation operations to obtain the desired object. The basal fault in the initial configuration is 
then of type BB. After that, the atomic structure is relaxed. During DFT and MS relaxation, there is a 
stabilization of hexagonal-based pyramids with stacking faults on first order pyramidal planes, close to 	101�1
 on the six facets and with a fault in the basal plane. However, this basal fault evolves differently in 
DFT and MS, as shown in Figure 3, which represents a sectional view in the plane �0001� of the pyramid. 
The MS relaxation calculations show that the object retains its BB basal fault whatever its size. On the 
contrary, in DFT, there is a progressive transition of the basal stacking fault from the type BB to the type 
I1, represented by the green color atoms. In fact, these results illustrate the deficiency of the EAM 
potential # 3 already pointed out in [23]: it predicts that the BB stacking is an energy minimum of the γ 
surface whereas it is an energy maximum according to ab initio calculations. This explains the persistence 
of BB fault in MS results which are then not reliable on that occurrence. 

The DFT results suggest that the pyramids, as they grow, tend to develop the same stacking fault as the 
one observed experimentally in the faulted ‹c›-loop, which supports the assumption that pyramids can be a 
precursor for these loops. 

All the DFT and MS data concerning pyramids are gathered in Figures 5 and 6. Despite the 
aforementioned difference on the predicted basal fault, the formation energies obtained by both techniques 
are remarkably close to each other, which is probably fortuitous. 

Contrary to perfect loops, it was possible to stabilize ‹c› faulted dislocation loops I1 both in MS and DFT 
calculations with the following method: loops were built from a BB type configuration (Figure 4-a) where 
the upper and lower atoms bordering the loop were shifted respectively by a fault vector �� = 1/12[202�3�] 
and −��. In the relaxed configuration of small size defects, irrespective of the modeling method (DFT or 
MS), the normal to the habit plane of the loop was not exactly parallel to the [0001] direction (cf. Figure 
4-c). Larger size defects simulated with the EAM potential showed no disorientation of the habit plane 
with respect to the basal plane. It can thus be concluded that the I1 fault is stabilized for a number of 
vacancies larger than 500. During the relaxation, stacking faults always appear in the pyramidal planes of 
type Π1 (cf. Figure 4-c) bordering the loop. The formation energies of these objects are also gathered in 
Figures 5 and 6, MS values being slightly higher than the DFT ones. 

Like for bipyramids in Figure 2, it was expected that MS simulations could reproduce the morphological 
evolution of pyramids into faulted loops at larger sizes. However, the MS results did not show any 
evolution of pyramids, even for n as large as 12000 (the maximum values tested in this work). This result 
may be a consequence of the inability of the EAM potential to correctly reproduce the transition of the BB 
to I1 stacking fault obtained in DFT calculations and represented in Figure 3. A fortiori, it is logical that 
this potential is unable to reproduce the evolution of the pyramids into faulted loops. The limited accuracy 
of the EAM potential justifies to resort to the alternative approach relying on mesoscopic laws. 

The goal of the next section is then twofold: (i) establishing the analytical form of the mesoscopic laws for 
loops and (bi)pyramids and (ii) adjusting the parameters of these laws on DFT data calculated in this 
section. The EAM data will also be used in the next section in order to test the validity of the procedure to 
obtain quantitatively reliable mesoscopic laws. 

IV. Mesoscopic laws 

Dislocation loops 



The same approach as Varvenne et al. is used to model the formation energy of large dislocation loops 
[23] which is derived from elasticity theory [36]. In this approach, it is supposed that loop formation 
energies follow a line tension model [25] given by the following expression: 

��  !" �#� = $#�% + ' ()*�+, d. ln 1#234 ( 1 ) 

The first and second right-hand terms of Eq. (1) respectively correspond to the stacking fault and elastic 
energy contribution of the loop. ()*�+ represents an elastic coefficient depending on the elastic constants, 
the Burgers vector of the loop, and the tangent direction *� of an element of length dl of the loop. The 
coefficients %, 23 and # respectively represent the basal stacking fault energy, the core radius and the 
radius of the dislocation loop. 

To write this expression as a function of the number of vacancies n, it is considered that the surface of a 
vacancy corresponds to the atomic surface of zirconium in the basal plane Sat and that the loop has a 
circular shape. The atomic surface in the basal plane is: 

567 = 8�√32  ( 2 ) 

Thus, it is possible to calculate the radius R of the loop as follows: 

$#� = :567 ( 3 ) 

 

# = 8 ;√32$<
�� √: = #�√: ( 4 ) 

With #� = 8 =√��>?@A. 
Expression (1) becomes: 

��  !" �:� = $#��%: + 2$�#�(C√: ln ;#�√:23 < + DE ( 5 ) 

Where f and (C represent respectively the shape factor of the loop and the average value of ()*�+ along the 
dislocation line: 

 

(C = 12$ ' ()*�+�>
E dF ( 6 ) 

A constant DE was added to the expression to match the atomic data in the limit of small loop size for 
which the concepts of perimeter and surface are not well defined [37]. To summarize, the parameters 
appearing in the formation energy expression of dislocation loops are the geometrical factors #� and f, the 
elastic and stacking fault energy coefficients (C and %, the core radius 23 and the constant DE. These 
parameters are reported in Table 2 in which they are classified into 2 categories depending on how their 



values were determined: fixed parameters are calculated from geometrical considerations or taken from 
the literature, whereas the adjusted parameters are chosen such as expression (5) fits the DFT or EAM 
formation energy curves. 

Table 2: fixed and adjusted parameters considered and fitting results of dislocation loops. The core radii 
are expressed in unit of lattice parameter a (u.l.a.). 

Parameters Dislocation loops  
Faulted Perfect 

EAM DFT EAM DFT 

#� �Å) Radial factor Fixed 8 ;√32$< 8 ;√34$< 

� Form factor Fixed  1 1 1 1 (C (eV. Å-1) Elastic coefficient Fixed  0.33 0.25 0.68 0.60 % (mJ.m-2) Basal stacking fault energy Fixed 99 [23] 147 [23] - - 23 (u.l.a.) Core radius of loop Adjusted 0.34 0.30 0.20 0.20 DE (eV) Constant Adjusted -7.99 -1.95 - - 

In order to further validate the continuous modeling of the dislocation loops, we have also compared the 
deformation induced by the loops at the atomic scale to the expression obtained in the framework of the 
continuous theory of elasticity. In the case of dislocation loops, the work of Nabarro [38] has shown that 
the stress field of a dislocation loop is equivalent to that of a platelet whose edge corresponds to the 
dislocation line and whose eigenstrain is given by: 

HIJE,L = 12� ��I:J + �J:I� ( 7 ) 

Where d represents the thickness of the loop and �I and :I are the components of the Burgers vector and 
the normal to the plane of the loop.  

It is possible to compare the results given by Eq. (7) with the eigenstrain deduced from atomic simulations 
following the method described in Appendix B for perfect and faulted loops. Such comparisons are 
represented in Figure 7 for perfect loops simulated by MS: whereas the Nabarro formula predicts that MNNE  
and MOOE  are null and MPPE  is equal to -1, the MS results MIJE,QR converge towards these values when the size 
of the loop increases, which is an expected result, since the elastic theory underlying the expression of 
Nabarro is more suitable to describe mesoscopic objects rather than atomic ones. However, this 
convergence is slow and even for loops containing 5000 vacancies, there are significant discrepancies 
between both approaches: MNNE,QR and MOOE,QR are equal to -0.25 according to MS simulations instead of 0, as 
predicted by Eq. (7), and MPPE,QR is equal to -0.5 instead of -1. Despite these differences, there is an 
excellent agreement concerning the volume expansion ∑ MIIEIT�,�  represented in Figure 7 in the whole 
range of loop sizes investigated. 

The same tendencies are observed for faulted loops in Figure 8. However, the convergence of MS values 
to the ones predicted by Eq. (7) when n increases is more rapid than in the case of perfect loops. A closer 
examination of the morphology of small loops simulated by MS reveals that their habit plane is not 
perfectly parallel to the basal plane. By taking into account this disorientation in Eq. (7), new values of MIJE,L are obtained and represented in Figure 8. These values are closer to MIJE,QR. The consistency between 
both approaches confirms the existence of these disorientations for small faulted loops, this disorientation 
decreasing with the size of the loops. These results confirm the validity of the approach of linking the 
results of atomic simulations to those resulting from continuous modeling. 



Stacking fault pyramids and bipyramids 

In order to determine the fitting law for pyramids, it is supposed that they can be treated as inclusions, 
even if these pyramids do not correspond to a new phase. The first step is then to determine the volume of 
the inclusion Vinc and areas of interest of this defect based on the number of vacancies n inserted in the 
system (cf. Appendix C). The formation energy can be decomposed into two contributions, an elastic 
energy �U� and an interfacial energy �IV7: 

�!OW6" �:� = �U� + �IV7 

According to elasticity theory, the elastic energy is proportional to the volume of the inclusion Vinc: 

�U� = XIV3YU ( 8 ) 

we being the elastic energy density. Under some simplifying assumptions, this density can be analytically 
expressed as a function of the elastic constants of the system and the stress-free strain εIJE,Z of the inclusion. 

In particular, if the elastic constants are homogeneous and isotropic and εIJE,Z is a pure dilatation, a simple 
expression can be obtained for we [39]: 

YU = 2 [ �1 + \��1 − \� �εE,Z�� ( 9 ) 

μ and ν being respectively the shear modulus and Poisson coefficient of the system and εE,Z the diagonal 
component of εIJE,Z. In the case of pure dilatation, εE,Z is directly related to the volume expansion associated 
to the transformation: 

ε
E,Z = 13 ΔXXIV3 (10) 

Where ΔV is the variation of the volume related to the transformation of a portion of the parent phase into 
the inclusion. If we suppose that the portion of the parent phase is the pyramid lying on the loop and if the 
inclusion is the same pyramid to which n vacancies have been withdrawn, then ΔX = −:X67. It follows 
that: 

ε
E,Z = − 13 :X67XIV3  ( 11 ) 

By combining Eq. (8), (12) and (C.4), we finally obtain: 

�U��:� = 14 [ �1 + \��1 − \� D8�√: =  Ω[ �1 + \��1 − \� √: ( 12 ) 

With Ω = D8�/4.  

The interfacial energy is associated to the stacking fault energies of the basal and pyramidal planes, 
respectively noted γb and γp: 

�IV7�:� = _!%!: + _`%`: (13) 



In this expression, sb and sp are surface per atom in the basal and pyramidal planes respectively (see 
Appendix C). 

The resulting fitting law for pyramids is then: 

�!OW6" �:� = Ω!OW6[ �1 + \��1 − \� √: + _!!OW6%!: + _`%`: + DE ( 14 ) 

A constant c0 is added for the same reasons as for loops. 

For bipyramids, the same formation energy can be obtained, except that Ω`I!OW6 = D8�/�2√2� and 

_!̀I!OW6  = 2 _!!OW6 = 8√38� + 4D�. In the case of the bipyramid, there is no basal fault. All the 

parameters used in the formation energy expression of (bi)pyramids are then the geometrical factors Ω, _! 

and _` , the elastic and stacking fault energy coefficients \, [ %!, %` and the constant DE. They are reported 

in Table 3 in which the fixed and adjusted terms have the same meaning as in Table 2. 

Table 3: fixed and adjusted parameters considered and fitting results for (bi)pyramids. 

Parameters Inclusion  
Pyramid Bipyramid 

EAM DFT EAM DFT Ω (Å3) Volume factor Fixed D8�/4 D8�/�2√2� 

_! (Å2) 
Surface factor of pyramidal 
facets 

Fixed 
82 a38� + 4D� 8a38� + 4D� 

_` (Å2) Basal surface factor Fixed √32 8� - 

\ Poisson coefficient Fixed 0.3 0.3 [ (GPa) Shear modulus Adjusted 29.2 34.2 35.7 31.2 

%! (mJ.m-2) 
Pyramidal stacking fault 
energy  

- 
Adjusted 

91.1 
Fixed 

103 [40] 
Adjusted 

116 
Fixed 

103 [40] %` (mJ.m-2) Basal stacking fault energy Adjusted 182 324 - DE (eV) Constant Adjusted -6.1 -5.3 -12.9 -9.7 
 

In order to assess the relevance of the inclusion model for pyramids/bipyramids, the analytical eigenstrain 
given by Eq. (11) is compared to the eigenstrain deduced from atomic simulations following the method 
described in Appendix B in terms of volume expansion of the defects. Figures 7 and 8 show a good 
agreement for both pyramids and bipyramids, which validates the inclusion model to describe the elastic 
behaviour of these objects. In particular, the atomic simulations reveal that the deformation induced by the 
pyramids or bipyramids is almost isotropic (MNNE = MOOE = MPPE ), which is consistent with the assumption 
made in the inclusion model. 

Results of the fitting procedure 



Concerning the perfect loops simulated with the EAM potential, R1, f and (C are supposed to be known 
and only rc is adjusted, yielding a value of 0.2 u.l.a (in unit of lattice parameter a) (see Table 2). The 
resulting fitting curve is represented in Figure 10-b (dotted green line). Conserving the same analytical 
form and values for R1, f and rc, a more precise mesoscopic law for perfect loops is expected by using the 
value of (C deduced from the elastic constants of zirconium calculated in DFT ((C = 0.6) instead of EAM 
method ((C = 0.68). The corresponding DFT parameters and curve are respectively given in Table 2 and 
represented in Figure 10-b (pink dotted line). For bipyramids, the fitting curve is adjusted on a restricted 
set of formation energies, instead of the entire set of MS data represented by red circles in Figure 10-b. 
Among the different possibilities for the choice of parameters to adjust, the set 	[, %!, DE
 allows to obtain 
a fitting curve (red line in Figure 10-b) which correctly reproduces the other MS formation energies of 
larger bipyramids. Moreover, the adjusted value for the shear modulus is quite close to the one calculated 
by MS (see Table 3), which is a supplementary validation of the fitting procedure and inclusion model. 
Then, as a significant advantage, this fitting procedure is valid even by taking into account MS data for 
small sizes of bipyramids, which is well adapted to perform the same type of adjustment from DFT data 
(blue circles), since only small objects can be simulated in this approach. The fitting curve from DFT 
(blue line in Figure 10-b) has then been obtained following the same steps, except that the value of %! has 
been fixed to the energy of the stacking fault between widely spaced pyramidal planes of the first order 
(calculated and referred as Pyr. I-W SF2 in [40], see Table 3). The resulting DFT fitting curves show an 
inversion of stability between bipyramids and perfect loops for a critical number nc of vacancies 
approximately equal to 9000, bipyramids being more stable than perfect loops for n < nc. This value of nc 
is included inside the transition zone deduced from the direct observation of the defect morphology in MS 
simulations (see section III). The mesoscopic laws give further insight to explain this transition, due to 
two antagonist effects:  

(i) for the same number of vacancies n, the elastic energy of bipyramids is lower than for loops and the 
difference increases with n, since the elastic energy of bipyramids is proportional to √: whereas the 
elastic energy of loops is proportional to √:ln �√:�. The elastic energy tends to promote the formation of 
bipyramids. 

(ii) There is a stacking fault energy contribution proportional to n associated to bipyramids, but not to 
perfect loops, which penalizes the bipyramids. 

Each contribution varies differently with n. The stacking fault contribution being proportional to n 
whereas the elastic contribution varies with √: or √:ln �√:�, the interfacial contribution becomes 
dominant for larger values of :, yielding a larger formation energy for bipyramids. It then becomes 
energetically favorable to form not faulted perfect loops instead. 

Dimensional arguments can also be used to predict the enhanced stability of bipyramids at small sizes of 
defects. For perfect loops, if the elastic distortions of the lattice are neglected, the atoms seeing a defective 
environment are in the core of the dislocation line and their number is proportional to the length of the 
dislocation, equal to 2$�#�√:. In fact, in the case of the perfect dislocation, the formation energy of the 
dislocation is the sum of two contributions, a core energy term and an elastic term, which may be written 
as: 

��  !" �:� = 2$�#��3 WU√: + 2$�#�(C√: ln =c@√VWd ? = 2$�#�(C√: ln =c@√VWe ? ( 15 ) 

With �3 WUthe core energy of the dislocation per unit length, 2E the ‘true’ core radius and 23 = 2Eexp�−�3 WU/(C�. It means that the core energy is already included in the analytical form of equation (1), 
in which 23 can be considered as an effective core radius. Then, if we neglect the elastic terms, the 



formation energy grows as √: for loops while it grows as n for bipyramids. Since √: is the leading term 
for small n in comparison with n, the opposite being true for large values of n, bipyramids should be more 
stable than loops for small n, with an inversion of stability when n increases, which corresponds 
qualitatively to the observed behaviour. Moreover, if we only consider the elastic energy terms, we have 
already shown that at large n, the bipyramids should be more stable. All these arguments show that elastic 
effects are less significant than the other contributions but still they have to be considered properly for a 
quantitative assessment of the critical value of nc for which the transition is observed. 

The same fitting procedure from DFT results has been applied to faulted loops and pyramids. Concerning 
pyramids, the adjustment gives a satisfactory value for the shear modulus, like for bipyramids, and a value 
of 324 mJ.m-2 for the basal stacking fault (see Table 3). In fact, this value is intermediate between the BB 
fault and the I1 fault (see Table D1), which is consistent with the evolution of the pyramid when the 
vacancy number increases: as shown in Figure 3, the initial BB basal fault progressively turns into I1. 
Since the fitting law is deduced from a set of data including pyramids with both BB and I1 faults, an 
average value for %` is then obtained. The resulting fitting curves for pyramids and faulted loops exhibit 
the same qualitative behaviour as for bipyramids and perfect loops: beyond a critical value of n, faulted 
loops become more stable than pyramids, and then a transition pyramid/faulted loops is also expected. 
However, the transition occurs at a lower value of nc approximately equal to 400. The interpretation for 
this result is also provided by arguments (i) and (ii), except that in the case of the faulted loops, a stacking 
fault energy must be also taken into account. This contribution is also proportional to n, like for pyramids, 
but the proportionality factor for loops is lower than for pyramids �$#��% < _!!OW6%! + _`%`�: it means 
that the stacking fault contribution penalizes pyramids and the previous explanations for the 
bipyramid/perfect loop transition still qualitatively hold for the pyramid/faulted loop transition. 

It turns out that the specific role of bipyramids in the nucleation of perfect ‹c›-loops suggested by MS 
simulations is also supported by the use of mesoscopic laws parameterized with DFT data. This latter 
approach also supports the same type of transition between pyramids and faulted ‹c›-loops. 

 

V. Discussion 

The minimum size of the experimentally observed ‹c› loops is of the order of 10 nm [11,12] and none of 
them has ever been observed for smaller sizes. This result suggests that the ‹c› loops do not form 
continuously from the aggregation of monovacancies, but they appear, beyond a critical size, by 
transformation of another type of configuration. The simulation work performed in this paper shows a 
bipyramid appeared by natural relaxation trying to simulate a perfect ‹c› dislocation loop and that 
bipyramids can evolve to a perfect loop beyond a critical size. This transition mechanism observed for 
larger sizes suggests that pyramidal defects plays the role of precursor for ‹c› loops, which explains why 
small ‹c› loops cannot be observed. This interpretation can be extended to the faulted loops and on the 
whole, pyramids and bipyramids are more stable than ‹c› loops (perfect and faulted) at small sizes 
regardless of the simulation method used, DFT or MS. DFT calculations gives further insight about the 
pyramid/faulted loop transition: for small pyramids, the basal stacking fault remains BB and then evolves 
to I1. Then, the pyramidal faults progressively disappears to reach a loop configuration. These pyramids in 
hcp systems can be viewed as the counterparts of stacking tetrahedrons already observed in face centered 
cubic metals [41–43]. As described in the introduction, defect clusters experimentally identified in 
zirconium alloys are mainly dislocation loops with ‹a› Burgers vector. Only for high fluence, the ‹c› 
component dislocation loops appear. However, some experimental data may support the existence of 
pyramids: 
 



• discrete planar defects on first order 	101�1
 pyramidal planes have also been observed in [5] but 
the author was not able at that time to clearly conclude on the exact nature of this defect ; 

 
• in other hcp metals like Mg, irradiation damage reveals the existence of small triangular shaped 

loops on stacking faults [44] which may be faces of pyramids; 
 

• the high density of small ‹a› loops already present at low doses may prevent the observation of 
pyramids. 

 

Performing further experimental investigations at low doses would be interesting to reveal the existence of 
such pyramidal clusters. 

Figure 7 shows the eigenstrain for bipyramids and perfect loops. The transition predicted by MS between 
these two configurations occurs for a size of approximately 5000 vacancies. Bipyramids generate a 
significant eigenstrain for smaller sizes with values up to -0.5 but very little eigenstrain at large sizes (n> 
200 vacancies). The perfect loop formation that appears around 5000 vacancies leads to a discontinuity of 
the eigenstrain, the component MPPE  (direction ‹c›) being significantly larger and converging with n towards 
the value -1 predicted by the Nabarro Eq. (7) when it is assumed that the habit plane of the loop is parallel 
to the basal plane. In the case of MNNE  and MOOE , there is also a discontinuity. Qualitatively, the same 
arguments are also valid for simple pyramids and faulted loops, as illustrated in Figure 8. As a 
consequence, for both transitions, there is a discontinuous evolution of the deformation nature due to this 
transition, from a configuration for which the lattice is deformed a little in a rather isotropic way, to a 
configuration for which the deformation is strong and anisotropic. Macroscopically, it induces an isotropic 
and small deformation of the cladding when pyramids are still predominantly present at low doses, and an 
anisotropic deformation of the cladding, namely a contraction in the radial direction due to its specific 
texture, as soon as the pyramids transform into ‹c› loops. 

In order to compare the formation energies of all these objects, mesoscopic laws are proposed to 
extrapolate the atomic data to larger sizes of the defects. These laws allowed to support the 
pyramid/faulted loop transition not revealed by MS simulations but they are also required in mesoscopic 
models dedicated to microstructure evolution under irradiation, such as Object Kinetic Monte Carlo 
(OKMC) models. Indeed, this type of models uses the binding energies �V̀  of the vacancy with a cluster of 
size n, defined as: 

�V̀ = �"�: = 1� − ��"�:� − �"�: − 1� ( 16 ) 

Where �"�: = 1�, �"�: − 1�, and �"�:� are respectively the formation energies of the isolated vacancy, 
the vacancy cluster of size n-1 and size n. Figure 11 shows the obtained binding energies. The values of 
the large-size binding energies were determined from the mesoscopic laws deduced from DFT data. In the 
case of small sizes, the binding energies are directly derived from the simulated DFT configurations (as 
long as all small sizes have been calculated). The clusters considered are then cavities for vacancies. We 
see that the emission capacity of the clusters are quite high but decreases with the size of the defect 
clusters. One possible perspective of this work would then to use these data in OKMC model in order to 
calculate the evolving populations of microstructural defects. Knowing the eigenstrain and density 
associated to each type of defect, as represented in Figures 7 and 8, it would be possible to calculate the 
resulting macroscopic deformation of the cladding under irradiation. In particular, it would be interesting 
to study if the transition pyramids/loops are correlated to the breakaway phenomenon. 



VI. Conclusions 

This paper proposes a new mechanism for the formation of vacancy ‹c› loops in zirconium: at low doses, 
vacancy clustering occurs by forming faulted pyramids but as these growth during irradiation, the 
pyramidal configuration evolves into ‹c› loops. This scenario is supported by several simulation results 
depicted in this paper: 

(i) At small sizes of the defect, MS simulations systematically predict the formation of bipyramids from an 
initial configuration corresponding to a perfect ‹c› loop. However, as the size of the defect increases, the 
characterization of the defect morphology reveal a progressive transition of bipyramids to perfect loops. 
The same type of transition could not be reproduced by MS for the formation of faulted ‹c› loops mostly 
experimentally observed. This is probably due to the EAM potential used, which artificially stabilizes the 
BB basal fault. The same simulations performed in DFT at small sizes reveal the formation of the I1 fault 
in the base of the pyramid, which is also the type of fault evidenced in ‹c› loops. 

(ii) Mesoscopic laws are proposed to extrapolate the formation energies of pyramids and ‹c› loops from 
DFT data. According to this approach, pyramids are more stable than loops at small sizes, but beyond a 
critical number of vacancies, there is an inversion of stability. This conclusion is valid for the two 
transitions bipyramids/perfect loops and pyramids/faulted loops. 

Implications of such transitions on the macroscopic deformation of cladding tubes are expected to be 
significant. Indeed, the calculated eigenstrains of pyramids are low and rather isotropic, whereas the 
eigenstrains of ‹c› loops are much higher and strongly anisotropic. In order to confirm this assumption, it 
would be interesting to perform fully-parameterized OKMC and rate theory simulations. In that 
perspective, the mesoscopic laws established in this paper as well as the eigenstrain calculated for each 
type of microstructural defect could be used as input parameters for such simulations. 
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Appendix A 

Formation energy can be seen as the energy cost that a fluctuation must provide to the system to form the 
defect. In the case of a pure element, the total formation energy �",7 7jU"  of a defect is the difference between 
the reference energy �Wk" of a perfect crystal containing lWk" atoms and the energy �mOm7 of a crystal 
containing a defect and having l67 atoms. The comparison of energies must be related to systems 
containing the same number of atoms. This is expressed by the equation below:  

�",7 7jU" =  �mOm7 − l67lWé" �WU" A.1 

Appendix B 

All object relaxations were performed at constant volume (DFT and EAM). In this way, it is possible to 
obtain the stresses oIJ exerted on the simulation box. It would also have been possible to perform the same 
simulations, but with zero stresses, from which it would have resulted an average deformation MI̅J on the 
simulation box. We then have from [45]: 

MI̅J = 5IJp�op� B.1 

Where 5IJp� represents the compliance tensor deduced from the tensor of the elastic constants. However, 
this deformation is not only characteristic of the defect, but also depends on the volume of the box. This is 
the reason why we compute the eigenstrain MIJE  of the defect, obtained by the ratio between the average 
deformation MI̅J and the volume fraction Y! of the defect: 

ME = MI̅JY! B.2 

The volume fraction Y! corresponds to the ratio between the volume of the defect and the total volume of 
the simulation box. In homogeneous linear elasticity, it is possible to show (see Khachaturyan [46]), that 
the ratio of Eq. (B.2) is independent of Y! which mean that the eigenstrain characterizes the defect 
independently of the volume of the box. 

Appendix C 

Our aim is to express the volume of the inclusion in terms of the numbers of vacancies it contains. The 
geometry of the simple pyramid is described in Figure C1.  



 

Figure C1 : Inclusion of the pyramid. 

To form a faulted pyramid, a hexagonal layer containing n vacancies is removed from a basal atomic 
plane. We search to express the hexagonal surface Sb according to the number of vacancies. We consider 
that the atomic surface Sat of a vacancy and that of the removed layer Sb are related as follows: 

:567 = 5`   Yq*r 
s
tu 567 = 8�√32

   5` = 3v�√32 w
xy (C.1) 

It is thus easy to deduce the L side, the total volume Vinc of the pyramid as well as the Sp and Sb surfaces, 
corresponding respectively to the length of one side of the hexagon, the volume of the pyramid, the total 
area of the pyramidal planes and the area of the basal plane, according to the number n of vacancies. 

z = tan}� 1 2D8√34 (C.2) 

v = 8√3 √: (C.3) 

XIV3 = 6X7k7W6 = 6 ~7U7W6�3 = √32 D8 v� = 16 8�D :� ��  (C.4) 

5` = 6~7U7W6 = 6 v�√34 = √32 8�: (C.5) 

5! = 6 vr2 = 3v��34 + =D8?� = 82 a38� + 4D� : (C.6) 

Vtetra is the volume of one tetrahedron represented in red in figure C1 and ~7U7W6 is its basal surface. 

Appendix D 

In hcp structure, there are different types of stacking faults in basal plane when removing one atomic layer 
[47]. 



Table D1: List of existing basal stacking fault. The column labeled “Operation” concern the colorized 
letters. The dot “.” between the letters sequence represent the fault emplacement. 

Fault Initial stacking Operation Final stacking Burger vector 
Fault energy 
(mJ.m-2) 

BB ABAB.ABAB Remove the layer A ABAB.BABAB 1/2[0001] 575 [23] 
I1 ABAB.BABA Shifted by 1/3〈101�0〉 ABAB.CBCBC 1/6〈202�3〉 160 [23,40] 
I2 ABAB.BABA Shifted by 1/3〈101�0〉 ABAB.CACAC  220 [23,40] 
E ABAB.BABA Shifted by 1/3〈101�0〉 ABAB.CABAB 1/2[0001] 280 [23,40] 
 

Table D2: Stacking fault energy in the �1�011� $� pyramidal plane.  

Methods Vector %! (mJ.m-2) Ref. 
VASP PW US 10e 0.250[101�2] 240a [48] 
PWSCF PBE US 12e 0.212[101�2] 127 (215a)  [49–51] 
VASP PBE 12e - 103 [40] 
EAM #3 - 243a [49] 
aAtomic relaxations only in the direction perpendicular to the fault plane 
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Figure 1: Construction scheme of a stacking fault bipyramid containing 96 vacancies. (a) Initial and (b) 
relaxed configuration obtained by the DFT method. A stacking fault is present between white atoms. 

 

   

Figure 2: Transition from bipyramid to ‹c› loop. The visualization of the defect was obtained by filtering 
the volumes of Voronoï where those corresponding to the perfect crystal were removed. The number of 
vacancies of each defect is indicated. 

 



 

Figure 3: Evolution of stacking fault pyramid for DFT and EAM methods. The atoms are colored 
according to their local environment.  

 

 

(c) 

Figure 4: Construction scheme of a ‹c› dislocation loop I1 containing 169 vacancies. (a) Initial and (b) 
relaxed configuration obtained with the EAM potential # 3. (c) 3D view of the final defect. 



 

 

Figure 5: Formation energies of (bi) pyramids and loops as a function of the number of vacancies of the 
defect. 

 

 

 

Figure 6: Formation energies of (bi) pyramids and loops as a function of the number of vacancies of the 
defect. This is an extrapolation of the previous figure towards a higher vacancies number. 

 



 

 



Figure 7: Eigenstrain component for bipyramids and ‹c› perfect loops as a function of the number of 
vacancies of the defect. The eigenstrain labeled “Nabarro” is calculated with equation (7) by considering 
that the habit plane of the loop is the basal plane. 

 

 



 

 

 



Figure 8: Eigenstrain component for pyramids and ‹c› faulted loops as a function of the number of 
vacancies of the defect. The eigenstrain labeled “Nabarro” is calculated with equation (7) by considering 
that the habit plane of the loop is the one determined from atomistic calculations (a) or the basal plane (b). 

 

 

 

Figure 9: Difference of stability between pyramids and ‹c› faulted loops as a function of the number of 
vacancies of the defect. 

 

 

 

Figure 10: Difference of stability between bipyramids and ‹c› perfect loops as a function of the number of 
vacancies of the defect. 

 

  



 

 

Figure 11: Binding energy of the vacancy to the different clusters as a function of the number of 
vacancies. 
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