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Abstract

We study the equilibrium statistical properties of the potential energy landscape of sev-
eral glass models in a temperature regime so far inaccessible to computer simulations.
We show that unstable modes of the stationary points undergo a localization transition
in real space close to the mode-coupling crossover temperature determined from the
dynamics. The concentration of localized unstable modes found at low temperature
is a non-universal, finite dimensional feature not captured by mean-field glass theory.
Our analysis reconciles, and considerably expands, previous conflicting numerical re-
sults and provides a characteristic temperature for glassy dynamics that unambiguously
locates the mode-coupling crossover.
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1 Introduction

The formation of a glass from the supercooled melt results from a giant increase of the struc-
tural relaxation time when the temperature drops below the melting point [1, 2]. Whether
the slowing down of molecular motion is driven by a single or several physical mechanisms,
active over distinct temperature regimes, is still unclear. Available theories are all but unan-
imous [3, 4], while experiments and simulations, despite recent technical and numerical ad-
vances [5], struggle to disentangle theoretical predictions on the sole basis of relaxation data.
The existence of a temperature crossover separating two physical regimes of dynamic relax-
ation is supported by a number of empirical observations and models, but is subject to lively de-
bates [4]. This crossover is described as an avoided dynamic singularity by mode-coupling [6]
and mean-field [7] theories of glasses.

In the early 2000’s, a series of studies [8–13] suggested that this smooth dynamic crossover
originates from an underlying sharp geometric transition characterizing the potential energy
surface (PES). Physically, the transition is between a high-temperature regime where the dy-
namics takes place near unstable saddle modes and a low-temperature one where dynamics
is activated between energy minima. In mean-field glass models, a geometric transition is
analytically found: below a critical energy level, the closest stationary point to a typical con-
figuration on the PES is not a saddle anymore but a local minimum [14,15]. The existence of
a geometric transition was reported for several liquids with soft interactions, with universal
characteristics [9–12, 16]. However, these results have been criticized at the conceptual [17]
and methodological levels [18, 19]. In particular, the early studies on the geometric tran-
sition employed an optimization method that locates stationary points only rarely, the vast
majority of optimized configurations being “quasi-stationary” points characterized by small,
non-vanishing force and precisely one inflection mode [12, 19]. Subsequent studies did not
find a transition [20–23], but the transition temperature could not be easily crossed at equi-
librium. From these conflicting results it is difficult to draw firm conclusions on the nature of
the mode-coupling crossover in actual three-dimensional liquids.

Here, we resolve these contradictions and clarify the nature of the change of the PES as-
sociated to the mode-coupling crossover in finite dimensions. Our work builds on two key
enabling factors, respectively algorithmic and conceptual. The first key feature of our work is
the use an efficient swap Monte Carlo algorithm [24,25], which enables us to probe the land-
scape properties on both sides of the mode-coupling crossover temperature [26,27]. Second,
we recognize that the geometric transition, as obtained in mean-field models, can only con-
cern the subset of unstable directions on the PES that correspond to delocalized displacements,
which involve a finite fraction of particles. Previous studies of the statistics of stationary points
have considered instead all unstable modes, irrespective of their spatial characteristics. Our
analysis demonstrates that a geometric transition occurs only for delocalized modes and that
the mode-coupling crossover therefore coincides with a localization transition of the unsta-
ble directions of the PES. We argue that the extent to which the mode-coupling singularity
is avoided in real liquids is controlled by the concentration of localized modes (involving a
finite number of particles), which is found to be system-dependent. Finally, we pinpoint one
qualitative difference between the features of stationary and quasi-stationary points, but also
confirm that the statistical properties of these two sets of data yield identical results for the
localization transition identified in the present work.
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2 Methods

We determined stationary and quasi-stationary points of the potential energy surface (PES)
for systems of N point particles using two different optimization methods. The first method
consists in straightforward minimization of the total squared force

W =
1
N

N
∑

i=1

|~Fi|2 , (1)

where ~Fi is the force on particle i. Minimizations start from instantaneous configurations
obtained from Monte Carlo or molecular dynamics simulations at a given number density
ρ = N/V and temperature T . For each configuration, we used the l-BFGS minimization algo-
rithm [28] to minimize W . It is well-known that W -minimizations locate true stationary points
only rarely [29] and that the vast majority of points determined with this method are quasi-
stationary points, at which there is precisely one inflection mode having a null zero eigen-
value [19]. In our minimizations, this inflection mode has a nearly zero eigenvalue whose
norm |λ| is typically lower than 10−4 (in the corresponding reduced units, see below) and
which is clearly distinguishable from the lowest non-zero eigenvalue for the system sizes used
in this work. The inflection mode was removed from the analysis, to avoid spurious O(1/N)
finite size effects when the fraction of unstable modes gets close to zero.

The stationary and quasi-stationary points obtained from W -minimizations can be distin-
guished on the basis of the corresponding value of W (in reduced units), which is low but
non-zero for quasi-stationary points and zero within machine precision for true stationary
points (W ∼ 10−14). In practice, we use a threshold of ∼ 10−10 to classify the two kinds of
points for all models except for the polydisperse spheres with n = 12 (see below), for which
a slightly higher threshold is used (3× 10−9) to account for a less strict convergence criterion
on W -minimizations. Points that were not recognized as either stationary points or quasi-
stationary points according to the above criteria were removed from the analysis. Previous
studies showed that the statistical properties of quasi-stationary points and stationary points
are practically indistinguishable above TMCT [29]. We discuss the similarity and differences
between these two kinds of points further down in the manuscript and in the Appendix.

To corroborate our analysis, we performed additional optimizations using the eigenvector-
following (EF) method introduced by Wales [30]. The EF method is a generalization of the
Newton-Rapshon method and locates stationary points containing a prescribed number of un-
stable modes nu. At each iteration, the Hessian matrix is diagonalized yielding a set of (local)
3N normal modes with eigenvalue λα and (normalized) eigenvector ~eα. The elementary step
along mode α is defined as

∆xα = Sα
2Gα

|λα|(1+
p

1+ (4Gα/λα))
, (2)

where Gα = ~G · ~eα is the projection of the gradient ~G on the mode and the signs Sα = ±1 are
defined below. At each iteration, the particles’ positions are displaced by ∆~x = K

∑

α∆xα~eα,
where K is a scaling factor that ensures that the amplitude of each displacement K∆xα lies
within a mode-dependent trust radius δα [30]. The trust radii are initially set to δα = 0.2 and
are increased (decreased) at each iteration by a factor 1.2 if the relative error r = (λest−λα)/λα
is smaller (or larger) than 1. The trust radius can vary in the interval 10−7 < δα < 1. λest
is a first-order approximation to the current eigenvalue λα, for which we used an improved
expression that accounts for changes in the (local) eigenvectors, as given by Ruscher [31].

In the EF method, the signs Sα are fixed at the beginning of the optimization. If Sα = −1
(+1), the algorithm searches for a minimum (maximum) along mode α. The number of neg-
ative signs thus defines the order nu of the searched stationary point. In subsequent studies
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of the PES of glass-forming liquids [20, 32], the target value of nu was not fixed from the
outset and a Netwon-Raphson-like step was used instead, setting Sα to the sign of the (local)
eigenvalue λα. This hybrid scheme displayed convergence issues and therefore, in practice,
the values of Sα were fixed to the ones found after M = 20 iterations. The order of the target
stationary point thus depends indirectly on the initial trust radii and on the choice of the pa-
rameter M : higher values of M lead to smaller nu, but also decrease the success rate, i.e. the
fraction of converged optimizations.

In a first implementation, we followed the hybrid scheme of Ref. [20] and confirmed that
the choice M =∞ leads to convergence issues, even at low temperature, in agreement with a
recent study by Ruscher [31]. Our convergence criterion required that W drops below 10−10

within a maximum of 4000 iterations. We note that the problem is not specific to the complex
PES of glass-forming liquids and can be observed under some circumstances even in the sim-
ple case of the Müller-Brown surface. It can be tracked down to the fact that when a mode
goes smoothly through a zero curvature region, the corresponding elementary step becomes
dominant in magnitude and reverts its sign. When this occurs, the optimization oscillates back
and forth along a soft direction and the overall behavior of the algorithm becomes erratic.

To overcome these difficulties and to avoid that our results depend on choice of M , we
decided to fix the number of unstable modes from the outset. For each configuration, we first
determined the number of unstable modes found after the corresponding W -minimization
and then target this same value during the EF optimization. Although our approach does
not provide an independent mapping between instantaneous configurations and stationary
points, it is more robust than the hybrid EF method and enables in addition a useful and
straightforward comparison between the properties of stationary points and the more general
points located by W -minimizations.

3 Models

3.1 50-50 soft spheres

This is the historical 50:50 binary mixture introduced by Bernu et al. [33]. The pair interaction
potential is

uαβ(r) = ε
�σαβ

r

�12
, (3)

where α,β = A, B are species indexes. The size ratio is σAA
σBB
= 1.2 and the cross-interaction term

is additiveσAB = (σAA+σBB)/2. The potential is cut off and shifted at a distance rcut =
p

3σAA
by adding a cubic term that ensures continuity of the potential up to the second derivative
at rcut [11, 25]. Energies and distances are expressed in units of ε and σAA, respectively. We
used configurations from previous molecular dynamics simulations for N particles at a number
density ρ = N/V = 1, with N = 400,800, 2000 [34].

3.2 Ternary mixture

The ternary mixture model studied in this work was introduced by Gutierrez et al. in Ref. [35].
The interaction potential is given by inverse power laws with an exponent 12, plus additional
terms that ensure continuity of the derivatives at the cutoff:

uαβ(r) =
�σαβ

r

�12
+ c4

�σαβ

r

�−4
+ c2

�σαβ

r

�−2
+ c0, (4)

where α,β = A, B, C . The expressions for c0, c2, and c4 are given in [36]. The size ratio
between two species is σAA

σBB
= σBB
σCC
= 1.25, with additive cross-interactions, and the chemical
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compositions are xA = 0.55, xB = 0.30, and xc = 0.15. The potential is cut off at a distance
rcut = 1.25σαβ . We performed swap Monte Carlo simulations for N = 250, 500,1500, 3000
particles at a number density ρ = 1.1. We used 80% of displacement moves over cubes of side
0.14σAA and 20% of swap moves [27]. To save computational time, we never attempted to ex-
change the identity of species A and C . We note that this model liquid can be equilibrated with
swap Monte Carlo below the mode-coupling temperature TMCT = 0.29 [27]. However, because
of its crystallization tendency at low temperature, we could not simulate the metastable liquid
with N = 1500 particles for T < 0.27 and the one with N = 3000 particles for T < 0.28.
Energies and distances are expressed in units of ε and σAA, respectively.

3.3 Network liquid

The network liquid model is a simple binary mixture that mimics the structure and dynamics of
silica [37]. The interaction potential between unlike species (α 6= β) is of the Lennard-Jones
type

uαβ(r) = 4εαβ

�

�σαβ

r

�12
−
�σαβ

r

�6
�

, (5)

while the one between equal species is a simple inverse power

uαα = ε12(σ/r)
12. (6)

Energies and distances are expressed in units of εAA and σAA, respectively. The remaining
interaction parameters are εAB = 6, εBB = 1, σAB = 0.49, σBB = 0.85. The potential is cut off
smoothly at rcut by adding a cubic term that ensures continuity of the second derivative at the
cut-off distance rcut , as for the soft sphere mixture [11]. The resulting cut-off distances are
2.07692, 1.39081, 1.76538 for A− A, A− B and B − B interactions, respectively. We analyzed
simulations for system sizes N = 400,800, 2000 at a number density ρ = 1.655 obtained from
previous molecular dynamics simulations [34].

3.4 Polydisperse particles n=18

We consider the model of polydisperse repulsive particles with additive interactions studied in
Ref. [27]. The interaction potential between particles i and j is

u(ri j) = ε(σi j/ri j)
n + c4

�

ri j

σi j

�4

+ c2

�

ri j

σi j

�2

+ c0, (7)

with n = 18 and σi j = (σi + σ j)/2. The coefficients c0, c2, c4 are determined to ensure
continuity of the potential at the cut-off distance rcut = 1.25σi j , as for the ternary mixture.
The distribution of particle diameters is P(σ) = A/σ3 for σmax ≤ σ ≤ σmin and 0 otherwise,
with A a normalization constant. We use σmax/σmin = 2.219, which implies a root mean
square deviation of the diameter

δ =

p

〈σ2〉 − 〈σ〉2

〈σ〉
(8)

of about 23%. We simulated systems composed of N = 500,1000, 1500 particles at a number
density ρ = 1 using the swap Monte Carlo algorithm described in Ref. [27].
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3.5 Polydisperse particles n=12

This is a variant of the polydisperse mixture introduced in the previous section. It features
non-additive interactions to stabilize the fluid against phase separation [27]. The interaction
potential between particles i and j is

u(ri j) = ε(σi j/ri j)
n + c4

�

ri j

σi j

�4

+ c2

�

ri j

σi j

�2

+ c0, (9)

with n= 12 andσi j = (1−0.2|σi−σ j|)(σi+σ j)/2. The coefficients c0, c2, c4 are determined to
ensure continuity of the potential at the cut-off distance rcut = 1.25σi j . We use the same size
distribution as for the polydisperse particles with n = 18. We simulated systems composed
of N = 500, 1000,1500 particles at a number density ρ = 1 using the swap Monte Carlo
algorithm described in Ref. [27].

4 Results

We first present our central result and then provide its numerical support. Further details
are given in the Supplementary Information (SI) of the accompanying dataset [38]. In Fig. 1
we show results of W -minimizations that locate stationary and quasi-stationary points of the
PES (the distinction between these two families [19] does not affect our conclusions, see Ap-
pendix). We also include results for stationary points obtained using the EF method for the
ternary mixture model. Diagonalization of the Hessian matrix yields a set of 3N eigenmodes,
of which nu corresponds to negative eigenvalues λ, i.e., to unstable directions. The left panel
shows the corresponding average fraction of unstable modes fu = nu/(3N) as a function of
temperature T for all the models of glass-forming liquids we investigated. Most of these mod-
els have been equilibrated below their respective MCT crossover temperatures TMCT, as de-
termined from power-law fits of the relaxation time data [27, 37]. We are thus in a position
to probe the landscape properties in a temperature range inaccessible to previous studies. At
low temperature, we observe marked system-dependent deviations from an empirical power-
law singularity introduced in Ref. [16]. Most importantly, the fraction of unstable modes is
insensitive to the crossover and remains finite far below TMCT, with barely any system-size
dependence (see the SI [38]).

The picture changes qualitatively when the spatial localization of the modes is taken into
account. As described below, we distinguish between localized and delocalized unstable modes
via a finite size scaling analysis of the participation ratio. The fraction of delocalized unstable
modes, fud , goes strictly to zero for all investigated fragile liquids at a temperature close to

Table 1: Mode-coupling temperatures TMCT, localization transition temperatures Tλ,
fitting parameter Aλ and threshold energies eth for all the studied models. Note that
for the network liquid no localization transition could be found.

TMCT Tλ Aλ eth

50-50 soft spheres 0.20 [34] 0.197±0.002 11.7±0.5 1.735±0.015
Ternary mixture 0.288 [27] 0.280±0.002 18.0±1.1 1.077±0.012
Ternary mixture (EF) 0.287±0.010 19±7 1.10±0.01
Network liquid 0.31 [34] – – –
Polydisperse particles n= 18 0.50 [27] 0.460±0.003 20.0±1.0 1.47±0.02
Polydisperse particles n= 12 0.104 [27] 0.086±0.004 3.4±0.4 0.22±0.01
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Figure 1: Fractions of unstable modes in stationary and quasi-stationary points for all
studied models. Rescaled temperature dependence of (a) total fraction fu of unstable
modes from W -minimizations. The dashed line is the master curve found in Ref. [16].
(b) Fraction fud of delocalized unstable modes. Open and filled symbols correspond
to W -minimizations an EF optimizations, respectively. The dotted line is Eq. (10)
with f0 = 0.042. Error bars are shown when the relative error exceeds 20%. (c)
Fraction of localized unstable modes from W -minimizations.

TMCT, see Fig. 1(b). The approach to TMCT can be described approximately by the following
power law

fud = f0 (T/TMCT − 1)3/2 , if T > TMCT. (10)

The exponent 3/2 in Eq. (10) describes the approach to the dynamical transition in the mean-
field p-spin model [39]. As in mean-field, a geometric transition occurs indeed at a finite
temperature but it captures the disappearance of delocalized unstable modes only. In finite
dimensions, localized modes exist at any temperature and therefore the MCT crossover coin-
cides with a localization transition of unstable modes. We emphasize that the values of TMCT
were independently estimated from power law fits to the relaxation time data elsewehere, see
Table 1, and need not coincide exactly with the temperature at which fud vanishes. In particu-
lar, we observe some discrepancy for polydisperse particles, which likely reflect the uncertainty
inherent in the fits to the dynamic data, e.g. the choice of the temperature range. The statisti-
cal uncertainty on fud becomes large, in relative terms, only when approaching the transition
from the right. Close inspection of the data in proximity to the transition (see also Fig. 11 in
the Appendix) indicates that the fraction of delocalized modes decreases faster in stationary
points than in quasi-stationary points. This feature can be tracked down to the different shape
of the corresponding spectra at low temperature, see Fig. 6 below. Nonetheless, both sets of
data consistently vanish below the estimated mode-coupling temperature.

Figure 1(c) shows that the concentration of localized unstable modes ful = ( fu − fud) is
system-dependent. We suggest that a higher fraction of localized modes at TMCT corresponds
to stronger deviations from the geometric transition scenario observed in the mean-field p-spin
model. Liquids that narrowly avoid the geometric transition should display a marked change
in dynamic behavior across the MCT crossover temperature. On the other hand, we note that
there exist models of glassy dynamics whose PES is, unlike the one of p-spins, trivial or not
smooth and yet display MCT-like dynamics [40–42]. Whether another mechanism can explain
the MCT phenomenology in all these systems remains a challenging open question. We expect
hard spheres to be similarly characterized by a localization transition of unstable modes in a
free-energy landscape, but there exist at present no computational tool to attack this prob-
lem. Finally, the trend in Fig. 1(c) superficially suggests a correlation between glass-forming
ability [27] and the concentration of localized unstable modes. We observe that polydisperse
particles have the largest concentrations of localized modes and are found to be very stable
against crystallization even when using efficient swap Monte Carlo techniques [27], while the
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Figure 2: Test of the geometric transition scenario. (a) Fraction of unstable modes
fu and (b) fraction of delocalized unstable modes fud as a function of the scaled
energy (es − eth)/TMCT for points obtained from W -minimizations (open symbols)
and EF optimizations (filled symbols). Temperature is used as an implicit variable.
(c) Scaled temperature (T − TMCT)/TMCT versus scaled bare energy (eb − eth)/TMCT.

50-50 soft sphere mixture has the lowest concentration of localized modes and can be crys-
tallized with conventional simulation methods. While intriguing, this observation needs to be
tested over a more diverse pool of liquids and also changing the dimensionality of space.

In mean-field p-spin models, the geometric transition is defined through the relationship
between fu and the energy es of stationary points. At the transition, stationary points of av-
erage energy eth have a vanishing fraction of unstable modes fu: fu(eth) = 0 [11]. Such a
representation reveals an intrinsic property of the landscape and it is fairly insensitive to the
way in which the latter is sampled. In finite-dimensional systems, the es( fu) relation deviates
from the linear behavior observed well above TMCT [22,23] and we confirm these results over
a broader temperature range, see Fig. 2(a). We attribute these discrepancies to the presence
of a finite fraction of localized modes. In fact, looking at the relation es( fud) in Fig. 2(a),
where the temperature is used as an implicit variable, one observes a geometric transition at
a finite energy threshold. The values of the threshold energies eth, determined as the largest
average energy of stationary points such that fud(eth) = 0, are reported in Table 1. This be-
havior is confirmed in all of the models (except the network liquid, see below), and is a direct
consequence of the localization transition.

To check the consistency between the analysis in terms of energy and temperature, we
follow Refs. [9, 11] and estimate the temperature at which the bare energy of the system,
defined as eb(T ) = e(T )− 3

2 T where e(T ) is the average potential energy per particle at tem-
perature T , reaches the threshold energy. The idea is that the system in its thermal dynamics
will sample stationary points through thermal activation when the average energy of the latter
will be comparable to eb, which provides an estimate of the energy of the potential well that
confines the system. Figure. 2(b) shows that bare energy reaches eth very close to TMCT. Some
deviations are seen for the polydisperse model with n = 12, consistent with the discrepancy
seen in Fig. 1(b). The bare energy of this model reaches eth at Tth = 0.080 ± 0.009, which
is consistent with the localization transition temperature Tλ = 0.086± 0.002 determined be-
low. Overall, these findings suggest that W -minimizations provide a reasonable mapping to
stationary points that are relevant to the thermal dynamics of the system.

One notable deviation from the pattern described above occurs for a model of a strong
tetrahedral network liquid [37], which mimics the structure and dynamics of silica. Even
though the vast majority of unstable modes of this model is localized at any temperature [37],
a small fraction of delocalized modes survives even below the putative MCT crossover and no
geometric transition is observed in the temperature range accessible to our simulations. While
this discrepancy is in line with the conventional Angell picture, which asserts that fragile and
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Figure 4: Scaled participation ratio P(λ, N)/L of stationary points of the ternary
model from EF optimizations for all studied temperatures and system sizes
N = 250,500, 1000. As in Fig. 3, the corresponding mobility edge is indicated by
a vertical bar.

strong liquids form two distinct classes [1], it may also be due to the limited temperature
range probed by our simulations. We also note that, since our optimization methods struggle
to locate true stationary points for this model 1, these excess modes may be specific to quasi-
stationary points. Nonetheless, we argue that even if an underlying geometric transition were
present in this model, its features would be largely hidden by the large concentration of local-
ized modes, which corresponds to the elementary rearrangements of the tetrahedral structural
units [37]. At a more fundamental level, our results cast some doubts on the relevance of the
MCT description of the early stages of glassy dynamics in strong liquids [43,44], see also [45].

The results presented above rely on our ability to determine the mobility edge of the spec-
trum, i.e. the eigenvalue λe that separates localized and delocalized unstable modes. Early
attempts to determine the mobility edge from the spectrum of the instantaneous normal modes
(INM) in liquids were unsuccessfull [46], but the technical problems were recently tackled [47]
by applying a finite-size scaling procedure borrowed from the study of Anderson localiza-
tion [48]. We used this procedure to classify the unstable modes of all studied models. In the
following, we illustrate this approach for one specific ternary mixture [35] and provide full
details about the remaining systems in the SI and accompanying dataset [38].

As a measure of the localization of a mode α, we consider the participation ratio

Pα =

� N
∑

i=1

|~eα,i|4
�−1

,

where ~eα,i is the displacement of particle i along the corresponding normalized eigenvector.
We then compute the average participation ratio P(λ, N) of modes with eigenvalue λ for a

1W -minimizations only located quasi-stationary points, while EF optimizations did not converge to stationary
points within the prescribed number of 4000 iterations.
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given system size N . A finite-size scaling analysis allows one to determine the mobility edge
λe as the fixed point in P(λ, N)/L, where L is the linear size of the system [47]. The rationale
is that, for delocalized modes, P scales at least linearly with L, whereas it is independent of L
for localized modes. As a result, the mobility edge identifies the eigenvalue where finite size
effects change nature. Localized modes have λ < λe, while λe < λ < 0 for delocalized modes.

Figures 3 and 4 show P(λ, N)/L across the MCT crossover temperature for the ternary mix-
ture obtained from W -minimizations and EF optimizations, respectively. We use the ternary
mixture as a bench case because it is the model for which we gathered the largest statistics. The
other models display qualiatively similar features, see the SI [38]. A well-defined fixed point at
λe(T ) is visible in the participation ratio when T > TMCT. The data show that λe reaches zero
around T = 0.28±0.01, which matches well the mode-coupling temperature determined from
the dynamics [27]. Below this temperature, the absence of a non-trivial fixed point means that
all unstable modes are localized and we formally set λe = 0. Quantitatively, the mobility edge
of the unstable modes was determined by finding the intersection of pairs of scaled partici-
pation ratios P(λ, Li)/Li and P(λ, L j)/L j , where the indices Li and L j denote different linear

system sizes. The mobility edge λe is then defined as the average of the eigenvalues λi j
e at

which the scaled participation ratios cross. If two curves P(λ, Li)/Li and P(λ, L j)/L j do not

intersect each other, the corresponding estimate λi j
e of the mobility edge is set to zero. The

uncertainty on λe was estimated as half of the difference between the extreme values of λi j
e .

To determine the uncertainty on the fractions of delocalized and localized unstable modes, we
considered the λe-dependence of fud(T ;λe) and ful(T ;λe) respectively, and propagated the
uncertainty on λe. Finally, we note that at low temperature, the unstable modes have a some-
what higher participation ratio in stationary points than in quasi-stationary points. However,
the location of the mobility edge and its temperature dependence is unaffected by these slight
discrepancies.

In Fig. 5 we show that the mobility edge goes to zero linearly as T → T+
λ

for all fragile
liquids studied in this work and is zero for T < Tλ. The precise value of the localization
temperature Tλ can be extracted from least square fitting of the mobility edge to the following
functional form

λe(T ) =

�

Aλ(T/Tλ − 1) if T > Tλ
0 if T ≤ Tλ

, (11)

where Aλ and Tλ are adjustable parameters. The values of Tλ are reported in Table 1, they
correlate strongly with those of TMCT. The localization transition temperature Tλ, at which the
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Figure 6: (a) Unstable part of the spectrum g(λ) for the ternary mixture from W -
minimizations (lines) and EF optimizations (symbols). (b) System size dependence
of g(λ) for stationary points obtained from EF optimizations.

mobility edge vanishes, defines a new characteristic temperature for glassy dynamics. It can
be determined using a well-defined procedure and subsumes the conventional definition of the
mode-coupling crossover based on fitting the dynamic data. Its quantitative determination is
only limited by the statistical uncertainty on the mobility edge very close to the transition.

The fraction of delocalized and localized modes shown in Fig. 1 are then defined as

fud =
∫ 0−

λe
g(λ)dλ and ful =

∫ λe

−∞ g(λ)dλ, respectively, where g(λ) is the normalized spec-

trum of the stationary points 2. We used the largest system size available for each system
to compute the fractions of unstable modes, see the SI [38] for an analysis of finite size ef-
fects. Results obtained using INM, i.e. the normal modes of the instantaneous configurations,
showed instead that the vast majority of the unstable directions are delocalized at any tem-
perature [47], with no obvious change as T → TMCT. The INM thus seem unable to capture
changes in the landscape properties relevant to the MCT crossover, unless perhaps by care-
fully filtering the unstable directions so as to remove inflection and non-diffusive modes [49].
These modes are not relevant for the dynamics and are suppressed by force minimizations and
EF optimizations.

The shape of the unstable portion of the spectrum g(λ) displays at all temperatures an
exponential tail, as expected from an uncorrelated distribution of localized modes. This fea-
ture, which does not depend on the type of point, i.e. quasi-stationary or stationary point, is
visible in Fig. 6(a) for the ternary mixture model and is confirmed for all studied models, see
the SI [38]. As temperature decreases, however, the distributions of stationary points display
one qualitative difference with respect to quasi-stationary points. As shown in Fig. 6(a), the
spectrum of stationary points shows a depletion close to λ= 0. The depletion has a slight size
dependence at low temperature, see Fig. 6(b). The suppression of these low frequency un-
stable modes has a counterpart in the temperature dependence of fud , which approaches zero
more rapidly for stationary points than quasi-stationary points [see Fig. 1(b)]. By contrast, the
spectrum of quasi-stationary points displays a slight excess of modes close to λ= 0, which gets
more pronounced as T decreases and N increases. These features at small (absolute) eigen-
values are generic of all studied fragile liquids [38]. However, both types of points indicate
a vanishing mobility edge close to TMCT and therefore these discrepancies do not affect the
location of the localization transition. Our analysis demonstrates that the difference between
stationary and quasi-stationary points does not boil down simply to the presence of an inflec-
tion mode, but reflects itself in the overall distribution of modes at small frequencyω=

p

|λ|.
In this regime, the shape of g(|ω|) suggests that the unstable saddle modes may share some

2The three null modes as well the as spurious inflection mode of quasi-stationary points [18, 19] are removed
from the analysis.
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similarities with the quasi-localized stable modes [50], which arise from the hybridization of
localized excitations and phonons [51] and display a g(ω) ∼ ω4 scaling [52, 53]. It will be
interesting to analyze this connection in future work.

A well-established method to distinguish localized and delocalized modes builds on the
analysis of the level spacing statistics [54], as used extensively in the analysis of spectra in a
variety of problems, including the INM of supercooled and confined liquids [47,55,56]. Here
we compute the level spacing distribution of stationary and quasi-stationary points of the PES.
We first determine the smooth part of the cumulative density of states ξ(λ) through a cubic
spline of the raw data and then compute the level spacings s̃ = ξ(λi+1)−ξ(λi) from the ordered
set of the eigenvalues. Finally, the level spacings are normalized, s = s̃/〈s̃〉. In Fig. 7 we show
representative results for the level spacing distribution at T = 0.35, i.e. in a regime where both
kinds of modes can be clearly identified. We remove from the analysis the modes around the
mobility edge (over a range ±2), for which the functional form of the level spacing statistics
is known to have an intermediate character [54]. We find that the level spacing distribution
of the delocalized modes λ > λe is rather well described by the Wigner-Dyson distribution

P(s) =
�πs

2

�

exp
�

−
π

4
s2
�

.

For the localized modes, the distribution is close to the Poisson distribution expected for uncor-
related eigenvalues, P(s) = exp (−s), although there remains a small depletion at the smallest
level spacings. The trend of the distributions for varying N (not shown) suggests that this
depletion may be a finite size effect. Overall, the analysis of the level spacing statistics corrob-
orates our analysis of the localization of the unstable modes.

Finally, we make direct contact with the real space structure of the modes and inspect the
average displacements on the unstable modes e2

i = (1/nu)
∑

α |~eα,i|2. Since each eigenvector
is normalized, we have e2

i < 1. By averaging over all unstable modes, the instability field e2
i

captures the degree of localization of a given stationary point. The three snapshots in Fig. 8
depict the spatial distribution of e2

i for representative saddle points. On approaching TMCT, the
instability field becomes localized around few isolated particles with large displacements. It
would be interesting to analyze separately the spatial correlation of localized and delocalized
modes using for instance the gyration radius [37] or the methods of Ref. [57]. Early simu-
lations [58] found a correlation between e2

i and the short-time dynamical heterogeneity of a
Lennard-Jones mixture. Our results suggest that the growth of dynamic correlations associ-
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Figure 8: Spatial distribution of the average displacements e2
i on the unstable modes

for three stationary points sampled in the ternary mixture (a) well above (T = 0.45),
(b) around (T = 0.35) and (c) at the mode-coupling temperature (T = 0.29). Only
particles in a vertical slab of thickness 2σ are shown. The color coding interpolates
between yellow (•) for particles with e2

i = 0 and red (•) for those with e2
i ≥ 0.04.

ated to the progressive stabilization of unstable modes as T → TMCT is cut off because unstable
modes become localized, which suggests a plausible explanation for the non-monotonic evolu-
tion of dynamic correlations across TMCT observed in some liquids [34,59–61]. Since localized
modes are present at any temperature, see Fig. 1(c), supercooled liquids may display activated
dynamics between nearest energy minima even above TMCT, at variance with the traditional
Goldstein’s scenario [8] but in agreement with studies on the metabasin structure of the land-
scape [21] and on dynamic facilitation [17].

5 Conclusions

In conclusion, we found that the localization properties of unstable directions of the potential
energy landscape of several models of glasses display a qualitative change close to the mode-
coupling crossover temperature TMCT. Our observations demonstrate that the geometric tran-
sition found in mean-field models and investigated in early simulation studies [9–11] involves
only the subset of delocalized unstable modes. The mode-coupling crossover thus corresponds
to a localization transition and is a meaningful physical concept only if the concentration of
localized unstable modes is sufficiently low. These results may provide guidelines to under-
stand the dynamic crossovers reported in some supercooled liquids by experiments [62, 63]
and simulations [34,59–61]. In liquids characterized by a high concentration of localized un-
stable modes, including e.g. strong glass-formers, the physics should be controlled instead by
localized excitations, even above TMCT. Kinetically constrained models [64] could then pro-
vide an effective theoretical framework to account for the build up of dynamic correlations
from such localized rearrangements. Liquids embedded in higher dimensions, which have
recently received significant interest, are closer to mean-field behavior and we predict that
they will display small concentrations of localized modes and be structurally very homoge-
neous. These expectations are consistent with recent findings for a nearly mean-field three-
dimensional model [65], and can now be tested numerically in large dimensions [66]. Future
studies should also focus on generalizing the analysis to models of experimentally relevant
models of molecular liquids.
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A Quasi-stationary points versus stationary points

In this section we compare the statistical properties of quasi-stationary and stationary points
obtained from W -minimizations. We focus mostly on the ternary mixture model, because it is
the one for which we accumulated the largest statistics.

The plots in Fig. 9 shows results obtained separately for stationary points and for the bulk of
the points obtained from W -minimizations for the ternary mixture model. Only minor discrep-
ancies between the two sets of data are visible, the fraction of unstable modes being slightly
smaller in stationary points at small T . No difference is visible in the geometric representation
fu(es).

In Fig. 10 we show the participation ratio P(λ) of the unstable modes for all points ob-
tained from all W -minimizations and for stationary points only. The two sets of data are con-
sistent with one another, with only minor discrepancies below the mode-coupling temperature
TMCT ≈ 0.29.

In Fig. 11(a) we show the fraction of unstable modes for stationary points only, i.e. without
quasi-stationary points, for all fragile liquids and various system sizes. Within the noise of
the data, we confirm that the fraction of unstable modes remains finite even below the mode-
coupling crossover. See the Supplementary Information for further details on finite size effects.

Figure 11(b) is the same as Fig. 11(a) but for the fraction of delocalized unstable modes.
We use the mobility edge obtained from analysis of all W -minimizations because the current
statistics on the participation ratio is not sufficient to determine the mobility edge. The data
are nicely consistent with Eq. (10). Close to TMCT, the fraction of delocalized unstable modes
is lower in stationary points than in quasi-stationary points, consistent with the findings for EF
optimizations. This feature can be traced back to the depletion in the spectrum of stationary
points at small λ, see Fig. 6. Overall, the trend observed in Fig. 11 confirms the localization
transition of the stationary points around the mode-coupling temperature.
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Figure 9: Fraction of unstable modes in all points and in true stationary points ob-
tained from W -minimizations as function of (a) temperature and (b) energy. In panel
(b) we show both averages on a per-energy basis (circles) and using T as an implicit
variable (crosses). The number of particles is N = 500.
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