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Nonaffine lattice dynamics with the Ewald method reveals strongly nonaffine
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France

A lattice dynamical formalism based on nonaffine response theory is derived for non-centrosymmetric
crystals, accounting for long-range interatomic interactions using the Ewald method. The framework takes
equilibrated static configurations as input to compute the elastic constants in excellent agreement with both
experimental data and calculations under strain. Besides this methodological improvement, which enables
faster evaluation of elastic constants without the need of explicitly simulating the deformation process, the
framework provides insights into the nonaffine contribution to the elastic constants of α-quartz. It turns
out that, due to the non-centrosymmetric lattice structure, the nonaffine (softening) correction to the elastic
constants is very large, such that the overall elastic constants are at least 3-4 times smaller than the affine
Born-Huang estimate.

I. INTRODUCTION

Lattice dynamics has been formulated through the pi-
oneering work of Max Born and co-workers on the sim-
plifying assumption that deformations are homogeneous,
or in modern language, affine1. In practice, this implies
that every atom is displaced under deformation by the
macroscopic strain tensor operating on the original posi-
tion vectors. This transformation defines the affine posi-
tions in the deformed lattice. Such a description assumes
however that mechanical equilibrium is satisfied at the
affine positions, which is certainly true for centrosym-
metric lattices, where, owing to each atom being a local
center of inversion symmetry, the forces transmitted by
the neighbours cancel out by symmetry at the affine po-
sitions.

The situation is different for disordered lattices like
glasses and for non-centrosymmetric crystals as well as
near crystalline defects like grain boundaries. In such
cases, the atoms are not centers of symmetry in their
affine positions and therefore receive from their neigh-
bours forces that sum up to a net force. The latter is
released via an extra displacement, called nonaffine dis-
placement or relaxation.

A well-known consequence is that, in atomistic calcula-
tions of elastic constants where a periodic cell is strained
to compute its energy- or stress-strain curve, atomic po-
sitions must be relaxed, i.e. the cell energy must be
minimized, each time the periodic vectors of the cell are
strained (see for instance, Ref.2). The effect of nonaffin-
ity has been investigated much more intensely in glasses

a)Electronic mail: az302@cam.ac.uk
b)Electronic mail: david.rodney@univ-lyon1.fr

than in crystals because it is generally expected that re-
laxations will be larger in glasses due to their inherent
disorder than in ordered crystals.

Moreover, the physical origin of the nonaffine relax-
ations cannot be addressed by direct numerical simu-
lations. For this purpose, Lemaitre and Maloney3 fol-
lowing the pioneering work of Lutsko4 expressed analyti-
cally the elastic constants of systems interacting through
short-ranged potentials. They showed that the elastic
constants can be expressed as the sum of a positive Born
term due to affine deformations and a negative (soften-
ing) correction due to the nonaffine relaxations.

Reformulating the equations of motion by explicitly
requiring that the atoms move along nonaffine pathways
of mechanical equilibrium leads to a framework known as
the nonaffine response theory or nonaffine lattice dynam-
ics. This framework has recently been applied to various
systems and materials, from packings (where it recovers
the ∼ (z − 2d) jamming scaling, with z the coordina-
tion number5) to polymers6, and to analyze dissipation
in high-frequency oscillatory rheology7. The framework
also provides quantitative predictions of dynamic vis-
coelastic moduli of coarse-grained (Kremer-Grest) glassy
polymers8.

One limitation so far of this analytical approach has
been that it can be applied only to short-ranged po-
tentials, such as pair or embedded-atom method po-
tentials with a cut-off radius and can not handle long-
ranged interactions. It can not in particular handle
Coulomb interactions. In fact in disordered glasses, long-
ranged Coulomb interactions have been treated with a
truncation9–11 and were handled using the original ap-
proach of Lemaitre and Maloney7. By way of constrast,
in an ordered crystal like α-quartz, Coulomb interactions
are conditionally convergent and must be treated accord-
ingly using the Ewald method12,13. To illustrate this ne-
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cessity, we show in Fig. 1 the slow convergence of the
Coulombic energy in a crystal of α-quartz as a function
of the cut-off radius of the truncation.

The aim of the present article is two fold. First,
we show that the long-ranged many-body contribution
due to the Ewald summation in reciprocal space can be
treated analytically and be incorporated in the nonaffine
response theory. Second, using α-quartz as a prototypi-
cal non-centrosymmetric crystal, we show that, contrary
to what might be expected, nonaffine contributions are
not small corrections to the elastic constants: they are
substantial (negative) contributions, which make the re-
sulting elastic constants up to 4 times smaller than the
affine estimates. This important fact has been overlooked
in previous studies on α-quartz lattice dynamics14.
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FIG. 1: Coulomb energy computed in a crystal of
α-quartz (a = 4.94Å, c = 5.44Å) with Wolf truncation
as a function of the cut-off radius of the truncation.

The horizontal line is the exact value, computed with
Ewald summation. The Wolf-truncated energy

decreases approximately as EEwald + 4/Rc, where
EEwald is the value obtained with Ewald summation
and Rc is the cut-off radius of the Wolf truncation.

These results are also relevant to studies of the bo-
son peak (i.e. excess with respect to Debye’s ω2 law in
the vibrational density of states), which is typically ob-
served in glasses but has also recently been measured
in organic crystals15–17 as well as α-quartz18. The bo-
son peak in such crystals should be distinguished from a
van Hove singularity as shown in Ref.19. Recent works
have highlighted the close connection between nonaffine
elasticity and the boson peak anomaly20,21, and it has
been suggested that the root cause of both boson peak
and nonaffine elasticity could be traced back to the in-
herent lack of centrosymmetry of both glasses and non-
centrosymmetric crystals such as α-quartz20.

Atom x y z
Si 0.4697 0 0
Si 0 0.4697 2/3
Si 0.5303 0.5303 1/3
O 0.4133 0.2672 0.1188
O 0.2672 0.4133 0.5479
O 0.7328 0.1461 0.7855
O 0.5867 0.8539 0.2145
O 0.8539 0.5867 0.4521
O 0.1461 0.7328 0.8812

TABLE I: Fractional coordinates of atoms of
left-handed α-quartz given in the scaled unit at 298K at

ambient pressure25.

II. ATOMISTIC SIMULATIONS OF α-QUARTZ
CRYSTAL

A. Lattice structure

X-ray and neutron crystallography have been applied
to many materials to determine the crystal structure and
atomic positions, including α-quartz. It has been shown
that crystals of α-quartz have a trigonal Bravais lattice
composed of SiO4 tetrahedra that are linked together at
their corners to form a three-dimensional network22. The
conventional unit cell, shown in Fig. 2, is hexagonal and
contains three molecules of SiO2. Its c-axis is a threefold
screw axis; that is, the lattice remains unchanged after a
rotation of 120◦ about this axis followed by a translation
of +c/3 along the same axis. Along the negative c di-
rection, the screw axis is left-handed if the 120◦ rotation
appears clockwise while if the rotation appears counter-
clockwise, the screw axis is right-handed. α-quartz may
exist in either of these forms, which are enantiomorphs
(mirror images). α-quartz crystals rotate the polariza-
tion of light propagating parallel to the c-axis, which is
therefore also called the optical axis. Perpendicular to
the c-axis, are three twofold axes that are separated from
one another by angles of 120◦ and intercept the c-axis at
intervals of c/3. The absence of an inversion center allows
α-quartz to exhibit piezoelectricity when pressed along
one of the twofold axes that are therefore often named
electrical axes22.

Two space groups, P3121 or P321, can be used to la-
bel α-quartz, depending on whether the c-axis is left- or
right-handed. In this paper, we initially used the consis-
tent results of lattice constants from Bragg & Gibbs23,
Wyckoff24 and Kihara25, with lattices parameters a and
c at 298K equal to 4.9137 and 5.4047 Å. The atomic
positions of left-handed α-quartz are given in the right-
handed hexagonal coordinate systems in Table I.

B. Empirical potential

In the present work, the cohesion of α-quartz is mod-
eled with the classical BKS potential, which is based
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(a) (b) (c)

FIG. 2: Unit cell of α-quartz from different perspectives: (a) top view (b) left view (c) front view. Si atoms are in
cyan, O atoms in red.

on a short-range Buckingham potential and long-range
Coulombic interactions between partial charges on Si
and O atoms. Different parametrizations of this poten-
tial exist26,27. We have used the original parameters26,
which do not include any direct Si-Si interaction, because
they provide the best agreement with experimental mea-
surements of elastic constants of α-quartz28. The short-
ranged potential between atoms i and j is expressed as:

Φshij (Rij) =

{
Aije

−
Rij
ρij − Cij

R6
ij

−

[
Aije

−
Rc,sh
ρij − Cij

R6
c,sh

]}
×Θ(Rc,sh −Rij), (1)

where Θ is the Heaviside function and Rij the distance
between atoms i and j. The parameters of the potential
are given in Table II. The best agreement with experi-
mental data is obtained for Rc,sh = 10Å28.

In order to treat the Coulombic interactions analyt-
ically, we used the classical Ewald method1,12,13,29. In
this approach, the point charge distribution, which is de-
scribed by delta functions, is transformed by adding and
subtracting Gaussian distributions. The total electro-
static energy is then re-written as the sum of a short-
range term (ESR, difference between point- and gaus-
sian charge distributions) in real space, a long-range term
(ELR, Gaussian charge distribution) in Fourier space plus
a self-interaction constant (ESI):

E ≡ ESR + ELR + ESI

=
1

4πε0

1

2

∑
i 6=j

qiqj
Rij

erfc(
Rij√

2σ
)

+
1

2V ε0

∑
G6=0

exp(−σ2G2/2)

G2
|S(G)|2

− 1

4πε0

1√
2πσ

∑
i

q2i , (2)

where qi is the charge on atom i, erfc(z) = 1 −
2/
√
π
∫ z
0

exp(t2)dt the complementary error function,

Aij(eV) ρij(Å) Cij(eVÅ)
O-O 1388.773 0.3623 175.0
Si-O 18003.7572 0.2052 133.5381

TABLE II: Parameters of the empirical potential used
to model α-quartz.

G = 2π[nx/Lx, ny/Ly, nz/Lz] with (nx, ny, nz) ∈
Z3, refers to reciprocal lattice vectors and S(G) =∑
j qj exp(iG·Rj) is the structure factor. Here, Rj is the

position of atim j and Rij , the distance between atoms i
and j. Also, Lx, Ly, Lz are the dimensions of the simula-
tion cell, which is assumed periodic and orthogonal and
of volume V = LxLyLz. The parameter σ is the standard
deviation of the Gaussian distribution. It sets the cross-
over between the real and reciprocal terms, which both
converge absolutely and rapidly. Noting α = 1/

√
2σ,

we employed a cut-off radius for the real space potential
Rcut = 3.2/α and performed the summations in recipro-
cal space up to nκ,max = αLκ. We used Rcut = 10Å,
which is a trade-off between the computing times of the
short-ranged term, ESR, and of the long-range summa-
tion in Fourier space, ELR.

In the following, the short-range and self-interaction
terms will be included in the short-range BKS term of Eq.
1. This term can be treated with the original approach of
Lemaitre and Maloney3, which is summarized in Section
III A. Only ELR requires a special treatment because of
its many-body nature, as detailed in Section III B.

C. Simulation procedure

Since we consider the properties of a perfect crystal,
the system can in principle be limited to a single unit
cell. In practice, we used a small but finite system, con-
taining 1350 atoms in a periodic orthogonal cell. We
started from the lattice positions in Table I and the ex-
perimental lattice constants23–25. We then relaxed the
simulation cell at 0K by energy minimization, adapting
the cell dimensions with a barostat to impose zero in-
ternal stresses. The equilibrium lattice constants thus
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obtained are a = 4.94 and c = 5.44 Å, close to the
values obtained experimentally30 and by first-principles
calculations31. The corresponding density, 2.60 g/cm3,
is close to the experimental value of 2.65 g/cm332,33.

To validate the analytical expressions of the elas-
tic constants, we computed numerically their values by
straining the crystal in small increments (10−5) and com-
puting the slope of the resulting stress-strain curves. To
obtain the affine constants, no relaxation was allowed be-
tween affine deformation steps, i.e. the atoms remained
at their affine positions, while the nonaffine constants
were computed by relaxing the atomic positions at fixed
cell shape between each strain increment.

III. NONAFFINE LATTICE DYNAMICS FORMALISM
WITH THE EWALD METHOD

A. Contribution of pairwise potential

We start by summarizing the expressions of the affine
and nonaffine elastic constants in the case of particules
that interact through a short-ranged pairwise potential,
Vij(r). We consider a system of N atoms of mass {Mi}
in a volume V . Defining tij =

∂Vij
∂Rij

and cij =
∂2Vij
∂R2

ij
, one

can show3,5,7 that the elastic constants are written as the
difference between the affine (or Born) elastic constants
and nonaffine terms:

Cαβκχ = CBornαβκχ −
1

V

3N−3∑
m=1

Cm,αβCm,κχ
ω2
m

. (3)

The affine elastic constants are expressed as:

CBornαβκχ = − 1

4V

∑
i 6=j

[Dακ
ij R

β
ij +Dβκ

ij R
α
ij ]R

χ
ij (4)

=
1

2V

∑
i 6=j

(Rijcij − tij)Rijnαijn
β
ijn

κ
ijn

χ
ij ,

where Dαβ
ij is the dynamical matrix of the system, Rij

the vector between atoms i and j and nij the correspond-
ing unit vector. The nonaffine term is written as a sum
over the normal modes m of the system with Cm, a mode-
dependent tensor expressed as:

Cm,κχ = −
∑
jα

Ξαj,κχ
eαj (m)√
Mj

, (5)

where eαj (m) is the component on atom j and direction

α of the mth eigenvector of the mass-scaled dynamical
matrix of the system. The corresponding eigenfrequency,
ωm, appears in Eq. 3. Ξαj,κχ is the nonaffine force vec-
tor field, which corresponds to the force that appears on

the atoms when an incremental affine deformation dεκχ
is applied to the system. This force drives nonaffine re-
laxations. For a pair potential, we have:

Ξαi,κχ =
∂Fαi
∂εκχ

= −1

2

∑
j

(Dακ
ij R

β
ij +Dαβ

ij R
κ
ij) (6)

= −
∑
j

(Rijcij − tij)nαijnκijn
χ
ij .

B. Ewald sum contribution

We now consider the contribution of the long-ranged
term ELR in Eq. 2 to the affine and nonaffine elastic
constants. The expressions in Eqs. 3 and 5 remain valid
but we need to express the contribution of ELR to the
dynamical matrix, the affine elastic constants and the
nonaffine forces.

1. Forces and dynamical matrix

The long-ranged energy ELR produces atomic forces
due to the dependence of the structure factor, S(G) =∑
j qj exp(iG ·Rj), on atomic positions. The expression

of the resulting force is13,29:

Fi = −∂ELR
∂Ri

= − 1

2V ε0

∑
G6=0

exp (−σ2G2/2)

G2
[S(G)(−iG)qie

−iG·Ri

+ S(−G)qi(iG)eiG·Ri)]

= − 1

V ε0

∑
G6=0

exp (−σ2G2/2)

G2
GqiIm[S(G)e−iG·Ri ]

=
qi
V ε0

∑
G 6=0

exp (−σ2G2/2)

G2
G
∑
j

qj sin (G ·Rij).

(7)

In the following, we simplify the notations by noting
I(u) = exp(−σ2u/2)/u, such that the contribution of the
Ewald long-range term to the atomic force is written as:

Fi =
qi
V ε0

∑
G 6=0

I(G2)G
∑
j

qj sin (G ·Rij) (8)

The long-range contribution to dynamical matrix
elements can be computed likewise:

1. i 6= j:
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Dαβ
ij =

∂2ELR

∂Rαi ∂R
β
j

=
qiqj
V ε0

∑
G6=0

I(G2)GαGβ cos (G ·Rij)

(9)

2. i = j:

Dαβ
ii = − qi

V ε0

∑
G6=0

I(G2)GαGβ
∑
j 6=i

qj cos(G ·Rij)

= −
∑
j 6=i

Dαβ
ij

2. Tensile deformation

To find the long-range effect on the nonaffine forces,
we need to express the variation of the atomic force in
Eq. 8 when an incremental affine strain is applied to the
system. We consider first a uniaxial strain ε along direc-
tion x. The dependence on ε is due to the dependence of
three terms:

• the volume, V → V (1 + ε)

• the reciprocal vectors, which in an orthogonal box
become G→ 2π[nX/LX(1 + ε), nY /LY , nZ/LZ ]

• the atom-to-atom vectors, Rij → [Rxij(1 +

ε), Ryij , R
z
ij ]

We note that with these transformations, G.Rij is un-
changed and so that the structure factor S(G) is con-
stant. Taking the derivative of Fi in Eq. 8 with respect
to ε and we obtain in the limit ε→ 0:

Ξi,xx = − qi
V ε0

∑
G6=0

I(G2)(σ2+
2

G2
)G2

xG
∑
j

qj sin (G ·Rij).

(10)
Taking the first and second derivatives of ELR with

respect to ε, we obtain the tensile stress and affine elastic
constants for the tensile strain:

σxx = lim
ε→0

1

V

∂ELR
∂ε

=
1

2V 2ε0

∑
G6=0

I(G2)|S(G)|2
(

[σ2 +
2

G2
]G2

x − 1
)
(11)

and

CBornxxxx = lim
ε→0

1

V

∂2ELR
∂ε2

=
1

V 2ε0

∑
G 6=0

I(G2)|S(G)|2×

(
1− 5

2
[σ2 +

2

G2
]G2

x + [
4

G4
+ 2

σ2

G2
+
σ4

2
]G4

x

)
.

(12)

Similar expressions are obtained for tensile deformations
along y and z. Finally, the cross-terms are expressed as:

CBornαακκ =
1

V 2ε0

∑
G 6=0

I(G2)|S(G)|2×

(
1

2
− [σ2 +

2

G2
]
G2
α +G2

κ

2
+ [

4

G4
+ 2

σ2

G2
+
σ4

2
]G2

αG
2
κ

)
(13)

for Cartesian components α, κ.

3. Shear deformation

We now consider the case of an affine shear strain par-
allel to the y planes with displacements along the x di-
rection. The applied strain is noted γxy ≡ γ. Under this
strain, the axis of the box become: a′1 = (Lx, 0, 0) =
a1,a

′
2 = (Lxγ, Ly, 0),a′3 = (0, 0, Lz) = a3 while the

reciprocal vectors become: G′ = 2π(nxLx ,
ny
Ly
− nxγ

Lx
, nzLz )

and the atom-to-atom vectors become: R′ij = (Rxij +

Ryijγ,R
y
ij , R

z
ij). One can check that again G · Rij is

unchanged during the transformation. After taking the
derivative of the long-range force in Eq. 8 with respect
to γ, we obtain in the limit γ → 0:

Ξi,xy = − qi
V ε0

∑
G6=0

I(G2)(σ2 +
2

G2
)× (14)

GxGyG
∑
j

qj sin (G ·Rij).

Similarly, the shear stress is expressed as:

σxy =
1

2V 2ε0

∑
G′ 6=0

I(G2)|S(G)|2(σ2 +
2

G2
)GxGy (15)

and the affine elastic constant:

CBornxyxy = lim
γ→0

∂σxy
∂γ

=
1

2V 2ε0

∑
G6=0

I(G2)S(G)|2×

(
σ4 + 4

σ2

G2
+

8

G4

)
G2
xG

2
y (16)
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4. Some other affine elastic constants from ELR

We note that the formula of Born approximation hold
for a generic strain tensor η3:

CBornαβκχ = lim
η→0

1

V

∂ELR
∂ηαβ∂ηκχ

(17)

For C16 = Cxxxy, C14 = Cxxyz and C56 = Cxyxz, we have
respectively,

Cxxxy =
1

2V ε0

∑
G6=0

I(G2)|S(G)|2
[
(σ4 +

4σ2

G2
+

4

G4
)G2

x − (σ2 +
2

G2
)

]
GxGy +

1

2V ε0

∑
G6=0

I(G2)|S(G2)|2 2G2
x

G4
2GxGy

=
1

2V ε0

∑
G6=0

I(G2)|S(G2)|2
[
(σ4 +

4σ2

G2
+

8

G4
)G2

x − σ2 − 2

G2

]
GxGy (18)

Cxxyz =
1

2V ε0

∑
G6=0

I(G2)|S(G2)|2
[
(σ4 +

4σ2

G2
+

8

G4
)G2

x − σ2 − 2

G2

]
GyGz (19)

Cxyxz =
1

2V 2ε0

∑
G6=0

I(G2)|S(G2)|2
(
σ4 +

4

G4
+

4σ2

G2

)
GxGyGxGz +

1

2V 2ε0

∑
G 6=0

I(G2)|S(G2)|2 4

G4
GxGyGxGz

=
1

2V 2ε0

∑
G6=0

I(G2)|S(G2)|2
(
σ4 +

8

G4
+

4σ2

G2

)
GxGyGxGz (20)

IV. RESULTS AND DISCUSSION

We first use Eq. 9 to compute the dynamical matrix
of the present atomic-scale model of α-quartz and, after
diagonalization, obtain the vibrational density of states
(VDOS). The result is shown in Fig. 3(a), with a com-
parison to the experimental data obtained by Chumakov
et al18. The present implementation of the BKS model
predicts accurately the first peak of the VDOS, which
occurs at about 10 meV. The second peak is reproduced
only qualitatively, being located at a slightly higher fre-
quency (18 instead of 16 meV) and with a slightly lower
amplitude. Normalizing the VDOS by ω2 in Fig. 3(b),
we see that the numerical model reproduces well the bo-
son peak reported experimentally. We can conclude that
the present model reproduces satisfactorily the VDOS
and boson peak of α-quartz.

Second, we use Eq. 3 with the short- and long-ranged
terms presented above to compute both the affine and
total elastic constants of α-quartz. The result is given
in Table III with a comparison to experimental data.
We checked by direct numerical calculations that the
analytical expressions described in previous Section pre-
dict faithfully the elastic constants. We chose the same
parametrization of the BKS potential and Ewald sum-
mation as Carré et al28, because they yield a very good
agreement with experimental data, as seen in Table III,
when both the affine and nonaffine contributions are in-
cluded. On the other hand, when only the affine defor-
mation is allowed, the elastic constants are largely over-
estimated, by a factor 3 to 4 for C11, C33, C44, C66, and

up to a factor of 15 for C12 and C13. Said in other words,
the non-affine correction decreases the affine elastic con-
stants by about 70 % for C11, C33,C44, C66 and up to 90
% for C12 and C13.

By way of comparison, if we use a more recent
parametrization of BKS potential27, which includes di-
rect interactions between Si atoms, the equilibrium den-
sity is lower, 2.42 g/cm3, and the elastic constants fur-
ther from the experimental data (C11 = 100.7 GPa,
C33 = 79.4 GPa, C44 = 41.8 GPa, C66 = 56.8 GPa,
C12 = −12.6 GPa, C13 = 2.9 GPa). However, the effect
of the non-affine relaxations remains of the same order as
with the parametrization of BKS potential used above.

Elast. Const. (GPa) C11 C33 C44 C66 C12 C13

Affine+Nonaffine 90.5 107.0 50.2 41.1 8.1 15.2
Affine only 375.6 329.6 189.2 125.4 125.2 189.1
Exp.34 86.8 105.8 58.2 39.9 7.0 19.1
Exp.32 87.3 105.8 57.2 40.4 6.57 12.0
Exp.33 86.6 106.4 58 6.74 12.4

TABLE III: Comparison between experimental
measurements of the elastic constants of α-quartz and

the present numerical calculations, including both affine
and nonaffine contributions or only the affine part.

The nonaffine relaxations originate from the lack of
symmetry of the α-quartz crystal7,20. This is evident for
the short-ranged pair potential part of the interatomic
potential since in Eq. 7, the nonaffine force vector, Ξi,
which drives the nonaffine relaxations, is written as a sum
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FIG. 3: Comparison of the density of states (a) and
reduced density of states (DOS normalized by the

frequency squared) (b) obtained numerically with the
BKS model and experimentally with inelastic x-ray

scattering18.

over neighbors of terms of the type Dαβ
ij R

κ
ij that add up

to zero in a centrosymmetric environment. The same is
true for the long-range terms in Eqs. 10 and 15, which
depend on

∑
j qj sin(G.Rij), which is also zero if atom

i is a center of centrosymmetry. In α-quartz, neither Si
nor O atoms are centers of symmetry, which may ex-
plain why nonaffine relaxations are so important in this
crystal. However, Si atoms are surrounded by close-to-
perfect tetrahedra of O atoms as explained in Sec. II A,
while O atoms are in clearly asymmetrical environments
since the Si-O-Si bonds are not straight, but make an
angle close to 148o. The higher symmetry of the envi-
ronment of the Si atoms implies more limited nonaffine
relaxations for these atoms. The latter depend on the
imposed deformation, but we have checked that the non-
affine displacements of the Si atoms is systematically at
least a factor of 2 smaller than that of the O atoms.

It was suggested in a recent work20 that the lack

of centrosymmetry is responsible not only for the non-
affinity of the elastic constants, but also for the boson
peak that shows up in the VDOS of glasses and non-
centrosymmetric crystals. In 20, model systems were
studied numerically, which included random spring net-
works derived from glasses, and crystals with random
bond-depletion. A universal correlation was found be-
tween the boson peak amplitude and a new order pa-
rameter for centrosymmetry (but importantly, not with
the standard bond-orientational order parameter), which
allowed for the collapse of data from systems with very
different lattice topologies (i.e. random networks and de-
fective crystals).

The present findings demonstrate that strong non-
affine elasticity originates from non-centrosymmetry of
the lattice also in perfectly-ordered (defect-free) non-
centrosymmetric crystals such as α-quartz. Also in this
case, the strong nonaffinity of the elastic constants is ac-
companied by a pronounced boson peak in the normal-
ized VDOS, which shows up in both experimental mea-
surements and atomic-scale simulations, in perfect mu-
tual agreement as shown above in Fig. 3.

These observations rise the fundamental question
about the microscopic mechanism which links the atomic-
scale non-centrosymmetry of the lattice and the boson
peak in the VDOS. In all systems studied so far, including
the defective crystals of Ref. 20, the boson peak frequency
is very close to the frequency of the Ioffe-Regel crossover
at which the phonons wavelength becomes smaller than
their mean-free path and the phonons become quasi-
localized. In glasses, this phenomenon is obviously driven
by disorder, which is responsible for the scattering of
the phonons on sufficiently small wavelengths. In a sys-
tem like α-quartz, it remains to be established whether
non-centrosymmetry alone can induce similar scattering
processes, which would lead to the peak. To elucidate
this point, it will be necessary, in future work, to study
more in detail the microscopics of the phonon propaga-
tion and how this is affected by non-centrosymmetry. For
example, the non-centrosymmetry of the lattice has been
recently shown to generate new physics in the phonon
propagation, including chiral phonons35.

V. CONCLUSION

We have shown in the paper that employing an em-
pirical potential for α-quartz, with long-range Coulom-
bic effects explicitly considered, the elastic constants of
α-quartz, consisting of the contribution of affine and
nonaffine contributions, can be excellently recovered.
It was found that the nonaffine force field in a non-
centrosymmetric lattice plays a crucial role in the elas-
tic constants. This is the first time that strong non-
affine elasticity, which is a defining property of glasses,
is quantitatively revealed in a perfectly crystalline mate-
rial without defects. This result therefore hints at the
possibility that glassy anomalies (including the boson
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peak) might be more general than accepted so far. More-
over, we considered here static elastic constants, but the
present framework can be readily extended to consider
lattice dynamics at finite frequencies7. Further, the dy-
namical structure factor can also be easily calculated and
comparison with experimental data will be a subject of
a future study.
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