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Accuracy of imputation to whole-genome 
sequence in sheep
Sunduimijid Bolormaa1,2*, Amanda J. Chamberlain1, Majid Khansefid1,2, Paul Stothard3, Andrew A. Swan2,4, 
Brett Mason1, Claire P. Prowse‑Wilkins1, Naomi Duijvesteijn2,5, Nasir Moghaddar2,5, Julius H. van der Werf2,5, 
Hans D. Daetwyler1,2,6 and Iona M. MacLeod1,2

Abstract 

Background: The use of whole‑genome sequence (WGS) data for genomic prediction and association studies is 
highly desirable because the causal mutations should be present in the data. The sequencing of 935 sheep from a 
range of breeds provides the opportunity to impute sheep genotyped with single nucleotide polymorphism (SNP) 
arrays to WGS. This study evaluated the accuracy of imputation from SNP genotypes to WGS using this reference 
population of 935 sequenced sheep.

Results: The accuracy of imputation from the Ovine  Infinium® HD BeadChip SNP (~ 500 k) to WGS was assessed for 
three target breeds: Merino, Poll Dorset and F1 Border Leicester × Merino. Imputation accuracy was highest for the 
Poll Dorset breed, although there were more Merino individuals in the sequenced reference population than Poll 
Dorset individuals. In addition, empirical imputation accuracies were higher (by up to 1.7%) when using larger multi‑
breed reference populations compared to using a smaller single‑breed reference population. The mean accuracy 
of imputation across target breeds using the Minimac3 or the FImpute software was 0.94. The empirical imputation 
accuracy varied considerably across the genome; six chromosomes carried regions of one or more Mb with a mean 
imputation accuracy of < 0.7. Imputation accuracy in five variant annotation classes ranged from 0.87 (missense) up 
to 0.94 (intronic variants), where lower accuracy corresponded to higher proportions of rare alleles. The imputation 
quality statistic reported from Minimac3 (R2) had a clear positive relationship with the empirical imputation accuracy. 
Therefore, by first discarding imputed variants with an R2 below 0.4, the mean empirical accuracy across target breeds 
increased to 0.97. Although accuracy of genomic prediction was less affected by filtering on R2 in a multi‑breed popu‑
lation of sheep with imputed WGS, the genomic heritability clearly tended to be lower when using variants with an R2 
≤ 0.4.

Conclusions: The mean imputation accuracy was high for all target breeds and was increased by combining smaller 
breed sets into a multi‑breed reference. We found that the Minimac3 software imputation quality statistic (R2) was a 
useful indicator of empirical imputation accuracy, enabling removal of very poorly imputed variants before down‑
stream analyses.
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Background
The Australian sheep industry has embraced the applica-
tion of genomics to enhance genetic improvement pro-
grams [1]. Already, more than 47,000 Australian sheep 
have been genotyped by using mainly low- (12  k) and 
medium-density (50  k) single nucleotide polymorphism 
(SNP) arrays [1]. Currently, the sheep industry uses real 
or imputed 50 k SNP genotypes for genomic prediction 
of breeding values. Imputation is the process of predict-
ing unknown genotypes for animals genotyped at lower 
SNP density by using a reference set of animals geno-
typed at the higher SNP density.

Genomic prediction relies on strong linkage disequi-
librium (LD) between causal variants for a given trait 
and the SNPs. Such LD might not exist when using the 
50  k SNP array for prediction of more distantly related 
animals or prediction across breeds. Furthermore, SNPs 
on the 50  k SNP array were preselected to be (highly) 
polymorphic in the target breeds. This can result in rarer 
causal variants not being in strong LD with the standard 
50  k SNPs, and thus their effects may not be captured 
in the genomic predictions. In contrast to SNP arrays, 
whole-genome sequence (WGS) data include all or at 
least many causal variants. Thus, genomic prediction 
with sequence data would not need to rely on LD with 
common SNPs on arrays. Although it is not yet economi-
cally feasible to sequence many thousands of animals, it is 
possible to impute sequence variants for animals that are 
already genotyped on standard SNP arrays if a reference 
population of sequenced animals is available [2]. There 
is now evidence in both cattle and sheep that the accu-
racy of genomic prediction can be increased by combin-
ing more predictive variants from imputed sequence data 
with a standard SNP array, particularly for across-breed 
prediction or prediction of animals with low relation-
ships to the reference animals [3–8]. In order to develop 
the opportunity to exploit imputed WGS data in sheep, 
a joint collaboration between SheepGenomesDB (www.
sheep genom esdb.org) and the Sheep CRC project has 
sequenced a reference population of almost 1000 sheep 
[9]. A range of worldwide breeds were sequenced, with 
the largest proportion being Merino and Merino crosses.

To date in sheep, there has been no evaluation of the 
accuracy of imputation to whole-genome sequence 
data (WGS). Thus, the main objective of our study was 
to evaluate a practical approach to achieve highly accu-
rate imputed WGS in a range of purebred and cross-
bred sheep, that would easily scale up to imputing more 
than 60,000 individuals. A range of software programs is 
available to carry out imputation (e.g. Beagle [10], Fast-
Phase [11], Impute2 [12], FImpute [13], and Minimac3 
[14]), each one implementing a different algorithm that 
can affect both computational speed and imputation 

accuracy. Beagle and FImpute have been widely used 
in livestock populations and consistently achieve high 
imputation accuracies [13, 15]. Recently, Minimac3 was 
shown to be highly accurate and computationally effi-
cient for imputation to sequence in human populations 
[14] and also compared favourably with FImpute in cat-
tle [16]. Therefore, we evaluated the accuracy of imputed 
WGS using the FImpute and Minimac3 software when 
the starting point from which to impute to WGS was 
high-density (“HD”: ~ 500,000) SNP genotypes. We also 
evaluated the accuracy of imputation to WGS when the 
starting point was low-density SNP genotypes (OvineLD: 
12 k SNPs). In the sequenced reference population, many 
breeds are represented, with some having few individuals 
and others having many individuals. Thus, we validated 
the accuracy of imputed WGS in three target (two pure-
bred and one crossbred) populations using either all or 
a subset of the sequenced reference set. In addition, we 
investigated local imputation accuracy along each chro-
mosome to identify regions in the ovine genome that are 
poorly imputed, possibly due to large segmental repeat 
regions and/or errors in the reference genome. Further-
more, we demonstrated the impact of using different 
Minimac3 quality (R2) thresholds, as a proxy for detect-
ing poorly or well-imputed variants, on the accuracy of 
genomic prediction for three traits in a large multi-breed 
population.

Methods
Reference genotype data
A reference set of WGS data was available for 935 ani-
mals representing multiple breeds and crosses (see 
Additional file  1: Table  S1) from across the world, with 
approximately 10 × average read depth [9]. The raw fastq 
WGS dataset was processed using an in-house pipe-
line to undertake the following quality control with the 
QUADTrim program (https ://bitbu cket.org/arobi nson/
quadt rim): adapter sequences and bases for which the 
qscore was < 20 were trimmed from the 3’ and 5’ end of 
reads; reads with more than three missed base calls and 
shorter than 50 reads were removed; bases for which 
the qscore was < 20 for three consecutive bases were 
trimmed from reads; and entire reads with a mean score 
< 20 were removed. Then, the reads were aligned to the 
OAR (Ovis aries) 3.1 ovine reference genome using the 
Burrows-Wheeler Aligner [17]. Duplicates were removed 
using Samtools [18] and a local realignment around 
indels was performed using the GATK software [19]. 
Variant calling for SNPs and short insertions and dele-
tions (indels) was carried out simultaneously for all 935 
sequenced animals using a multi-sample variant calling 
pipeline that was implemented with the mpileup mod-
ule of SAMtools [18], as described by Daetwyler et  al. 

http://www.sheepgenomesdb.org
http://www.sheepgenomesdb.org
https://bitbucket.org/arobinson/quadtrim
https://bitbucket.org/arobinson/quadtrim
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[9], which yielded polymorphisms at 52,676,272 biallelic 
sites. All variants were annotated following the pipeline 
developed by Grant et al. [20].

We evaluated imputation accuracy using three refer-
ence sets: MER = 117 pure Merino animals, EUR = 726 
sheep representing only European breeds, and ALL = 935 
animals representing breeds from Europe, Africa, Asia, 
America and the Middle East. For all three reference 
sets, prior to imputation, we removed variants with 
minor allele counts < 5 (across all reference animals) 
and variants with more than two alleles. This resulted 
in 42,249,885, 39,844,235, and 30,660,937 polymor-
phic variants in the ALL, EUR, and MER reference sets, 
respectively.

Target genotype data
The accuracy of the imputed WGS was assessed in 
sequenced animals by first masking all their sequence 
genotypes, except for those that overlapped with variants 
in either the HD or OvineLD SNP arrays. To calculate 
imputation accuracy, we used the following three target 
populations with fivefold cross-validation: MER = 117 
pure Australian Merinos, PD = 29 pure Poll Dorsets, and 
F1 = 59 Merino × Border Leicester crossbreds. For each 
of the fivefold validation groups, the WGS genotypes 
for 20% of the MER, PD, or F1 animals were reduced to 
either HD or OvineLD SNPs, and then these animals 
were used as a target set for imputation to the sequence 
level. This ensured that a large proportion of animals of 
the same breeds (80% of the total) were still available 
in the reference population. The positions of the Ovine 
 Infinium® HD BeadChip SNPs (developed under the aus-
pices of the International Sheep Genomics Consortium) 
that mapped to the OAR 3.1 build of the ovine refer-
ence genome [21] were used to prepare these target HD 
genotype sets. Likewise, we used the OAR 3.1 positions 
for the OvineLD BeadChip [22]. For the imputation test 
from OvineLD SNP to WGS, we used the three target 
sets above but only with the ALL reference set.

Imputation to whole‑genome sequence
The imputation test using ALL reference and MER target 
sets was done for the 26 ovine autosomes. For the other 
scenarios, to reduce computational requirements, we 
tested imputation accuracy on a representative set of six 
autosomal chromosomes (OAR for Ovis aries): 1, 5, 10, 
15, 20 and 25.

Imputation from HD to WGS
After masking all the sequence genotypes in the tar-
get fivefold cross-validation set, except for those that 
overlapped with the HD SNPs, imputation was carried 
out directly from HD genotypes to WGS variants using 

two software methods: FImpute (version 2.2; [13]) and 
Minimac3 (version 2.0.1; [23]). Minimac3 requires pre-
phased genotypes in both the reference (WGS) and 
target sets, for which the Eagle software (version 2.3; 
[24]) was used. Default parameters were used for Eagle 
and Minimac3. The Minimac3 software provides the 
most likely genotypes (coded as 0, 1 and 2 for homozy-
gous, heterozygous and alternative homozygous ani-
mals, respectively), as well as the predicted allele 
dosage (continuously distributed values ranging from 
0 to 2) for imputed variants. Neither Eagle nor Mini-
mac3 consider pedigree information to infer haplo-
types or missing genotypes. FImpute can use pedigree 
and population-based information to infer haplotypes 
and missing genotypes. However, in general, sheep 
pedigrees are shallow and error prone and, thus, we 
implemented FImpute without pedigree information 
and applied default parameters otherwise. Then, the 
imputed WGS genotypes were compared to their real 
genotypes, except for the variants that overlapped with 
the HD SNPs.

Imputation from OvineLD to WGS
After masking all the sequence genotypes in the tar-
get fivefold cross-validation set, except for those that 
overlapped with the OvineLD SNPs, imputation from 
OvineLD SNPs to WGS was performed in three sequen-
tial stages:

1. The OvineLD SNPs (~ 12,223) were imputed to the 
OvineSNP50 Beadchip (Illumina Inc., San Diego, 
CA, USA) SNPs, using FImpute and a reference pop-
ulation of 1933 animals that were genotyped directly 
with 38,378 SNPs. The animals from this reference 
population were from multiple breeds, including 555 
pure Merino, 36 Border Leicester, 19 pure Suffolk, 
18 pure Poll Dorset, 11 pure Texel, and other minor 
pure breeds and crossbreeds [e.g. F1 crosses between 
PD × MER (86) and BL × MER (9)].

2. The 50  k imputed genotypes were then imputed to 
HD SNPs using Eagle pre-phasing and Minimac3 
(as described for imputation from HD to WGS), 
using the same reference population of 1933 animals, 
which were also genotyped directly with the HD 
SNPs.

3. The imputed HD genotypes were imputed to WGS 
variants using Eagle pre-phasing and Minimac3.

Imputed WGS genotypes were compared to their real 
genotypes after removing the overlapping variants in the 
imputed HD genotypes, as for imputation from HD to 
WGS.
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Assessing imputation accuracy
The empirical accuracy of imputation was assessed as 
the correlation between real and imputed genotypes for 
all sequence variants (excluding HD SNPs) across the 
five-fold cross-validations. The mean imputation accu-
racy was also calculated per chromosome and in non-
overlapping 1-Mb windows across each chromosome to 
identify genomic regions that were difficult to impute 
well because of either large duplicated segments and/
or poor reference map quality. These genomic regional 
tests were carried out across all autosomes, using 
Minimac3 for the MER target with the ALL reference 
scenario.

Empirical imputation accuracies were also compared 
with the Minimac3 R2 quality statistic that is an esti-
mate of imputation accuracy based on the concept that 
poorly imputed genotype counts will shrink towards 
their expectations across all individuals, based on pop-
ulation allele frequencies (https ://genom e.sph.umich 
.edu/wiki/Minim ac3_Info_File). This comparison was 
made by evaluating the mean empirical imputation 
accuracies for groups of variants that were allocated to 
100 bins based on their R2 value: 0 to 0.01, 0.01 to 0.02, 
etc.

We tested the effect of imposing a minimum Mini-
mac3 R2 threshold on empirical imputation accuracy. 
That is, prior to calculating the correlation between 
imputed and sequenced variants, variants were dis-
carded if their R2 was lower than a given threshold 
(i.e. variants were retained with R2 > 0.4 = “thr4” or 
R2 > 0.8 = “thr8”).

Annotated variants
Variants in the ALL set of sheep reference genomes 
were annotated following [20]. The Ensembl (version 
87; http://dec20 16.archi ve.ensem bl.org/index .html) 
functional annotation categories included five key 
annotation groupings: intergenic, intronic, 5 kb up- or 
down-stream of genes, missense, and UTR 3’ and 5’ 
ends. The mean empirical imputation accuracy was cal-
culated for each of these five classes using the MER tar-
get set with the ALL reference set. We also assessed the 

mean Minimac3 R2 and MAF distributions for variants 
in each class.

Impact of imputation accuracy (Minimac3 R2) on genomic 
prediction
We evaluated the impact of using poorly or well imputed 
genotypes on the accuracy of genomic prediction, using 
Minimac3 R2 as a proxy for empirical imputation accu-
racy. This was evaluated for three traits: carcass fat depth 
at C site (ccfat), post-weaning eye muscle depth (pemd), 
and post-weaning weight (pwt).

Phenotypes
The data for this genomic prediction was previously 
described by Khansefid et  al. [3]. Briefly, the reference 
and validation sets included up to 20,403 animals across 
these three traits. The reference sets included 1910 pure 
Merinos (MER), 1360 Poll Dorset (PD), 355 pure Border 
Leicester (BL), 1360 PD × MER crosses, 619 BL × MER 
crosses, 703 pure White Suffolk and its crossbred ani-
mals, and other minor breeds, their crosses and compos-
ite animals. Animals in the validation sets were purebred 
Merinos. None of the validation animals shared pater-
nal half-sibs in the reference population. Phenotypes 
were obtained from Australia’s Sheep Genetics indus-
try genetic evaluation database [1], and were processed 
by the AGBU sheep evaluation team (http://agbu.une.
edu.au/sheep .html) including: pre-adjustment for vari-
ous fixed effects (birth-rearing type, sex, and contempo-
rary groups) and removal of animals with a phenotype 
more than 4 standard deviations from the mean. Phe-
notypes were also pre-corrected for the random genetic 
group effect and data source (as described in [3]). Trait 
definitions, number of records used in the reference and 
validation sets for each trait, raw means and standard 
deviations (prior to pre-adjustment) based on the geno-
typed and phenotyped animals are in Table 1.

Genotypes
We imputed the WGS genotypes using the EUR refer-
ence and Minimac3 with Eagle pre-phasing (following 
the description above) for ~ 47,000 Australian sheep, 
including all reference and validation animals described 

Table 1 Numbers of  phenotypes used in  the  reference and  target sets for  genomic prediction for  each trait, means 
and standard deviations across all animals, and estimates of genomic heritability

Trait name (abbreviation, unit) Number of phenotypes Mean SD Heritability

Reference set Target set

Fat depth C (ccfat, mm) 7635 912 4.0 2.3 0.18

Post‑weaning eye muscle depth (pemd, mm) 9715 1766 25.4 4.9 0.22

Live weight measured post weaning (pwt, kg) 11,067 3118 42.2 7.6 0.21

https://genome.sph.umich.edu/wiki/Minimac3_Info_File
https://genome.sph.umich.edu/wiki/Minimac3_Info_File
http://dec2016.archive.ensembl.org/index.html
http://agbu.une.edu.au/sheep.html
http://agbu.une.edu.au/sheep.html
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above. All animals had previously been genotyped with 
either the LD, 50 k or HD SNP arrays. Genotypes on the 
X chromosome were excluded.

For the 47,000 sheep, we did not have a direct estimate 
of the true accuracy of their imputed WGS. Therefore, we 
evaluated the impact on the accuracy on genomic predic-
tion by using the Minimac3 R2 statistic as a proxy filter for 
poorly imputed variants. For this test, we used genotype 
sets of 50,000 variants (MAF > 0.01) that were randomly 
selected across the genome from the available WGS vari-
ants. We used three filters to select variant sets based on 
the Minimac3 R2: imputed variants with R2 ≤ 0.4 (thr0-4), 
R2 > 0.4 (thr4), and R2 > 0.8 (thr8), respectively.

For each of these three filters, five random sets of 
50,000 sequence variants were selected while ensuring 
that each random set shared a similar allele frequency 
distribution (as an example, the allele frequency dis-
tribution for ccfat for each filter with five random sets 
is shown in Additional file  2: Figure S1). The mean dis-
tance between adjacent variants across each of the three 
filters matched expectations based on the total length 
of the imputed autosomal chromosomes (mean dis-
tance between adjacent variants was 48.99 kb for thr0-4, 
48.87 kb for thr4, and 48.78 kb for thr8).

Genomic prediction analyses based on genotypes for 
each of the 50,000 variant sets were performed using the 
BayesR method [25], which jointly fits the effects of all 
SNPs and assumes that SNP effects are from a mixture of 
four normal distributions with variances equal to 0, 0.01, 
0.1 or 1% of the genetic variance, respectively [25]. Gibbs 
sampling was used for sampling from the posterior distri-
butions of the parameters, running 40,000 iterations with 
20,000 iterations of burn-in. Five parallel chains were 
run for each trait and each of the five-random genotype 
sets per R2 filter (that is: 5 chains × 5 genotype sets = 25 
analyses per trait for each filter). The SNP effects from 
each of the 25 BayesR analyses per trait and per R2 filter 
were then used to calculate genomic estimated breeding 
values (GEBV) for the Merino target set. The accuracy of 
genomic prediction was calculated as the correlation of 
the GEBV with the adjusted phenotype, divided by the 
square root of the heritability of the trait ( h2 ). The lat-
ter was the mean of the estimated genomic heritability 
(shown in Table 1), which was estimated as the propor-
tion of phenotypic variance that was explained by the 
50,000 sequence variants. Estimates of genomic heritabil-
ity and of the accuracy of GEBV were averaged across the 
five parallel Gibbs sampling chains run for each variant 
set per trait, giving five estimates for each of the five vari-
ant sets for each filter. The standard error of the accuracy 
of GEBV was estimated from the five randomly sam-
pled independent genotype sets for each trait, i.e. as the 

standard deviation of the five accuracies divided by the 
square root of 5.

Results
All imputation accuracy results presented are based on 
imputation from the Ovine  Infinium® HD BeadChip SNP 
(~ 500 k) to WGS, except when stated otherwise. A prin-
cipal component analysis (PCA) was used to show the 
genetic diversity of the sequenced animals that were allo-
cated to reference and target validation sets (Fig. 1). The 
PCA was based on a genomic relationship matrix that 
was generated from their WGS variants pruned down to 
the HD SNP genotype set. Animals from the MER, PD 
and F1 breeds that were used as imputation target popu-
lations, appear as tight groups at opposite extremes of the 
first and second principal component axes.

Minimac3 versus FImpute
Figure  2 compares the empirical imputation accuracy 
obtained with the FImpute and Minimac3 imputation 
softwares when the ALL reference set was used to impute 
the MER target test set. For the comparison between the 
imputation methods, only the overlapping set of imputed 
variants from FImpute and Minimac3 imputation was 
compared because FImpute was not able to impute the 
region between 70 and 74 Mb on OAR10. Figure 2 also 
shows the increase in empirical imputation accuracy 
when the imputation quality statistic of Minimac3, R2, 
was used to retain variants more likely to be imputed 
well by applying three R2 thresholds: no threshold (thr0), 
R2 > 0.4 (thr4) and R2 > 0.8 (thr8). Imputation accura-
cies for Minimac3 and FImpute were assessed based on 
the most likely genotypes (‘MM012’ and ‘FI012’, coded 
as 0, 1 and 2 for homozygous, heterozygous and alter-
native homozygous genotypes, respectively) and also 
based on genotype probabilities obtained with Minimac3 
(‘MMprob’: continuously distributed allele dosage values 
ranging from 0 to 2). The highest imputation accuracy 
was consistently achieved with MMprob, both before 
and after imposing an R2 filter but the difference between 
MMprob and MM012 was lower for R2 thr4 and thr8 fil-
ters (Fig. 2). For the most likely genotypes, MM012 and 
FI012, there was little difference between Minimac3 
and FImpute without the R2 filter (thr0) but was slightly 
and consistently higher for MM012 than for FI012 after 
imposing a filter using R2 (Fig. 2, results shown only for 
using ALL as a reference and MER as a target set). The 
use of R2 computed using Minimac3 as a filter may, how-
ever, have introduced some bias against FImpute because 
some of the removed variants with low R2 may have been 
accurately imputed by FImpute. There was, however, no 
equivalent statistic available from FImpute.
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Our results also demonstrated a clear relationship 
between empirical imputation accuracy R2 when com-
paring the average empirical imputation accuracy 
for groups of variants allocated to R2 bins (Fig.  3). For 
example, when using the ALL reference and the MER 
target sets, the mean empirical imputation accuracy was 
0.86 for variants with R2 between 0.40 and 0.41 com-
pared to 0. 90 for variants with R2 between 0.50 and 
0.51. This demonstrates that the Minimac3 R2 is a use-
ful indicator of empirical imputation. This relationship 
was slightly stronger when a within-breed rather than 
the ALL breed reference was considered (e.g. the empir-
ical imputation accuracy was 0.88 for variants with an 
R2 between 0.40 and 0.41 when using MER as reference 
and target).

We also estimated the mean imputation accuracy for 
groups of variants within a range of MAF and, generally, 
accuracy was lower for variants with low MAF (Table 2). 
The accuracy was a little higher for MMprob than for 
MM012 and FI012 across all levels of MAF. 

Because differences in imputation accuracies between 
MM012, MMprob, and FI012 were small, hereafter, only 
results for the Minimac3 imputed most likely genotypes 
(MM012) will be presented.

Imputation accuracy using different reference and target 
sets
In the MER target set, the accuracy of imputation using 
mixed breed reference sets (ALL or EUR) was slightly 
higher (for thr0) or the same (for thr4) than for the smaller 

Fig. 1 Principal component decompositions of the genomic relationship matrix constructed from whole‑genome sequence genotypes pruned 
down to HD SNP genotypes for 935 sequenced animals. Description of breed names is in Additional file 1: Table S1. Filled circles represent animals 
tested in the imputation from the Merino (test_MER, green), Poll Dorset (test_PD, purple), and Merino × Border Leicester (test_F1, orange) breeds



Page 7 of 17Bolormaa et al. Genet Sel Evol            (2019) 51:1 

MER single-breed reference (Table  3). Notably, using 
either the ALL or EUR reference set resulted in more than 
2.3 million (M) extra variants imputed compared to using 
the MER reference set. The proportion of these extra vari-
ants that were polymorphic in the real MER sequence was 
96%. However, these variants were found to have < 5 allele 
counts in the MER target population and therefore were 
discarded from the MER only imputation (see Methods 
section). We were able to recover some of the variants 
that were very rare in the single breed reference (MER) 
set by including a range of breeds and crosses for which 
the allele frequency was higher. Even after imposing the 
R2 thr4 filter, the ALL or EUR reference set had more than 
0.8 M variants than MER reference set.

We found little difference in the imputation accuracy 
between using the ALL or EUR reference sets (the ALL 
set represented only 209 extra animals of non-European 
breeds). Although the largest number of variants was 
observed using the ALL reference set, after imposing the 
R2 thr4 filter, the largest number of variants was observed 
when using the EUR reference set (0.4 M more than when 
using the ALL reference set). The imputation accuracy 
for these two reference sets was similar when we evalu-
ated accuracy for only the set of WGS variants that were 
imputed in the MER reference set.

Fig. 2 Empirical imputation accuracy of most likely whole‑genome sequence genotypes based on FImpute (FI012) and Minimac3 (MM012) and 
of the Minimac3 allele dosage probability (MMprob) in a Merino (MER) target population, using a mixed breed reference set (‘ALL’). Imputation 
accuracy is before and after imposing Minimac3 R2 thresholds to filter the imputed sequence data: thr0 = no threshold, thr4 = R2 > 0.4, and 
thr8 = R2 > 0.8. Imputation accuracy was measured as the correlation between imputed and observed sequence genotypes in the target population

Fig. 3 Mean empirical imputation accuracy of whole‑genome 
sequence genotypes (Minimac3 most likely genotypes) by Minimac3 
R2 of the imputed variants. The plot shows the relationship between 
variants grouped in R2 bins (x axis) and their mean empirical 
imputation accuracy for each bin (y axis). This relationship was 
evaluated in the Merino target (MER) set using a mixed breed 
reference set (ALL)
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Figure 4 compares imputation accuracies for the MER 
(Merino), PD (Poll Dorset) and F1 (Border Leicester x 
Merino) target populations (MM012) with the ALL ref-
erence set. Although the number of pure PD was small 
in the reference set (N = 29 minus 6 used for cross-fold 
validation) compared to MER (reference set N = 94), the 
accuracy in PD was always higher than in MER (Fig. 4). 
The accuracy for the F1 population (reference set N = 48) 
was lower than for PD, but was similar to that for MER. 
These differences in imputation accuracy between target 
sets remained regardless of the R2 threshold used. The 
average increase in imputation accuracy across target 
populations was 3% from thr0 (no filter) to thr4 (R2 > 0.4) 

compared to only 1.5% from thr4 to thr8 (R2 > 0.8) 
(Fig.  4). The average accuracy across target populations 
varied from 0.93 (for thr0) to 0.98 (for thr8). We also 
found no differences in imputation accuracies in the PD 
and F1 target sets when using either the EUR or ALL ref-
erence sets (results not shown).

Next, we evaluated the accuracy of WGS imputation 
when starting from WGS pruned down to low-density 
SNP genotypes (OvineLD: ~ 12  k) compared to starting 
from WGS pruned down to high density (HD: ~ 500  k 
SNPs). Note that imputation from OvineLD to WGS gen-
otypes was carried out stepwise: first to 50 k, then to HD 
and finally to WGS (see Methods). Figure 5 shows the dif-
ference in WGS imputation accuracy when starting from 
OvineLD genotypes compared with imputation starting 
directly from real HD genotypes. The results are shown 
for each target set at different R2 thresholds using the 
ALL reference set. For all target sets and R2 thresholds, 
accuracy was slightly lower when starting imputation 
from OvineLD genotypes compared to HD genotypes. 
The most marked difference was for the F1 crosses 
(approximately 3%) and the smallest difference was for 
PD (approximately 1%). However, after imposing filters 
on R2 thresholds, approximately 17% more variants were 
filtered out for imputation from OvineLD genotypes to 
WGS (regardless of the R2 threshold used) compared to 
imputation from real HD genotypes to WGS.

Imputation accuracy across the genome
There were clear differences in average imputation accu-
racies across target sets between the six chromosomes 
(OAR) evaluated (Fig.  6a, for MMprob and MM012). 
These differences between chromosomes were consider-
ably reduced after imposing the thr4 filter (Fig. 6b). The 
imputation accuracy was always highest for OAR1 and 
lowest for OAR10, with approximately 2.2% difference 
in accuracy between them without applying a R2 filter 
(thr0: Fig.  6a). After applying the thr4 filter, the accu-
racy improved for all chromosomes and the difference in 
accuracy between these two chromosomes (OAR1 and 
OAR10) decreased to only 0.05%. For all chromosomes 
evaluated, the accuracy of MMprob was consistently 
higher than that of MM012, and the difference between 
MM012 and MMprob decreased after imposing the thr4 
filter (Fig. 6b).

To investigate these differences in accuracy between 
chromosomes further, we calculated the mean imputa-
tion accuracy for all variants within non-overlapping 
1-Mb windows along each chromosome (MER target set 
with ALL reference set). We also calculated the density 
of both HD and WGS variants within the same 1-Mb 
windows to determine if the low imputation accuracy 
was more likely a result of poor HD SNP density and/or 

Table 2 Imputation accuracy of  whole-genome sequence 
genotypes in  three minor allele frequency (MAF) bands 
in  a  Merino target population, using a  mixed breed 
reference set (‘ALL’)

a FImpute (FI012); bMinimac3 (MM012) most likely genotypes; and cMinimac3 
allele dosage probability (MMprob); and dlower MAF could not be evaluated 
because the number of animals in the target set was 117

MAF band FIa MM012b MMprobc

0.01–0.02d 0.856 0.858 0.886

0.02–0.03 0.871 0.877 0.902

0.03–0.04 0.883 0.889 0.913

0.05–0.06 0.892 0.898 0.920

0.06–0.07 0.902 0.906 0.927

0.06–0.08 0.913 0.916 0.936

0.08–0.10 0.922 0.923 0.942

0.10–0.50 0.927 0.922 0.945

Table 3 Minimac3 imputation accuracy (R2) for  variants 
before (thr0) or after (thr4) filtering based on R2 threshold 
(numbers of  variants imputed in  millions in  brackets) 
in Merino target set animals using three reference sets

ALL = all 935 animals representing breeds from Europe, Africa, Asia, America 
and the Middle East; EUR = 726 animals representing breeds from Europe; and 
MER = 117 Merino animals
a thr0 and thr4 refer to Minimac3 R2 thresholds 0 and > 0.4, respectively
b Total number of imputed variants in each reference set for OAR1, 5, 10, 15, 20 
and 25 in brackets
c All scenarios evaluated only on the same variants (30,660,937) in MER 
reference set

R2  thresholda Reference set

ALL EUR MER

Considering all variants tested in each reference setb

thr0 0.935 (10.8) 0.938 (10.2) 0.918 (7.9)

thr4 0.965 (7.1) 0.962 (7.5) 0.963 (5.8)

Considering only the variants tested in MER reference setc

thr0 0.924 (7.9) 0.929 (7.9) 0.918 (7.9)

thr4 0.962 (6.3) 0.959 (6.7) 0.963 (5.8)
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Fig. 4 Empirical imputation accuracy of whole‑genome sequence genotypes (Minimac3 most likely genotypes) in Merino (MER), Poll Dorset (PD), 
and F1 Merino X Border Leicester (F1), using a mixed breed reference population (ALL). Imputation accuracy is before and after imposing Minimac3 
R2 thresholds to filter the imputed sequence data: thr0 = no threshold, thr4 = R2 > 0.4, and thr8 = R2 > 0.8. Imputation accuracy was measured as the 
correlation between imputed and observed sequence genotypes

Fig. 5 Difference in empirical imputation accuracy of whole‑genome sequence genotypes (Minimac3 most likely genotypes) when imputation 
started from low‑density SNP versus starting from high‑density SNP chips. Accuracy was tested in three target sets: Merino (MER), Poll Dorset (PD) 
and Merino X Border Leicester crossbreds (F1), and the reference population was mixed European and non‑European breeds (ALL). Comparisons are 
given before and after imposing Minimac3 R2 thresholds to filter the imputed sequence data: thr0 = no threshold, thr4 = R2 > 0.4, and thr8 = R2 > 0.8. 
Imputation accuracy was measured as the correlation between imputed and observed sequence genotypes



Page 10 of 17Bolormaa et al. Genet Sel Evol            (2019) 51:1 

due to more highly polymorphic regions. A very poorly 
imputed 4 Mb region on OAR10 was identified between 
70 and 74 Mb (Fig. 7a), that showed a low density of HD 
SNPs and a high density of WGS variants (Fig. 7b). We 
also discovered a region with very poor imputation accu-
racy, which coincided with the MHC region on OAR20 
(at approximately 25–28  Mb, Fig.  7c). This same region 
had a low density of HD SNPs and a high density of WGS 
variants, which was an atypical pattern compared to the 
rest of the chromosome (Fig. 7d). Notably, OAR10 and 20 
had the lowest overall imputation accuracies compared 
to OAR1, 5, 15 and 25 (Fig. 6a).

Several other very poorly imputed regions were also 
observed, on OAR4, 7, 14 and 21 (see Additional file  3: 
Figure S2) in the MER target set with the ALL reference 
set. The corresponding HD SNP and WGS variant den-
sities across all autosomes are also provided in  Figure 
S3 (see  Additional file  4: Figure S3). As expected, the 
chromosome ends always tended to be less accurately 
imputed due to a lack of HD flanking haplotype informa-
tion. After imposing the thr4 filter, the imputation accu-
racy increased to above 0.9 for all 1-Mb windows, except 
for one very poorly imputed region on OAR21 (see Addi-
tional file 3: Figure S2).

Fig. 6 Mean empirical imputation accuracy of whole‑genome sequence genotypes across target sets (MER, PD and F1) based on the Minimac3 
(MM012) most likely genotypes and the Minimac3 allele dosage probability (MMprob) on six chromosomes (OAR1, 5, 10, 15, 20, 25). Imputation was 
implemented using a mixed European and non‑European breed reference set (ALL). a provides imputation accuracy before imposing any Minimac3 
R2 threshold to filter the imputed sequence data, while b provides imputation accuracy after applying a threshold of Minimac3 R2 > 0.4. Imputation 
accuracy was measured as the correlation between imputed and observed sequence genotypes
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We also compared the mean empirical imputation 
accuracy for WGS variants within each of five key anno-
tation groupings: intergenic, intronic, 5 kb up- or down-
stream of genes, missense, and UTR 3’ and 5’ ends (for 
the MER target set with the ALL reference set: Fig.  8). 
Most variants were intergenic (63%), followed by intronic 
(30%), while variants in regions 5  kb up- or down-
stream of genes accounted for 6.4% of the total, missense 
for 0.3%, and those in 3’ or 5’ UTR for 0.3%. The mean 
empirical imputation accuracies for these annotation 
classes without imposing an R2 filter (thr0) ranged from 
0.866 (missense) to 0.938 (intronic). After retaining the 
variants with R2 > 0.4 (thr4), the difference in empirical 
imputation accuracies between the annotation classes 

was much reduced (Fig.  8). However, the proportion of 
variants filtered out (R2 ≤ 0.4) was much higher in the 
missense class (65%) than in the intergenic class (35%).

To investigate the differences in imputation accu-
racy between annotation classes further, we compared 
the MAF and R2 distributions for each annotation class 
(Fig.  9). All five annotation classes show a MAF profile 
that was highly skewed towards low MAF compared to 
the relatively uniform MAF distribution of HD SNP 
genotypes (Fig.  9a). The proportion of low MAF vari-
ants (< 0.05) was highest for the missense (approximately 
60%) and UTR variants (approximately 42%), and this 
was clearly reflected in the R2 distribution, for which the 
proportion of variants with R2 ≤ 0.4 was also highest for 

Fig. 7 Mean empirical imputation accuracy of whole‑genome sequence genotypes (Minimac3 most likely genotypes) based on non‑overlapping 
1‑Mb windows along OAR10 (a) and 20 (c) before and after applying different thresholds based on the Minimac3 R2 statistic: thr0 = no threshold, 
thr4 = R2 > 0.4, and thr8 = R2 > 0.8. Imputation accuracy was measured as the correlation between imputed and observed sequence genotypes. b 
and d show the number of variants per Mb of HD (high‑density) SNPs (blue) and imputed sequence variants (green) on OAR10 and 20. The region 
on OAR20 with low imputation accuracy (~ 25 – 28 Mb) coincides with the MHC region
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the missense and UTR variants (Fig.  9b). The R2 had a 
U-shaped distribution for all annotation classes, with an 
overrepresentation of high and low R2 (Fig. 9b). However, 
the difference in the proportion of variants with very low 
R2 (< 0.1) and the proportion of variants with very low 
MAF (< 0.05) was the highest for the missense variants 
and lowest for the intergenic and intronic variants.

Impact of imputation accuracy (Minimac3 R2) on genomic 
prediction
Generally, the empirical accuracy of imputed variants is 
unknown, but we have demonstrated that the Minimac3 
R2 is a reasonable proxy and can be used to filter out 
poorly imputed variants. Therefore, we imputed a large 
multi-breed sheep population to WGS and then evalu-
ated the impact of filtering WGS variants using the Mini-
mac3 R2 on the proportion of genetic variance explained 
by SNPs (“genomic heritability”) and on the accuracy of 
genomic prediction. Accuracies of GEBV were assessed 
using 50,000 sequence variants (MAF > 0.01) that were 
selected using three R2 thresholds: R2 ≤ 0.4 (thr0-4), 
R2 > 0.4 (thr4), and R2 > 0.8 (thr8).

Comparing the genomic heritability results for the 
poorly imputed (thr0-4) with more confidently imputed 
(thr8) variant sets, genomic heritability clearly tended to be 
lower for the poorly imputed variants (Fig. 10a). There was 
no difference in genomic heritability observed between 

using thr4 and thr8, which might be expected given the 
“U” shaped distribution of R2 (Fig. 9b) because there was 
a very low proportion of WGS variants with 0.4 < R2 < 0.8 
and, thus, most variants in thr4 had an R2 > 0.8. The 
genomic prediction accuracies, however, presented a less 
clear picture, with only pwt showing increased accuracy 
after imposing a higher filter threshold based on R2, pos-
sibly because we used a mixed breed reference population 
with a density of only 50 k variants and with most variants 
having a low MAF. As a result, the prediction accuracy 
was relatively low regardless of the R2 threshold applied 
because SNP effects were imprecisely estimated due to low 
LD between SNPs and causal variants.

Discussion
This is the first study to evaluate the empirical accu-
racy of imputed whole-genome sequence variants in 
sheep, using up to 935 sequenced sheep as a mixed 
breed reference population. We present results for two 
commonly used imputation programs, for single- and 
multi-breed reference populations, and for one cross-
bred and two purebred target populations. The results 
provide confidence that imputation to WGS in sheep 
can achieve high accuracy using this mixed breed ref-
erence population, even when imputing from a low-
density 12 k SNP array. These reference sequences are 
publicly available and, thus, our findings are widely 

Fig. 8 Empirical imputation accuracy of whole‑genome sequence genotypes (Minimac3 most likely genotypes) variants in five genome 
annotation classes: intergenic, intronic, 5 kb up‑ or down‑stream of genes, missense, and 3’ and 5’ UTR. Imputation was carried out in a Merino (MER) 
target set using a mixed European and non‑European breed reference set (ALL). Imputation accuracy was measured as the correlation between 
imputed and observed sequence genotypes, before (thr0) and after filtering variants based on Minimac3 R2 > 0.4 (thr4)
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applicable and provide a practical and cost-effective 
approach for imputing large mixed or single-breed 
sheep populations to WGS. We also demonstrated that 
it was practical to use Eagle and Minimac3 to phase 
and impute more than 47,000 mixed breed sheep to 
WGS and to use Minimac3 R2 to filter variants for 
genomic prediction.

Imputation software
In our study, the FImpute and Minimac3 softwares 
performed equally well for imputing the most likely 

genotypes, which is in line with results for cattle [16]. 
Unlike Pausch et  al. [16], we did, however, not provide 
FImpute pedigree information because sheep pedigrees 
are generally shallow and may also contain more errors 
than dairy cattle pedigrees, which could negatively 
impact imputation [26]. In addition, Minimac3 requires 
pre-phasing of haplotypes and is more computationally 
demanding than FImpute [16]. However, Minimac3 did 
not fail on any of the ovine 26 autosomes for this study, 
while FImpute failed to impute OAR10 without removal 
of a 4 Mb segment between 70 and 74 Mb. A similar issue 

Fig. 9 Distributions of minor allele frequency (MAF) (a) and Minimac3 R2 (b) of variants in five annotation categories: intergenic, intronic, 5 kb 
up‑ or down‑stream of genes, missense, and 3’ and 5’ UTR. The distribution of MAF is also shown for SNPs on a standard HD (high‑density) SNP chip. 
Imputation was carried out in the Merino (MER) target set using a mixed European and non‑European breed reference set (ALL)
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Fig. 10 Mean genomic heritability estimates (a) and mean accuracies of genomic estimated breeding values (GEBV) (b) in a Merino validation 
population. Heritability estimates were based on a random selection of 50,000 imputed variants from three classes based on Minimac3 R2: 
0.0 < R2 ≤ 0.4, 0.4 < R2 ≤ 1.0, and 0.8 < R2 ≤ 1.0
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was reported by Pausch et al. [16] when imputing cattle 
to WGS with FImpute. Typically, the regions that will be 
difficult to impute are not known a priori and, therefore, 
it can take considerable computational time to identify 
the genomic region that causes the issue when the pro-
gram aborts. To assist with this, we provide a genome-
wide map of regional imputation accuracy by 1-Mb 
segments (see Additional file 3: Figure S2), which can be 
used to troubleshoot if imputation software aborts when 
imputing an entire chromosome.

In contrast to FImpute, Minimac3 imputed the entire 
OAR10 chromosome without aborting but with an 
extremely low accuracy in the region where FImpute failed 
(Fig.  6). Thus, it is imperative to have a means of filter-
ing out very poorly imputed variants because they may 
affect downstream analyses such as association studies or 
genomic prediction. Minimac3 provides an R2 quality sta-
tistic, which as  we have demonstrated, can be used as a 
practical filter to remove poorly imputed variants (e.g. Min-
imac3 R2 > 0.4 corresponds to a mean empirical accuracy of 
0.86, Fig. 3), although it is not a perfect predictor of empiri-
cal imputation accuracy. The most suitable R2 threshold to 
use depends on the type of downstream analyses. For exam-
ple, there may not be an optimal threshold when searching 
for a gene with a major effect, but a modest threshold may 
be prudent when using imputed sequence for genomic pre-
diction. In a recent genomic prediction study in sheep, we 
removed WGS variants with an R2 threshold of ≤ 0.4 and 
demonstrated that imputed sequence variants increased 
the accuracy of genomic prediction compared to using only 
the standard 50 k ovine SNP set [3, 8].

Reference and target populations
Our results support the use of combining smaller pure-
bred sequenced populations into a larger mixed breed 
reference set to impute both purebred and crossbred indi-
viduals, in agreement with findings for imputing pure-
bred dairy cattle [16, 27]. Furthermore, this is expected 
in sheep because previous research demonstrated that 
there is widespread sharing of relatively large haplotypes 
across a large range of European breeds [28]. This could 
also explain why there was no further increase in accu-
racy using the ALL reference (N = 935) compared to the 
EUR set (N = 726). The ALL set included breeds from 
Asia and Africa that are known to diverge from European 
breeds [28]. Combining smaller sets of sequenced animals 
from different breeds into one large reference population 
provides a cost-effective approach to impute to WGS for 
sheep, particularly in countries such as Australia where 
many breeds and composites are used in the industry.

The imputation accuracies achieved in this study were 
similar to or higher than those reported for imputed 
WGS in dairy cattle [16, 27, 29]. This may be due to closer 

relationships (i.e. more haplotype sharing) between some 
animals in the target and reference sets compared to the 
cattle studies where 1000 bulls were more distant relatives 
[2]. In addition to the purebreds, our EUR set included 
177 Australian sheep that were crossbreds (“composites”): 
more than 90% of these animals had some recent Merino 
ancestry, 63% had some recent Border Leicester ancestry 
and a lower proportion included some recent Poll Dorset 
(37%) and White Suffolk (30%) ancestry. The White Suf-
folk breed in Australia was developed initially by cross-
ing Suffolk to mainly Poll Dorset to remove the dark 
pigmented body regions. The target populations used in 
this study represent wool (Merino, MER), terminal (Poll 
Dorset, PD) and maternal breeds (Border Leicester F1 
cross) that have quite different effective population (Ne) 
sizes: estimated as 833 for MER, 318 for PD and 242 for 
BL, respectively [28]. This likely explains why the imputa-
tion accuracy was always higher in the PD and F1 animals 
compared to the MER population although there were 
fewer PD and Border Leicester animals in the reference 
population (both pure and crossbreds). This phenomenon 
was also observed in an imputation study from low- to 
medium-density SNPs in sheep [22].

Regional imputation accuracy across the genome
In agreement with recent findings in cattle [16], we pro-
vided evidence that the mean imputation accuracy dif-
fered across chromosomes largely as a result of one or 
more substantial genomic regions (≥ 1 Mb) being poorly 
imputed (e.g. a 4 Mb region on OAR10 at around 70 Mb). 
This indicates a regional mapping issue because the accu-
racy was averaged across 1-Mb windows, which would 
not be influenced by an occasional poorly imputed vari-
ant. In addition, the HD SNP density was generally low 
in these regions and in some regions, there was also 
a higher than usual density of sequence variants (e.g. 
OAR10 around 70  Mb). This could arise for example, 
from alignment errors due to large segmental duplica-
tions. In dairy cattle, Pausch et al. [16] also found a sharp 
decline in imputation accuracy in several regions of the 
bovine genome that were previously identified as con-
taining large tandem segmental duplications.

Alternatively, the increased density of sequence vari-
ants could also reflect a truly more polymorphic region 
resulting in the region being more challenging to impute 
than less highly polymorphic regions. For example, the 
MHC region on OAR20 (around 25–28 Mb, [30]) showed 
poor imputation accuracy and a higher density of poly-
morphic sequence variants. The MHC region in sheep 
and cattle is known to harbour some duplicated regions 
[30] and also in humans is generally found be highly 
polymorphic due to strong selection by evolutionary 
pressures such as many different pathogens [31]. The 
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ovine MHC region shows a very strong homology with 
the bovine MHC [30], thus it is not surprising that this 
region is also poorly imputed in cattle [16]. Liu et  al. 
[32] emphasized that low heterozygosity, high sequence 
similarity to other genomic regions, high GC content, 
segmental duplication and distance between genotyped 
markers are the major contributing factors to consist-
ently poor imputation.

The Minimac3 R2 statistic and MAF of annotated 
variants suggest purging selection on missense vari-
ants because these variants have the highest proportion 
of variants in the lowest MAF band. Furthermore, the 
higher relative proportion of low R2 (< 0.1) to low MAF 
(< 0.05) variants in missense compared to intergenic and 
intronic categories suggests poorer imputation accuracy 
overall in missense variants. This could indicate that the 
missense variants are often younger than variants in the 
more neutral categories (due to purging selection) and 
younger mutations can be more difficult to impute accu-
rately because the surrounding haplotypes are present 
with and without the new mutation [33].

Genomic prediction
The estimates of genomic heritability (Fig.  10) suggest 
that using the Minimac3 R2 statistic to pre-filter WGS 
variants before selecting subsets for downstream stud-
ies such as genomic prediction or association studies is 
a sensible strategy. The Minimac3 R2 calculation is based 
on the premise that poorly imputed allele counts are 
shrunken towards their expectations based on the esti-
mated allele frequency. Imputation for genomic predic-
tion was carried out in a mixed breed target set, rather 
than single-breed target set, and thus it is possible that 
the R2 statistic was a less precise predictor of imputation 
quality for the mixed breed set than for the single breed 
set. This, in turn, may have influenced our genomic pre-
diction results, for which there was no clear disadvantage 
for the low R2 variants. Within the scope of this study, 
it was not possible to compare our genomic prediction 
results with results from a ‘gold standard’ set of real 50 k 
genotypes for two reasons: first, many animals in this 
population were only genotyped on LD SNP arrays and, 
second, the MAF distribution of SNPs on the 50 k chip is 
very different than the distribution of MAF for the ran-
dom sets of SNPs selected here.

Druet et  al. [34] demonstrated that the use of WGS 
variants for genomic prediction (compared to dense SNP 
panels) provides the largest increase in accuracy when 
the causal sequence variants are rare and thus in low LD 
with the SNPs genotyped on panels. For example, in our 
data, the missense variants had a much higher propor-
tion of rare variants than HD array SNPs and are also 

more likely to affect phenotypes because they change the 
protein coding sequence. However, these low MAF vari-
ants are also more likely to be poorly imputed and they 
comprise a large proportion of sequence variants (~ 65% 
with R2 < 0.4; Fig. 9). Thus, it is useful to have a means of 
filtering out the least accurately imputed variants, such as 
by applying the Minimac3 R2 statistic. However, it is also 
important to enlarge the reference population such that 
there is more information to impute the less common 
variants more accurately.

Conclusions
We achieved a mean accuracy of imputation to whole-
genome sequence of up to 0.97 across target breeds using 
the Minimac3 software, with pre-phasing using the Eagle 
software and filtering variants based on the Minimac3 
R2 being higher than 0.4. Imputation accuracy improved 
by combining smaller breed sets into a multi-breed ref-
erence. The empirical accuracy varied based on MAF, 
target breed, reference breed composition, and chromo-
some region.
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