
HAL Id: hal-02445121
https://hal.science/hal-02445121

Submitted on 19 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Anonymous Read/Write Memory: Leader Election and
De-anonymization

Emmanuel Godard, Damien Imbs, Michel Raynal, Gadi Taubenfeld

To cite this version:
Emmanuel Godard, Damien Imbs, Michel Raynal, Gadi Taubenfeld. Anonymous Read/Write Mem-
ory: Leader Election and De-anonymization. SIROCCO’19 - 26th International Colloquium on
Structural Information and Communication Complexity, Jul 2019, L’Aquila, Italy. pp.246-261,
�10.1007/978-3-030-24922-9_17�. �hal-02445121�

https://hal.science/hal-02445121
https://hal.archives-ouvertes.fr

Anonymous Read/Write Memory:

Leader Election and De-anonymization

Emmanuel Godard†, Damien Imbs†, Michel Raynal⋆,‡, Gadi Taubenfeld◦

†LIS, Université d’Aix-Marseille, France
⋆Univ Rennes IRISA, France

‡Department of Computing, Polytechnic University, Hong Kong
◦The Interdisciplinary Center, Herzliya 46150, Israel

Abstract. Anonymity has mostly been studied in the context where processes

have no identity. A new notion of anonymity was recently introduced at PODC

2017, namely, this notion considers that the processes have distinct identities but

disagree on the names of the read/write registers that define the shared memory.

As an example, a register named A by a process p and a shared register named

B by another process q may correspond to the very same register X , while the

same name C may correspond to different registers for p and q.

Recently, a memory-anonymous deadlock-free mutual exclusion algorithm has

been proposed by some of the authors. This article addresses two different prob-

lems, namely election and memory de-anonymization. Election consists of elect-

ing a single process as a leader that is known by every process. Considering the

shared memory as an array of atomic read/write registers SM [1..m], memory

de-anonymization consists in providing each process pi with a mapping function

mapi() such that, for any two processes pi and pj and any integer x ∈ [1..m],
mapi(x) and mapj(x) allow them to address the same register.

Let n be the number of processes and α a positive integer. The article presents

election and de-anonymization algorithms for m = α n + β registers, where

β is equal to 1, n − 1, or belongs to a set denoted M(n) (which characterizes

the values for which mutual exclusion can be solved despite anonymity). The

de-anonymization algorithms are based on the use of election algorithms. The

article also shows that the size of the permanent control information that, due to

de-anonymization, a register must save forever, can be reduced to a single bit.

Keywords: Anonymous registers, Asynchronous system, Atomic read/write reg-

isters, Concurrent algorithm, Leader election, Local memory, Mapping, Memory

de-anonymization, Mutual exclusion, Synchronization.

1 Anonymous Memory, Model, and Aim of the Article

1.1 Anonymous Memory

Memory anonymity. While the notion of process anonymity has been studied for a long

time from an algorithmic and computability point of view, both in message-passing

systems (e.g., [1,4,17]) and shared memory systems (e.g., [3,5,8]), the notion of mem-

ory anonymity has been introduced only very recently by [15]. (See also [11] for an

introductory survey on process and memory anonymity.)

2 E.Godard, D. Imbs, M. Raynal, and G. Taubenfeld

Let us consider a shared memory SM made up of m atomic read/write registers.

Such a memory can be seen as an array with m entries, namely SM [1..m]. In a non-

anonymous memory system, for each index x, the name SM [x] denotes the same reg-

ister whatever the process that invokes the address SM [x]. As stated in [15], in the

classical system model, there is an a priori agreement on the names of the shared regis-

ters. This a priori agreement facilitates the implementation of the coordination rules the

processes have to follow to progress without violating the safety (consistency) proper-

ties associated with the application they solve [10,14].

This a priori agreement does no longer exist in a memory-anonymous system. In

such a system the very same identifier SM [x] invoked by a process pi and invoked by

a different process pj does not necessarily refer to the same atomic read/write register.

More precisely, a memory-anonymous system is such that:

– prior the execution, an adversary defined, for each process pi, a permutation fi()
over the set {1, 2, · · · ,m}, such that when pi uses the address SM [x], it actually

accesses SM [fi(x)], and

– no process knows the permutations.

The read/write registers of a memory-anonymous system are necessarily MWMR.

Results on memory anonymity in mutual exclusion. The work described in [15] on

anonymous read/write memory addressed mutual exclusion, consensus, election and re-

naming, problems for which it presented algorithms and impossibility results. The con-

sensus, election and renaming algorithms in [15] satisfy the starvation-freedom progress

condition, namely, if a process executes alone during a long enough period, it eventually

decides. This progress condition is different from the one considered in this article.

Among the results from [15], one states a condition on the size m of the anonymous

memory which is necessary for any symmetric deadlock-free algorithm, where symmet-

ric means that process identities can only be compared with equality (hence, there is no

notion of a total order on process identities). More precisely, given an n-process system

where n ≥ 2, there is no deadlock-free mutual exclusion algorithm if the size m does

not belong to the set M(n) = {m such that ∀ ℓ : 1 < ℓ ≤ n: gcd(ℓ,m) = 1} \ {1}.
Recently, it has been shown in [2] that the condition m ∈ M(n) is also a suffi-

cient condition for symmetric deadlock-free mutual exclusion in read/write anonymous

memory systems.

1.2 Computing Model

Processes. The system is composed of a finite set of n ≥ 2 asynchronous processes

denoted p1, .., pn. The subscript i in pi is only a notation convenience, which is not

known by the processes. Asynchronous means that each process proceeds to its own

speed, which can vary with time and remains always unknown to the other processes.

Initially, each process pi knows only its identity idi, the total number of processes n,

and the fact that no two processes have the same identity. It is assumed that there are no

process failures. Furthermore, unlike the mutual exclusion model where a process may

never leave its remainder region, it is assumed that all the processes must participate in

the algorithm.

Anonymous read/write memory: Election and De-anonymization 3

Anonymous shared memory. The shared memory is made up of m atomic anonymous

read/write registers denoted SM [1...m]. As a system composed of a single atomic reg-

ister is not anonymous, it is assumed that m > 1. Hence, all registers are anonymous.

As already indicated, when a process pi invokes the address SM [x], it actually accesses

SM [fi(x)], where fi() is a permutation statically defined once and for all by an external

adversary. We will use the notation SM i[x] to denote SM [fi(x)], to stress the fact that

no process knows the permutations. It is assumed that all the registers are initialized to

the same value. Otherwise, thanks to their different initial values, it would have been

possible to distinguish different registers, which consequently will no longer be fully

anonymous.

Symmetry constraint on the algorithms. A symmetric algorithm is an “algorithm in

which the processes are executing exactly the same code and the only way for dis-

tinguishing processes is by comparing identifiers. Identifiers can be written, read, and

compared, but there is no way of looking inside an identifier. Thus it is not possible

to know whether an identifier is odd or even” [15]. Furthermore, the only comparison

that can be applied to identifiers is equality. There is no order structuring the identifier

name space. (Other notions of symmetry are described in [6,9]). Let us notice that as all

the processes have the same code and all the registers are initialized to the same value,

process identities become a key element when one has to design an algorithm in such a

constrained context.

1.3 Problems Addressed in this Article

Leader election. In this problem, the input of each process pi is its identity idi. Its

output will be deposited in a write-once local variable leaderi. The aim is to design

an algorithm that provides the local variable leaderi of each process pi with the same

process identity. The only process such that leaderi = idi is the elected process.

Anonymous memory de-anonymization. In this problem, as before, the input of each

process pi is its identity idi. The aim is for each process pi to compute an addressing

function mapi(), which is a permutation over the set of the memory indexes {1, · · · ,m},
such that the two following properties are satisfied.

– Safety. Let y ∈ {1, · · · ,m}. For any process pi: SM i[mapi(y)] = SM [y].
– Liveness. There is a finite time after which all the processes have computed their

addressing function mapi().

The safety property states that once a process pi has computed mapi(), its local anony-

mous memory address SM i[x], where x = mapi(y), denotes the shared register SM [y].

1.4 Content

This article presents first an impossibility result. Then, it presents symmetric algorithms

solving the two previous problems in a system where the process cooperate through m

atomic anonymous read/write registers. As already indicated, it is assumed that all the

processes participate in the algorithms, and the size of the memory is m = α n + β,

where α is a positive integer and β can take the following values:

4 E.Godard, D. Imbs, M. Raynal, and G. Taubenfeld

– β = 1. The size of the anonymous memory is then m = α n+ 1.

– β = n− 1. The size of the anonymous memory is then m = α n+ (n− 1).
– β ∈ M(n) where M(n) is as defined above. Namely, M(n) is the set of values

for which deadlock-free mutual exclusion can be solved [2,15]. This is due to the

fact that when β ∈ M(n), the algorithms use a deadlock-free mutual exclusion

algorithm to solve conflicts -which do not exist when β = 1 or β = n− 1). In this

specific case, α can also be 0.

Find a characterization of the set of the values of m for which leader election can be

solved in a memory anonymous system remains an open problem (see the Conclusion

section).

2 An Impossibility Result

Theorem 1. There is neither a de-anonymizing algorithm nor an election algorithm for

n processes using m anonymous registers, where m = α n and α is a positive integer.

Proof First, we observe that once de-anonymizing is solved using m = α n reg-

isters, it is straightforward to solve election using m = α n registers. First, run the

de-anonymizing algorithm to get m = α n non-anonymous registers. Then, using these

registers, simply run the symmetric mutual exclusion algorithm from [13] which uses

exactly n registers, and let the first process to enter its critical section be the leader.

Thus, to prove the theorem, we only need to prove that it is impossible to solve election

using m = αn registers.

Assume to the contrary, that there is a symmetric election algorithm for n processes

using m = α n registers where α is a positive integer. Let us arrange the m registers

on a ring with m nodes where each register is placed on a different node. Let us call the

n processes p0, ..., pn−1. To each one of the n processes, we assign an initial register

(namely, the first register that the process accesses) such that for every two processes pi
and pi+1 (mod n), the distance between their initial registers is exactly α when walking

on the ring in a clockwise direction. Here we use the assumption that m = α n.

The lack of global names allows us to assign for each process an initial register

and an ordering which determines how the process scans the registers. An execution

in which the n processes are running in lock steps, is an execution where we let each

process take one step (in the order p0, ..., pn−1), and then let each process take another

step, and so on. For process pi and integer k, let order(pi, k) denote the kth new register

that pi accesses during an execution where the n processes are running in lock steps,

and assume that we arrange that order(pi, k) is the register whose distance from pi’s

initial register is exactly (k − 1), when walking on the ring in a clockwise direction.

We notice that order(pi, 1) is pi’s initial register, order(pi, 2) is the next new reg-

ister that pi accesses and so on. That is, pi does not access order(pi, k + 1) before

accessing order(pi, k) at least once, but for every j ≤ k, pi may access order(pi, j)
several times before accessing order(pi, k + 1) for the first time.1

1 Once a process accesses a register for the first time, say register x, we may map x to any

(physical) register that it hasn’t accessed yet. However, when it accesses x again, it must access

the same register it has accessed before when referring to x.

Anonymous read/write memory: Election and De-anonymization 5

With this arrangement of registers, we run the n processes in lock steps. Since only

comparisons for equality are allowed, and all registers are initialized to the same value

–which (to preserve anonymity) is not a process identity– processes that take the same

number of steps will be at the same state, and thus it is not possible to break symmetry.

It follows that either all the processes will be elected, or no process will be elected. A

contradiction. ✷Theorem 1

3 Memory Anonymous Leader Election when m = α n + 1

3.1 Algorithm

Local variables. In addition to leaderi, each process pi manages the following local

variables: towritei, overwritteni, writteni, which contain sets of memory indexes,

last i which is a memory index, and nbi which is a non-negative integer. The meaning

of these variables will appear clearly in the text of Algorithm 1.

First part of the algorithm: lines 1-12. Each anonymous register SM [x] is initialized

to 〈start,⊥〉, where ⊥ is default value, which can be compared (with equality) with

any process identity.

When it invokes election(idi), a process pi first writes the pair 〈start, idi〉 in the

first (from its point of view) α registers, namely, SM i[1], ...,SM i[α] (line 3). Then, it

waits until all the registers (except one) are tagged start, or a register in which it wrote

〈start, idi〉 has been overwritten. There are consequently two cases.

– If registers in which pi wrote 〈start, idi〉 have been overwritten (the first part of the

predicate of line 5 is then satisfied), pi updates its local variables overwritteni, nbi,

towritei and last i, and re-enters the repeat loop, the goal being to have α registers

containing 〈start, idi〉.
– If all the registers except one (i.e., exactly m−1 = α n registers) are tagged start,

pi exits the loop.

As we will see in the proof, it follows from this collective behavior of the processes

that there is time at which exactly one register still contains its initial value 〈start,⊥〉,
while for each j ∈ {1, · · · , n}, exactly α registers contain 〈start, idj〉 (this property

is named P1 in the algorithm).

Second part of the algorithm: lines 13-18. As just seen, the previous part of the algo-

rithm has identified a single register of the anonymous memory, namely the only one

containing 〈start,⊥〉. This register is known by all the processes, more precisely, it is

known as SM i[ℓi] by pi, SM j [ℓj] by pj , etc.

So, to become the leader, each process pi writes the pair 〈leader, idi〉 in this regis-

ter (known as SM i[ℓi] by pi, line 14). It follows that the last process that will write this

register will be the leader. There are then two cases.

– If pi discovers it has not been elected (we have then SM i[ℓi] 6= 〈leader, idi〉,
first predicate of line 15), it resets all the registers containing its tagged identity

(〈start, idi〉) to the value 〈done, idi〉 (line 16). Then, pi waits until all registers

except one are tagged 〈done,−〉.

6 E.Godard, D. Imbs, M. Raynal, and G. Taubenfeld

init: each SM [x] is initialized to 〈start,⊥〉; m = α n+ 1.

operation election(idi) is % code for process pi, i ∈ {1, · · · , n}
(01) towritei ← {1, ..., α}; overwritteni ← ∅; writteni ← ∅; last i ← α;

(02) repeat

(03) for each x ∈ towritei do SM i[x]← 〈start, idi〉 end do;

(04) writteni ← (writteni \ overwritteni) ∪ towritei;

(05) wait until
(

(∃ x ∈ writteni : SM i[x] 6= 〈start, idi〉)
∨ (|{ℓ such that SM i[ℓ] 6= 〈start,⊥〉}| = α n)

)

;

(06) if
(

|{ℓ such that SM i[ℓ] 6= 〈start,⊥〉}| = α n
)

(07) then exit repeat loop

(08) else overwritteni ← { x ∈ writteni such that SM i[x] 6= 〈start, idi〉};
(09) nbi ← |overwritteni|;
(10) towritei ← {last i + 1, ..., last i + nbi}; last i ← last i + nbi;

(11) end if

(12) end repeat;

% Property P1: There is a time at which exactly one register contains 〈start,⊥〉

% and, for each j ∈ {1, · · · , n}, α registers contain 〈start, idj〉
(13) let ℓi be such that SM i[ℓi] = 〈start,⊥〉 or SM i[ℓi] = 〈leader,−〉;
(14) SM i[ℓi]← 〈leader, idi〉;
(15) wait until

(

(SM i[ℓi] 6= 〈leader, idi〉)
∨ (SM i[1..m] has exactly α+ 1 entries not tagged done)

)

;

(16) for each x such that SM i[x] = 〈start, idi〉 do SM i[x]← 〈done, idi〉 end for;

% Property P2: There is a time from which there is exactly there is exactly one

% index ℓ ∈ {1, · · · , n} such that a register contains 〈leader, idℓ〉, and

% for each j ∈ {1, · · · , n}, there are α registers containing 〈done, idj〉
(17) if (SM i[ℓi] 6= 〈leader, idi〉) then

wait until
(

SM i[1..m] has only one entry not tagged done

)

end if;

(18) 〈−, id〉 ← SM i[ℓi]; leaderi ← id.

% Here, one register is tagged leader, all the others are tagged done.

Algorithm 1: n-process election with m = α n+ 1 anonymous read/write registers

– If pi is the last process to write in the single register locally known as SM i[ℓi], it

waits until all the other processes have written 〈done,−〉 in the registers containing

their identity (second part of the predicate of line 15). When this is done, the elected

process pi writes 〈done, idi〉 in all the registers containing its identity (line 16),

which allows each other process not to remain blocked at line 17 and progress to

the last line of the algorithm. When this occurs, each process can assign the identity

of the leader to its local variable leaderi (line 18).

As before, we will see in the proof, that there is a time from which there is exactly

one index ℓ ∈ {1, · · · , n} such that a register contains 〈leader, idℓ〉, and, for each

j ∈ {1, · · · , n}, there are α registers containing 〈done, idj〉 (This property is named

P2 in the algorithm).

Anonymous read/write memory: Election and De-anonymization 7

3.2 Proof of Algorithm 1

Lemma 1. (Property P1) Before a process executes line 14, there is a finite time at

which one register contains 〈start,⊥〉, and, for each j ∈ {1, · · · , n}, α registers

contain 〈start, idj〉.

Proof Considering time instants before a process executes line 14, we have the follow-

ing.

– Let us first observe that the order on the entries of SM [1..m] in which pi writes

them has been statically predefined by the adversary (namely, according to the –

unknown– permutation fi(): SM i[x] is actually SM [fi(x)]). The important point

is that a process pi never backtracks while scanning SM [1..m], and its successive

accesses are SM [fi(1)], SM [fi(2)], etc.
– The first writes of a process pi involve the registers SM i[1], .., until SM i[α] (lines 1

and 3). Then, as indicated above, its next writes in SM follows a statically prede-

fined order. The process pi issues a write of 〈start, idi〉 in a register it has not yet

written, for each of its previous writes that have been overwritten by another pro-

cess (line 4). These writes by pi concern entries of SM i[1..n] in which it has not

yet written (management of the local variables towritei, overwritteni, writteni,

and last i, at lines 1, 4, and 8-10). As pi writes only in new registers, it follows that,

for any pi we have |{x such that SM [x] = 〈start, idi〉}| ≤ α, and from a global

point of view we have
n
∑

i=1

(

|{x such that SM [x] = 〈start, idi〉}|
)

≤ nα.

– It follows from m = α n+1 and the previous inequality, that there is enough room

in the array SM [1..m] for each process pi to write n times the pair 〈start, idi〉.
Consequently, there is time after which the first predicate of line 5 is false for each

process pi, and as m = nα+1, the remaining entry of SM [1..m] has still its initial

value, namely 〈start,⊥〉, from which we conclude that a process neither remains

forever blocked at line 4, nor forever executes the “repeat” loop (lines 2- 12).

It follows from the previous observations that before a process executes line 14, there

is a time at which, for each identity idi, the pair 〈start, idi〉 is present in α entries

of SM [1..m], and an entry of SM [1..m] has still its initial value, which concludes the

proof of the lemma. ✷Lemma 1

The number of write accesses between line 3 and line 12. When considering the proof

of Lemma 1, it is easy to count the number of writes in the anonymous memory. In the

best case, the (unknown) permutations assigned by the adversary to the processes are

such that no process overwrites the pairs written by the other processes. In this case,

line 2 generates α n writes into the shared memory.

In the worst case, the permutations assigned by the adversary, and the asynchrony

among the processes are such that the first α writes of a process are overwritten (n− 1)
times, the first α writes of another process are overwritten (n−2) times, etc., until a last

process whose none of its first α writes are overwritten. In this case, line 2 generates

α
n(n+1)

2 writes into the anonymous shared memory.

8 E.Godard, D. Imbs, M. Raynal, and G. Taubenfeld

Lemma 2. (Property P2) There is a finite time from which there is ℓ ∈ {1, · · · , n} such

that exactly one register contains 〈leader, idℓ〉, and, for each j ∈ {1, · · · , n}, there

are α registers containing 〈done, idj〉.

Proof It follows from Lemma 1 that no process blocks or loops forever in the “re-

peat” loop (lines 2-12). Hence, each process eventually executes lines 13-14. Let pℓ the

last process that executes line 14. This means that after it executed this line, we have

SM i[ℓi] = 〈leader, idℓ〉 for any process pi (namely, pℓ is the process that has been

elected). There are two cases.

– A process pi that is not the leader, is such that SM i[ℓi] 6= 〈leader, idi〉. Con-

sequently, it cannot be blocked at line 15. So, such a process pi eventually writes

〈done, idi〉 in the α registers containing 〈start, idi〉 (line 16). Let us recall that,

due to Property P1, these exactly α registers do exist. When the (n − 1) pro-

cesses that are not leader have executed line 16, there are α(n − 1) registers con-

taining 〈done,−〉, α registers containing 〈start, idℓ〉, and one register containing

〈leader, idℓ〉.
– As far as the leader process pℓ is concerned, we have the following. Due to the

previous item, the second predicate of line 15 is eventually satisfied. When this oc-

curs, pℓ writes 〈done, idℓ〉 in the α registers containing 〈start, idℓ〉 (line 16) and,

from then on, a single register is not tagged 〈done,−〉, namely the one containing

〈leader, idℓ〉.

The lemma follows directly from the two previous items. ✷Lemma 2

Theorem 2. Algorithm 1 solves the election problem.

Proof Once Property P2 is satisfied, no non-leader process is blocked at line 17, and

each process eventually execute line 18. When this occurs, they all agree on the very

same leader, namely the only process pℓ whose identity is tagged leader. ✷Theorem 2

4 From Leader Election to De-anonymization when m = α n+1

4.1 A Simple Leader-based De-anonymization Algorithm

As soon as a process has been elected, it is easy to de-anonymize the anonymous mem-

ory. To this end, the elected process pℓ imposes its mapping function to all the processes.

Algorithm 2 is such a de-anonymization algorithm, which relies on Property P2.

Each process pi invokes the operation election(idi) (line 1). Then for each register

SM ℓ[x], the elected process pℓ writes the pair 〈desa, x〉 in SM ℓ[x] (line 3). Hence, its

mapping function is ∀ x ∈ {1, · · · ,m}: mapi(x) = x. On the other side, any non-

leader process pi waits until all the registers are tagged desa (line 4). When this occurs,

pi computes its own mapping function (line 5), which is such that mapi(y) = x, where

SM i[x] = 〈desa, y〉. The proof of this algorithm is easy and left to the reader.

As a simple example see Fig. 1, where pℓ has been elected as leader, and fℓ() is the

permutation defined by the adversary for pℓ (this permutation remains always unknown

Anonymous read/write memory: Election and De-anonymization 9

operation SM i.scan() returns ([SMi[1], · · · , SMi[m]]).

operation de-anonymize(idi) is

(01) election(idi);
% in the following ℓi has the value computed in election(idi); moreover, if pi is the

% first process that exits from election(idi):
% one register is tagged leader, all the others are tagged done

(02) if (SM i[ℓi] = 〈leader, idi〉) % this predicate is equivalent to leaderi = idi
(03) then for each x ∈ {1, · · · ,m} do SM i[x]← 〈desa, x〉 end for

% the permutation for pi is: ∀ y ∈ {1, · · · ,m}: mapi(y) = y %

(04) else repeat smi ← SM i.scan() until (∀ x : smi[x] is tagged desa) end repeat;

(05) for each x ∈ {1, · · · ,m} do mapi(y)← x where smi[x] = 〈desa, y〉 end for

% perm. of pi is: ∀ y ∈ {1, · · · ,m}: mapi(y) = x, where smi[x] = 〈desa, y〉
(06) end if. % Here, each register SM i[x] is tagged desa.

Algorithm 2: Election-based de-anonymization (code for pi, m = α n+ 1)

to the processes). SM i[x] = 〈desa, y〉, and SM j [z] = 〈desa, y〉 address the same

register, which is SM ℓ[y]. Hence, this register is locally known as SM i[mapi(y)] by pi,

SMj [mapj(y)] by pj , and SM ℓ[mapℓ(y)] = SM ℓ[y] by pℓ.

4.2 Using the De-anonymized Memory

When a process pi returns from Algorithm 2, it knows that all the processes will share

the same index for the same register (i.e., if SM i[x] = 〈desa, y〉, then SMi[mapi(y)]
is SM i[x]). When this occurs, process pi could start executing its local algorithm de-

fined by the upper layer application, but if it writes an application-related value in some

of these registers, this value can overwrite a pair tagged desa stored in a register not

yet read by other processes. A way to prevent this problem from occurring consists in

tagging all the values written by a process at the application level by the tag apply, and

include a field containing the common index y associated with this register. Hence, at

the application level, a register will contain 〈apply(y), v〉. In this way, despite asyn-

chrony, any process pj will be able to compute its local mapping function mapj(), and

start its upper layer application part, as soon as it has computed mapj().
Let us notice that one bit is needed to distinguish the tag desa and the tag apply.

Hence each of a pair 〈desa, y〉 and a pair 〈apply(y),−〉 requires (1 + log2 m) con-

trol bits.

4.3 Reducing the Size of the Permanent Control Information

Aim and additional assumption. This section shows that, at the price of an additional

synchronization phase, the control information that each register must forever contain

can be reduced from (1 + log2 m) to a single bit.

To this end, we assume now that each atomic read/write register SM [x] is composed

of two parts SM [x].BIT and SM [x].RM (i.e., SM [x] = 〈SM [x].BIT , SM [x].RM〉).
SM [x].BIT is for example the leftmost bit of SM [x], and SM [x].RM the other bits.

10 E.Godard, D. Imbs, M. Raynal, and G. Taubenfeld

fj(1) fj(2) fj(3) fj(6) fj(7) fj(8) fj(9)fj(4)

fi(1) fi(7)fi(3)fi(2) fi(4) fi(5) fi(8)

SMi[mapi[y]]

Unknown adversary-defined
permutation for pi

Physical registers

Unknown adversary-defined

permutation for pj

SM j [mapj [y]]

fj(5)

fi(6) fi(9)

Fig. 1. An example of de-anonymization, n = 4 and m = 2n+ 1

The meaning and use of SM [x].RM are exactly the same as SM [x] in Algorithm 1 and

Algorithm 2. For each x, SM [x].BIT is initialized to 0, while SM [x].RM is initial-

ized to 〈start,⊥〉. We assume that the previous algorithms are appropriately updated

so that they do not modify the bits SM [x].BIT .

Not to overload the presentation, the following notation shortcuts are used in Algo-

rithm 3.

– The read of SM i[x] at lines 3 and 4 concerns the field SM i[x].RM .

– The write of SM i[x] at lines 2 and 4 writes 0 in its leftmost bit (which actually is

not modified).

– The statement “BIT i[x]← 1” at line 6, means that only the leftmost bit of SM i[x]
is modified. As this statement is issued by the leader process only, this process can

first read SM i[x], prefix it by 1, and rewrite this new value so that only the leftmost

bit SM i[x] is modified.

– The statement ”BIT i.scan()” stands for ”SM i.scan()” from which only the left-

most bits are extracted.

After they return from de-anonymize(), the processes execute the same synchro-

nization pattern as lines 14-17 of Algorithm 1 where the tag start is replaced by the

tag desa. As the reader can see, at this time the tag done is no longer present in a regis-

ter, so it can be re-used. Moreover, as the type “process identity” and the type “integer”

are different, any integer x is considered as a synonym of ⊥ when looking at a pair

〈desa, x〉 (which now is a synonym of 〈start, x〉).
It follows that we have then the property P1’: there is a time at which exactly one

register contains 〈start, z〉 where z is an integer and, for each j ∈ {1, · · · , n}, α
registers contain 〈start, idj〉. Here, the important point is that the process previously

Anonymous read/write memory: Election and De-anonymization 11

operation SM i.scan() returns ([SMi[1], · · · , SMi[m]]).

operation efficient_de-anonymize(idi) is

(01) de-anonymize(idi);
% As all reg. are tagged desa when the first process returns from de-anonymize()
% the tags start and done disappeared from the system and can be re-used

(02) execute lines 1-10 of Algorithm 1 where start is replaced by desa;

% in the following, ℓi has the value obtained in de-anonymize(idi)
(03) SM i[ℓi]← 〈done, idi〉;
(04) wait until

(

(SM i[ℓi] 6= 〈done, idi〉)
∨ (SM i[1..m] has exactly α+ 1 entries not tagged done)

)

;

(05) for each x such that SM i[x] = 〈desa, idi〉 do SM i[x]← 〈done, idi〉 end for;

% Property P1’: There is a time at which exactly one register contains 〈start, z〉

% where z is an integer and for each j ∈ {1, · · · , n}, α registers contain 〈start, idj〉
(06) if (leaderi = idi)

% Here the leader knows that every process pj knows its mapping function mapj()
(07) then for each x ∈ {1, · · · ,m} do BIT i[x]← 1 end for

(08) else repeat biti ← BIT i.scan() until (∀ x : biti[x] = 1) end repeat

(09) end if.

Algorithm 3: Reduction to a single bit of control information per register (code for pi)

elected as a leader knows that any process pj knows its mapping function mapj(). So,

it can inform of it the other processes. This is done at lines 6-9 of Algorithm 3. As soon

as a process pj sees the leftmost bit of all the registers equal to 1, it knows that each

process knows its mapping function, and pj can consequently start writing application-

related values in the other bits of the registers.

The lines 2-9 of Algorithm 3 and the code of Algorithm 1 are nearly the same. More

precisely, they differ in the fact that Algorithm 1 elects a leader at lines 13-14, while

Algorithm 3 uses at line 3 the leader that has been previously been elected. It follows

that the proof of Algorithm 3 is very close to the proof of Algorithm 1, and is left to the

reader.

5 Memory Anonymous Leader Election when m = α n+(n−1)

Leader election. Algorithm 1, which solves the election problem for a system of m =
α n + 1 anonymous registers, is based on the fact that each process can write its

identity in α registers that –after some finite time– will not be overwritten, and when

this occurred, the single remaining not yet written anonymous register is used to elect

the leader (which will be the last process that writes its identity in this register well-

identified by each process).

The principle that underlies the election when there are m = α n+ (n− 1) anony-

mous registers is dual in the sense that each of the n processes can write its identity in

α+ 1 anonymous registers, except one which can write its identity in only α registers.

When this occurs, the corresponding process becomes elected.

12 E.Godard, D. Imbs, M. Raynal, and G. Taubenfeld

init: each SM [x] is initialized to 〈start,⊥〉. 〈START, ⊥〉; m = (α+ 1)n− 1.

operation election(idi) is % code for process pi, i ∈ {1, · · · , n}
(01) towritei ← {1, ..., α+ 1}; overwritteni ← ∅; writteni ← ∅; last i ← α+ 1;

(02) repeat

(03) for each x ∈ towritei do SM i[x]← 〈start, idi〉 end do;

(04) writteni ← (writteni \ overwritteni) ∪ towritei;

(05) wait until
(

(∃ x ∈ writteni : SM i[x] 6= 〈start, idi〉)
∨ (|{ℓ such that SM i[ℓ] 6= 〈start,⊥〉}| = m)

)

;

(06) if
(

|{ℓ such that SM i[ℓ] 6= 〈start,⊥〉}| = m
)

(07) then exit repeat loop

(08) else overwritteni ← { x ∈ writteni such that SM i[x] 6= 〈start, idi〉};
(09) nbi ← |overwritteni|;
(10) towritei ← {last i + 1, ...,min(last i + nbi,m)};
(11) last i ← min(last i + nbi,m)
(12) end if

(13) end repeat;

% Property P1”: There is a time at which α reg. contain the same pair 〈start, idℓ〉,

% and for each j ∈ {1, · · · , n} \ {ℓ}, α+ 1 registers contain 〈start, idj〉
(14) leaderi ← id where id

(15) is such that α registers exactly contain the same pair 〈start, id〉.

Algorithm 4: n-process election for m = α n+ (n− 1) anonymous registers

Algorithm. The operational view of this idea is captured by Algorithm 4, obtained from

a simple adaptation of Algorithm 1 to the fact that the leader is selected from a memory

occupation criterion (instead of a competition on a single read/write register, where

the last writer is the winner). The main difference lies in the management of the local

variables towritei, overwritteni, writteni, last i, and nbi. Property P1” captures the

result of the algorithm, namely, there is a time at which α registers contain the same

pair 〈start, idℓ〉, and for each j ∈ {1, · · · , n}\{ℓ}, α+1 registers contain 〈start, idj〉.
Its proof is a simple adaptation of the proof of Algorithm 1.

6 Election and De-anonymization for m = α n + β, β ∈ M(n)

This section considers the case where an underlying mutex algorithm, suited to an

anonymous memory, is used to elect a leader.

Mutual exclusion in an anonymous system. Mutual exclusion in memory anonymous

systems was introduced in [15], which presents a symmetric deadlock-free mutex algo-

rithm for two processes only, and a theorem stating that there no symmetric deadlock-

free mutual exclusion algorithm if the size m does not belong to the set M(n) =
{m such that ∀ ℓ : 1 < ℓ ≤ n: gcd(ℓ,m) = 1}\{1}. Recently, a symmetric deadlock-

free mutual exclusion algorithm has been proposed, which works any numbernof pro-

cesses and for any value m ∈ M(n) [2], from which follows that m ∈ M(n) is a

necessary and sufficient condition for anonymous mutual exclusion.

Anonymous read/write memory: Election and De-anonymization 13

Leader election in a system of m = α n + β anonymous registers. The idea is to rely

on the underlying mutex algorithm to elect a leader. But, to this end, the processes have

first to isolate a set of β anonymous registers in order to be thereafter able to use a

symmetric deadlock-free mutex algorithm accessing this subset of registers.

init: each SM [x] is initialized to 〈start,⊥〉. 〈START, ⊥〉; m = α n+ β, β ∈M(n).

operation election(idi) is % code for process pi, i ∈ {1, · · · , n}
(01) towritei ← {1, ..., α}; overwritteni ← ∅; writteni ← ∅; last i ← α;

(02) repeat

(03) for each x ∈ towritei do SM i[x]← 〈start, idi〉 end do;

(04) writteni ← (writteni \ overwritteni) ∪ towritei;

(05) wait until
(

(∃ x ∈ writteni : SM i[x] 6= 〈start, idi〉)
∨ (|{ℓ such that SM i[ℓ] = 〈start,⊥〉}| = β)

)

;

(06) if
(

|{ℓ such that SM i[ℓ] = 〈start,⊥〉}| = β
)

(07) then exit repeat loop

(08) else overwritteni ← { x ∈ writteni such that SM i[x] 6= 〈start, idi〉};
(09) nbi ← |overwritteni|;
(10) towritei ← {last i + 1, ..., last i + nbi}; last i ← last i + nbi
(11) end if

(12) end repeat;

% Property P1”’: There is a time at which β registers contain the pair 〈start,⊥〉,

% and for each j ∈ {1, · · · , n}, α registers contain 〈start, idj〉
(13) let SMβi[1..β] be the sub-array of the β registers

that do not contain 〈start, id〉, for any process identity id;

(14) Now, using the previous sub-array (locally knows as SMβi[1..β] by pi) the processes

processes execute a symmetric deadlock-free mutex algorithm at the end of which the

last process to enter the critical section is elected. While it is in the critical section,

the elected process pℓ write 〈leader, idℓ〉 in all the registers of SMβℓ[1..β],
which allows the other processes to know which is the leader.

Algorithm 5: Election in a system of m = α n+ β, β ∈M(n) anonymous reg.

Algorithm 5 realizes this at lines 1-12, which are a simple adaptation of the same

line numbers in Algorithm 1 and Algorithm 4. When the processes exit the repeat loop

(line 12), we have property P1”’, namely, there is a time at which β registers contain the

pair 〈start,⊥〉 and, for each j ∈ {1, · · · , n}, α registers contain 〈start, idj〉. Hence,

the set of β registers define a common anonymous memory on top of which the n

processes can execute a symmetric deadlock-free mutex algorithm. As β ∈M(n), such

mutex algorithms do exist (e.g., [2]). Moreover, as the mutex algorithm is deadlock-free

and each process invokes it once, each process eventually enters the critical. It is shown

in [7] how a symmetric deadlock-free mutual exclusion algorithm can be used to allow

a process to know it is the last that entered the critical section. Finally, the last process

to enter is the elected process.

We point out that a memory de-anonymization algorithm is described in [7]. How-

ever, as it is based on an underlying mutual exclusion algorithm, it is a specific algorithm

14 E.Godard, D. Imbs, M. Raynal, and G. Taubenfeld

that works only for m ∈ M(n), which is not the general case addressed here, namely

m = α n+ β.

Memory de-anonymization in a system of m = α n + β anonymous registers. The

previous algorithm can be modified in order to solve de-anomymization. When the

last process is inside the critical section, it can impose its mapping function to all the

processes by executing lines 4-5 of Algorithm 2, while all the other processes execute

lines 5-6 of this algorithm.

7 Conclusion

This article is on synchronization problems in an n-process system in which the com-

munication is through m anonymous read/write registers only. In such a system there is

no a priori agreement on the names of the registers: the same register name A used by

several processes can head them to different registers. In such a context, the article ad-

dressed the following problems: leader election and memory de-anonymization. It was

first shown that these problems are impossible to solve if m = α n, where α is a positive

integer. Then, considering m = α n+β, it has presented election algorithms for β = 1,

β = n− 1, and β ∈ M(n) where M(n) is the set of the memory anonymous sizes for

which symmetric deadlock-free mutual exclusion can be solved in n-process systems.

De-Anonymization algorithms have also been presented, each based on an underlying

election algorithm.

As stated in [15], the memory-anonymous communication model “enables us to

better understand the intrinsic limits for coordinating the actions of asynchronous pro-

cesses”. It consequently enriches our knowledge of what can be (or cannot be) done

when an adversary replaced a common addressing function, by individual and inde-

pendent addressing functions, one per process. Additional results regarding the compu-

tational power of anonymous and non-anonymous objects can be found in [16]. On a

more practical side, it appears that the concept of an anonymous memory allows us to

model epigenetic cell modifications [12].

On the open problems side, it seems that finding a characterization of all the values

of m (the size of the read/write anonymous memory) for which leader election (and

de-anonymization) can be solved in an n-process system is particularly important as

soon as we want to understand the power and the limits of n-process memory anony-

mous systems. Finally, since we assume a model where participation is required, in the

case where the mutex algorithm from [2] (which also works when participation is not

required) is used, it might be possible to replace the algorithm from [2] with a simpler

algorithm. In such a case we might not need to assume that β ∈ M(n), but something

weaker.

Acknowledgments

This work was partially supported by the French ANR project DESCARTES (16-CE40-

0023-03) devoted to layered and modular structures in distributed computing. The au-

thors want to thank the referees for their constructive comments.

Anonymous read/write memory: Election and De-anonymization 15

References

1. Angluin D., Local and global properties in networks of processes. Proc. 12th Symposium on

Theory of Computing (STOC’80), ACM Press, pp. 82-93, (1980)

2. Aghazadeh Z., Imbs D., Raynal M., Taubenfeld G., and Woelfel Ph., Optimal memory-

anonymous symmetric deadlock-free mutual exclusion. Proc. 38th ACM Symposium on Prin-

ciples of Distributed Computing (PODC’19), ACM Press, 10 pages (2019)

3. Attiya H., Gorbach A., and Moran S., Computing in totally anonymous asynchronous shared-

memory systems. Information and Computation, 173(2):162-183 (2002)

4. Bonnet F. and Raynal M., Anonymous asynchronous systems: the case of failure detectors.

Distributed Computing, 26(3):141-158 (2013)

5. Bouzid Z., Raynal M., and Sutra P., Anonymous obstruction-free (n, k)-set agreement with

(n− k + 1) atomic read/write registers. Distributed Computing, 31(2):99-117 (2018)

6. Garg V. K. and Ghosh J., Symmetry in spite of hierarchy. Proc. 10th Int’l Conference on

Distributed Computing Systems (ICDCS’90), IEEE Computer Press, pp. 4-11 (1990)

7. Godard E., Imbs D., Raynal M., Taubenfeld G., Mutex-based de-anonymization of an anony-

mous read/write memory. Proc. 7th Int’l Conference on Networked Systems (NETYS’18), To

appear, Springer LNCS, 15 pages (2019)

8. Guerraoui R. and Ruppert E., Anonymous and fault-tolerant shared-memory computations.

Distributed Computing, 20:165-177 (2007)

9. Johnson R. E., and Schneider F. B., Symmetry and similarity in distributed systems. Proc.4th

ACM Symposium on Principles of Distributed Computing (PODC’85), pp. 13-22, ACM Press

(1985)

10. Raynal M., Concurrent programming: algorithms, principles and foundations. Springer, 515

pages, ISBN 978-3-642-32026-2 (2013)

11. Raynal M. and Cao J., Anonymity in distributed read/write systems: an introductory sur-

vey. Proc. 6th Int’l Conference on Networked Systems (NETYS’18), Springer LNCS 11028,

pp. 122-140 (2018)

12. Rashid S., Taubenfeld G., and Bar-Joseph Z., Genome wide epigenetic modifications as a

shared memory consensus. 6th Workshop on Biological Distributed Algorithms (BDA’18),

London (2018)

13. Styer E., and Peterson G. L. Tight bounds for shared memory symmetric mutual exclusion

problems. In Proc. 8th ACM Symposium on Principles of Distributed Computing, ACM

Press, pp. 177-191 (1989)

14. Taubenfeld G., Synchronization algorithms and concurrent programming. Pearson Educa-

tion/Prentice Hall, 423 pages, ISBN 0-131-97259-6 (2006)

15. Taubenfeld G., Coordination without prior agreement. Proc. 36th ACM Symposium on Prin-

ciples of Distributed Computing (PODC’17), ACM Press, pp. 325-334 (2017)

16. Taubenfeld G. Set agreement power is not a precise characterization for oblivious determin-

istic anonymous objects Proc. 26th International Colloquium on Structural Information and

Communication Complexity (SIROCCO’19), Springer LNCS, 15 pages (2019)

17. Yamashita M. and Kameda T., Computing on anonymous networks: Part I -characterizing

the solvable cases. IEEE Transactions on Parallel Distributed Systems, 7(1):69-89 (1996)

