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Anonymity has mostly been studied in the context where processes have no identity. A new notion of anonymity was recently introduced at PODC 2017, namely, this notion considers that the processes have distinct identities but disagree on the names of the read/write registers that define the shared memory. As an example, a register named A by a process p and a shared register named B by another process q may correspond to the very same register X, while the same name C may correspond to different registers for p and q. Recently, a memory-anonymous deadlock-free mutual exclusion algorithm has been proposed by some of the authors. This article addresses two different problems, namely election and memory de-anonymization. Election consists of electing a single process as a leader that is known by every process. Considering the shared memory as an array of atomic read/write registers SM [1..m], memory de-anonymization consists in providing each process pi with a mapping function map i () such that, for any two processes pi and pj and any integer x ∈ [1..m], map i (x) and map j (x) allow them to address the same register. Let n be the number of processes and α a positive integer. The article presents election and de-anonymization algorithms for m = α n + β registers, where β is equal to 1, n -1, or belongs to a set denoted M (n) (which characterizes the values for which mutual exclusion can be solved despite anonymity). The de-anonymization algorithms are based on the use of election algorithms. The article also shows that the size of the permanent control information that, due to de-anonymization, a register must save forever, can be reduced to a single bit.

Let us consider a shared memory SM made up of m atomic read/write registers. Such a memory can be seen as an array with m entries, namely SM [1..m]. In a nonanonymous memory system, for each index x, the name SM [x] denotes the same register whatever the process that invokes the address SM [x]. As stated in [START_REF] Taubenfeld | Coordination without prior agreement[END_REF], in the classical system model, there is an a priori agreement on the names of the shared registers. This a priori agreement facilitates the implementation of the coordination rules the processes have to follow to progress without violating the safety (consistency) properties associated with the application they solve [START_REF] Raynal | Concurrent programming: algorithms, principles and foundations[END_REF][START_REF] Taubenfeld | Synchronization algorithms and concurrent programming[END_REF].

This a priori agreement does no longer exist in a memory-anonymous system. In such a system the very same identifier SM [x] invoked by a process p i and invoked by a different process p j does not necessarily refer to the same atomic read/write register. More precisely, a memory-anonymous system is such that:

prior the execution, an adversary defined, for each process p i , a permutation f i () over the set {1, 2, • • • , m}, such that when p i uses the address SM [x], it actually accesses SM [f i (x)], and no process knows the permutations.

The read/write registers of a memory-anonymous system are necessarily MWMR.

Results on memory anonymity in mutual exclusion. The work described in [START_REF] Taubenfeld | Coordination without prior agreement[END_REF] on anonymous read/write memory addressed mutual exclusion, consensus, election and renaming, problems for which it presented algorithms and impossibility results. The consensus, election and renaming algorithms in [START_REF] Taubenfeld | Coordination without prior agreement[END_REF] satisfy the starvation-freedom progress condition, namely, if a process executes alone during a long enough period, it eventually decides. This progress condition is different from the one considered in this article.

Among the results from [START_REF] Taubenfeld | Coordination without prior agreement[END_REF], one states a condition on the size m of the anonymous memory which is necessary for any symmetric deadlock-free algorithm, where symmetric means that process identities can only be compared with equality (hence, there is no notion of a total order on process identities). More precisely, given an n-process system where n ≥ 2, there is no deadlock-free mutual exclusion algorithm if the size m does not belong to the set M (n) = { m such that ∀ ℓ : 1 < ℓ ≤ n: gcd(ℓ, m) = 1} \ {1}.

Recently, it has been shown in [START_REF] Aghazadeh | Optimal memoryanonymous symmetric deadlock-free mutual exclusion[END_REF] that the condition m ∈ M (n) is also a sufficient condition for symmetric deadlock-free mutual exclusion in read/write anonymous memory systems.

Computing Model

Processes. The system is composed of a finite set of n ≥ 2 asynchronous processes denoted p 1 , .., p n . The subscript i in p i is only a notation convenience, which is not known by the processes. Asynchronous means that each process proceeds to its own speed, which can vary with time and remains always unknown to the other processes. Initially, each process p i knows only its identity id i , the total number of processes n, and the fact that no two processes have the same identity. It is assumed that there are no process failures. Furthermore, unlike the mutual exclusion model where a process may never leave its remainder region, it is assumed that all the processes must participate in the algorithm.

Anonymous shared memory. The shared memory is made up of m atomic anonymous read/write registers denoted SM [1...m]. As a system composed of a single atomic register is not anonymous, it is assumed that m > 1. Hence, all registers are anonymous. As already indicated, when a process p i invokes the address SM [x], it actually accesses SM [f i (x)], where f i () is a permutation statically defined once and for all by an external adversary. We will use the notation SM i [x] to denote SM [f i (x)], to stress the fact that no process knows the permutations. It is assumed that all the registers are initialized to the same value. Otherwise, thanks to their different initial values, it would have been possible to distinguish different registers, which consequently will no longer be fully anonymous.

Symmetry constraint on the algorithms. A symmetric algorithm is an "algorithm in which the processes are executing exactly the same code and the only way for distinguishing processes is by comparing identifiers. Identifiers can be written, read, and compared, but there is no way of looking inside an identifier. Thus it is not possible to know whether an identifier is odd or even" [START_REF] Taubenfeld | Coordination without prior agreement[END_REF]. Furthermore, the only comparison that can be applied to identifiers is equality. There is no order structuring the identifier name space. (Other notions of symmetry are described in [START_REF] Garg | Symmetry in spite of hierarchy[END_REF][START_REF] Johnson | Symmetry and similarity in distributed systems[END_REF]). Let us notice that as all the processes have the same code and all the registers are initialized to the same value, process identities become a key element when one has to design an algorithm in such a constrained context.

Problems Addressed in this Article

Leader election. In this problem, the input of each process p i is its identity id i . Its output will be deposited in a write-once local variable leader i . The aim is to design an algorithm that provides the local variable leader i of each process p i with the same process identity. The only process such that leader i = id i is the elected process.

Anonymous memory de-anonymization. In this problem, as before, the input of each process p i is its identity id i . The aim is for each process p i to compute an addressing function map i (), which is a permutation over the set of the memory indexes {1, • • • , m}, such that the two following properties are satisfied.

-Safety. Let y ∈ {1, • • • , m}. For any process p i :

SM i [map i (y)] = SM [y].
-Liveness. There is a finite time after which all the processes have computed their addressing function map i ().

The safety property states that once a process p i has computed map i (), its local anonymous memory address SM i [x], where x = map i (y), denotes the shared register SM [y].

Content

This article presents first an impossibility result. Then, it presents symmetric algorithms solving the two previous problems in a system where the process cooperate through m atomic anonymous read/write registers. As already indicated, it is assumed that all the processes participate in the algorithms, and the size of the memory is m = α n + β, where α is a positive integer and β can take the following values:

β = 1. The size of the anonymous memory is then m = α n + 1.

β = n -1. The size of the anonymous memory is then m = α n + (n -1).

β ∈ M (n) where M (n) is as defined above. Namely, M (n) is the set of values for which deadlock-free mutual exclusion can be solved [START_REF] Aghazadeh | Optimal memoryanonymous symmetric deadlock-free mutual exclusion[END_REF][START_REF] Taubenfeld | Coordination without prior agreement[END_REF]. This is due to the fact that when β ∈ M (n), the algorithms use a deadlock-free mutual exclusion algorithm to solve conflicts -which do not exist when β = 1 or β = n -1). In this specific case, α can also be 0.

Find a characterization of the set of the values of m for which leader election can be solved in a memory anonymous system remains an open problem (see the Conclusion section).

An Impossibility Result

Theorem 1. There is neither a de-anonymizing algorithm nor an election algorithm for n processes using m anonymous registers, where m = α n and α is a positive integer.

Proof First, we observe that once de-anonymizing is solved using m = α n registers, it is straightforward to solve election using m = α n registers. First, run the de-anonymizing algorithm to get m = α n non-anonymous registers. Then, using these registers, simply run the symmetric mutual exclusion algorithm from [START_REF] Styer | Tight bounds for shared memory symmetric mutual exclusion problems[END_REF] which uses exactly n registers, and let the first process to enter its critical section be the leader. Thus, to prove the theorem, we only need to prove that it is impossible to solve election using m = αn registers. Assume to the contrary, that there is a symmetric election algorithm for n processes using m = α n registers where α is a positive integer. Let us arrange the m registers on a ring with m nodes where each register is placed on a different node. Let us call the n processes p 0 , ..., p n-1 . To each one of the n processes, we assign an initial register (namely, the first register that the process accesses) such that for every two processes p i and p i+1 (mod n) , the distance between their initial registers is exactly α when walking on the ring in a clockwise direction. Here we use the assumption that m = α n.

The lack of global names allows us to assign for each process an initial register and an ordering which determines how the process scans the registers. An execution in which the n processes are running in lock steps, is an execution where we let each process take one step (in the order p 0 , ..., p n-1 ), and then let each process take another step, and so on. For process p i and integer k, let order(p i , k) denote the k th new register that p i accesses during an execution where the n processes are running in lock steps, and assume that we arrange that order(p i , k) is the register whose distance from p i 's initial register is exactly (k -1), when walking on the ring in a clockwise direction.

We notice that order(p i , 1) is p i 's initial register, order(p i , 2) is the next new register that p i accesses and so on. That is, p i does not access order(p i , k + 1) before accessing order(p i , k) at least once, but for every j ≤ k, p i may access order(p i , j) several times before accessing order(p i , k + 1) for the first time. 1With this arrangement of registers, we run the n processes in lock steps. Since only comparisons for equality are allowed, and all registers are initialized to the same value -which (to preserve anonymity) is not a process identity-processes that take the same number of steps will be at the same state, and thus it is not possible to break symmetry. It follows that either all the processes will be elected, or no process will be elected. A contradiction.

✷ T heorem 1

3 Memory Anonymous Leader Election when m = α n + 1

Algorithm

Local variables. In addition to leader i , each process p i manages the following local variables: towrite i , overwritten i , written i , which contain sets of memory indexes, last i which is a memory index, and nb i which is a non-negative integer. The meaning of these variables will appear clearly in the text of Algorithm 1.

First part of the algorithm: lines 1-12. Each anonymous register SM [x] is initialized to start, ⊥ , where ⊥ is default value, which can be compared (with equality) with any process identity. When it invokes election(id i ), a process p i first writes the pair start, id i in the first (from its point of view) α registers, namely, SM i [1], ...,SM i [α] (line 3). Then, it waits until all the registers (except one) are tagged start, or a register in which it wrote start, id i has been overwritten. There are consequently two cases.

-If registers in which p i wrote start, id i have been overwritten (the first part of the predicate of line 5 is then satisfied), p i updates its local variables overwritten i , nb i , towrite i and last i , and re-enters the repeat loop, the goal being to have α registers containing start, id i . -If all the registers except one (i.e., exactly m-1 = α n registers) are tagged start, p i exits the loop.

As we will see in the proof, it follows from this collective behavior of the processes that there is time at which exactly one register still contains its initial value start, ⊥ , while for each j ∈ {1, • • • , n}, exactly α registers contain start, id j (this property is named P1 in the algorithm).

Second part of the algorithm: lines 13-18. As just seen, the previous part of the algorithm has identified a single register of the anonymous memory, namely the only one containing start, ⊥ . This register is known by all the processes, more precisely, it is known as

SM i [ℓ i ] by p i , SM j [ℓ j ] by p j , etc.
So, to become the leader, each process p i writes the pair leader, id i in this register (known as SM i [ℓ i ] by p i , line 14). It follows that the last process that will write this register will be the leader. There are then two cases.

-If p i discovers it has not been elected (we have then SM i [ℓ i ] = leader, id i , first predicate of line 15), it resets all the registers containing its tagged identity ( start, id i ) to the value done, id i (line 16). Then, p i waits until all registers except one are tagged done, -. 

init: each SM [x] is initialized to start, ⊥ ; m = α n + 1. operation election(idi) is % code for process pi, i ∈ {1, • • • , n} (01) towritei ← {1, ..., α}; overwritteni ← ∅; writteni ← ∅; lasti ← α; (02) repeat (03) for each x ∈ towritei do SM i[x] ← start, idi end do; (04) writteni ← (writteni \ overwritteni) ∪ towritei; (05) wait until (∃ x ∈ writteni : SM i[x] = start, idi ) ∨ (|{ℓ such that SM i[ℓ] = start, ⊥ }| = α n) ; (06) if |{ℓ such that SM i[ℓ] = start, ⊥ }| = α n (07) then exit repeat loop (08) else overwritteni ← { x ∈ writteni such that SM i[x] = start,
i[ℓi] = start, ⊥ or SM i[ℓi] = leader, -; (14) SM i[ℓi] ← leader, idi ; (15) wait until (SM i[ℓi] = leader, idi ) ∨ (SM i[1.
.m] has exactly α + 1 entries not tagged done) ; [START_REF] Taubenfeld | Set agreement power is not a precise characterization for oblivious deterministic anonymous objects[END_REF] % Here, one register is tagged leader, all the others are tagged done.

for each x such that SM i[x] = start, idi do SM i[x] ← done, idi
Algorithm 1: n-process election with m = α n + 1 anonymous read/write registers -If p i is the last process to write in the single register locally known as SM i [ℓ i ], it waits until all the other processes have written done,in the registers containing their identity (second part of the predicate of line 15). When this is done, the elected process p i writes done, id i in all the registers containing its identity (line 16), which allows each other process not to remain blocked at line 17 and progress to the last line of the algorithm. When this occurs, each process can assign the identity of the leader to its local variable leader i (line 18).

As before, we will see in the proof, that there is a time from which there is exactly one index ℓ ∈ {1, • • • , n} such that a register contains leader, id ℓ , and, for each j ∈ {1, • • • , n}, there are α registers containing done, id j (This property is named P2 in the algorithm).

Proof of Algorithm 1

Lemma 1. (Property P1) Before a process executes line 14, there is a finite time at which one register contains start, ⊥ , and, for each j ∈ {1, • • • , n}, α registers contain start, id j .

Proof Considering time instants before a process executes line 14, we have the following.

-Let us first observe that the order on the entries of SM [1..m] in which p i writes them has been statically predefined by the adversary (namely, according to theunknown-permutation f i (): -It follows from m = α n + 1 and the previous inequality, that there is enough room in the array SM [1.

SM i [x] is actually SM [f i (x)]).
.m] for each process p i to write n times the pair start, id i . Consequently, there is time after which the first predicate of line 5 is false for each process p i , and as m = nα + 1, the remaining entry of SM [1.

.m] has still its initial value, namely start, ⊥ , from which we conclude that a process neither remains forever blocked at line 4, nor forever executes the "repeat" loop (lines 2-12).

It follows from the previous observations that before a process executes line 14, there is a time at which, for each identity id i , the pair start, id i is present in α entries of SM [1..m], and an entry of SM [1.

.m] has still its initial value, which concludes the proof of the lemma.

✷ Lemma 1
The number of write accesses between line 3 and line 12. When considering the proof of Lemma 1, it is easy to count the number of writes in the anonymous memory. In the best case, the (unknown) permutations assigned by the adversary to the processes are such that no process overwrites the pairs written by the other processes. In this case, line 2 generates α n writes into the shared memory.

In the worst case, the permutations assigned by the adversary, and the asynchrony among the processes are such that the first α writes of a process are overwritten (n -1) times, the first α writes of another process are overwritten (n-2) times, etc., until a last process whose none of its first α writes are overwritten. In this case, line 2 generates α n(n+1) 2 writes into the anonymous shared memory.

Lemma 2. (Property P2)

There is a finite time from which there is ℓ ∈ {1, • • • , n} such that exactly one register contains leader, id ℓ , and, for each j ∈ {1, • • • , n}, there are α registers containing done, id j .

Proof It follows from Lemma 1 that no process blocks or loops forever in the "repeat" loop (lines 2-12). Hence, each process eventually executes lines 13-14. Let p ℓ the last process that executes line 14. This means that after it executed this line, we have SM i [ℓ i ] = leader, id ℓ for any process p i (namely, p ℓ is the process that has been elected). There are two cases.

-A process p i that is not the leader, is such that SM i [ℓ i ] = leader, id i . Consequently, it cannot be blocked at line 15. So, such a process p i eventually writes done, id i in the α registers containing start, id i (line 16). Let us recall that, due to Property P 1, these exactly α registers do exist. When the (n -1) processes that are not leader have executed line 16, there are α(n -1) registers containing done, -, α registers containing start, id ℓ , and one register containing leader, id ℓ . -As far as the leader process p ℓ is concerned, we have the following. Due to the previous item, the second predicate of line 15 is eventually satisfied. When this occurs, p ℓ writes done, id ℓ in the α registers containing start, id ℓ (line 16) and, from then on, a single register is not tagged done, -, namely the one containing leader, id ℓ .

The lemma follows directly from the two previous items. ✷ Lemma 2

Theorem 2. Algorithm 1 solves the election problem.

Proof Once Property P2 is satisfied, no non-leader process is blocked at line 17, and each process eventually execute line 18. When this occurs, they all agree on the very same leader, namely the only process p ℓ whose identity is tagged leader. ✷ T heorem 2

4 From Leader Election to De-anonymization when m = α n + 1

A Simple Leader-based De-anonymization Algorithm

As soon as a process has been elected, it is easy to de-anonymize the anonymous memory. To this end, the elected process p ℓ imposes its mapping function to all the processes. Algorithm 2 is such a de-anonymization algorithm, which relies on Property P2. Each process p i invokes the operation election(id i ) (line 1). Then for each register SM ℓ [x], the elected process p ℓ writes the pair desa, x in SM ℓ [x] (line 3). Hence, its mapping function is ∀ x ∈ {1, • • • , m}: map i (x) = x. On the other side, any nonleader process p i waits until all the registers are tagged desa (line 4). When this occurs, p i computes its own mapping function (line 5), which is such that map i (y) = x, where SM i [x] = desa, y . The proof of this algorithm is easy and left to the reader.

As a simple example see Fig. 1, where p ℓ has been elected as leader, and f ℓ () is the permutation defined by the adversary for p ℓ (this permutation remains always unknown

operation SM i.scan() returns ([SMi[1], • • • , SMi[m]]).
operation de-anonymize(idi) is (01) election(idi); % in the following ℓi has the value computed in election(idi); moreover, if pi is the % first process that exits from election(idi): % one register is tagged leader, all the others are tagged done

(02) if (SM i[ℓi] = leader, idi ) % this predicate is equivalent to leaderi = idi (03) then for each x ∈ {1, • • • , m} do SM i[x] ← desa, x end for % the permutation for pi is: ∀ y ∈ {1, • • • , m}: map i (y) = y % (04) else repeat smi ← SM i.scan() until (∀ x : smi[x] is tagged desa) end repeat; (05) for each x ∈ {1, • • • , m} do map i (y) ← x where smi[x] = desa, y end for % perm. of pi is: ∀ y ∈ {1, • • • , m}: map i (y) = x, where smi[x] = desa, y end if. % Here, each register SM i[x] is tagged desa.
Algorithm 2: Election-based de-anonymization (code for p i , m = α n + 1) to the processes). SM i [x] = desa, y , and SM j [z] = desa, y address the same register, which is SM ℓ [y]. Hence, this register is locally known as SM i [map i (y)] by p i , SM j [map j (y)] by p j , and SM ℓ [map ℓ (y)] = SM ℓ [y] by p ℓ .

Using the De-anonymized Memory

When a process p i returns from Algorithm 2, it knows that all the processes will share the same index for the same register (i.e., if

SM i [x] = desa, y , then SM i [map i (y)] is SM i [x]
). When this occurs, process p i could start executing its local algorithm defined by the upper layer application, but if it writes an application-related value in some of these registers, this value can overwrite a pair tagged desa stored in a register not yet read by other processes. A way to prevent this problem from occurring consists in tagging all the values written by a process at the application level by the tag apply, and include a field containing the common index y associated with this register. Hence, at the application level, a register will contain apply(y), v . In this way, despite asynchrony, any process p j will be able to compute its local mapping function map j (), and start its upper layer application part, as soon as it has computed map j ().

Let us notice that one bit is needed to distinguish the tag desa and the tag apply. Hence each of a pair desa, y and a pair apply(y),requires (1 + log 2 m) control bits.

Reducing the Size of the Permanent Control Information

Aim and additional assumption. This section shows that, at the price of an additional synchronization phase, the control information that each register must forever contain can be reduced from (1 + log 2 m) to a single bit.

To this end, we assume now that each atomic read/write register SM [x] is composed of two parts SM 

f j (1) f j (2) f j (3) f j (6) f j (7) f j (8) f j (9) f j (4) f i (1) f i (7) f i (3) f i (2) f i (4) f i (5) f i (8) SM i [map i [y]]
Unknown adversary-defined permutation for p i

Physical registers

Unknown adversary-defined permutation for p j -The write of SM i [x] at lines 2 and 4 writes 0 in its leftmost bit (which actually is not modified). -The statement "BIT i [x] ← 1" at line 6, means that only the leftmost bit of SM i [x] is modified. As this statement is issued by the leader process only, this process can first read SM i [x], prefix it by 1, and rewrite this new value so that only the leftmost bit SM i [x] is modified. -The statement "BIT i .scan()" stands for "SM i .scan()" from which only the leftmost bits are extracted.

SM j [map j [y]] f j (5) f i (6) f i (9)
After they return from de-anonymize(), the processes execute the same synchronization pattern as lines 14-17 of Algorithm 1 where the tag start is replaced by the tag desa. As the reader can see, at this time the tag done is no longer present in a register, so it can be re-used. Moreover, as the type "process identity" and the type "integer" are different, any integer x is considered as a synonym of ⊥ when looking at a pair desa, x (which now is a synonym of start, x ).

It follows that we have then the property P1': there is a time at which exactly one register contains start, z where z is an integer and, for each j ∈ {1, • • • , n}, α registers contain start, id j . Here, the important point is that the process previously

operation SM i.scan() returns ([SMi[1], • • • , SMi[m]]).
operation efficient_de-anonymize(idi) is (01) de-anonymize(idi); % As all reg. are tagged desa when the first process returns from de-anonymize() % the tags start and done disappeared from the system and can be re-used (02) execute lines 1-10 of Algorithm 1 where start is replaced by desa; % in the following, ℓi has the value obtained in de-anonymize(idi) (03

) SM i[ℓi] ← done, idi ; (04) wait until (SM i[ℓi] = done, idi ) ∨ (SM i[1.
.m] has exactly α + 1 entries not tagged done) ; (05) for each x such that SM i[x] = desa, idi do SM i[x] ← done, idi end for;

% Property P1': There is a time at which exactly one register contains start, z % where z is an integer and for each j ∈ {1, • • • , n}, α registers contain start, idj (06) if (leaderi = idi) % Here the leader knows that every process pj knows its mapping function map j ()

(07) then for each x ∈ {1, • • • , m} do BIT i[x] ← 1 end for (08) repeat biti ← BIT i.scan() until (∀ x : biti[x] = 1) repeat (09) end if.
3: Reduction to a single bit of control information per register (code for p i ) elected as a leader knows that any process p j knows its mapping function map j (). So, it can inform of it the other processes. This is done at lines 6-9 of Algorithm 3. As soon as a process p j sees the leftmost bit of all the registers equal to 1, it knows that each process knows its mapping function, and p j can consequently start writing applicationrelated values in the other bits of the registers.

The lines 2-9 of Algorithm 3 and the code of Algorithm 1 are nearly the same. More precisely, they differ in the fact that Algorithm 1 elects a leader at lines 13-14, while Algorithm 3 uses at line 3 the leader that has been previously been elected. It follows that the proof of Algorithm 3 is very close to the proof of Algorithm 1, and is left to the reader.

5 Memory Anonymous Leader Election when m = α n + (n -1)

Leader election. Algorithm 1, which solves the election problem for a system of m = α n + 1 anonymous registers, is based on the fact that each process can write its identity in α registers that -after some finite time-will not be overwritten, and when this occurred, the single remaining not yet written anonymous register is used to elect the leader (which will be the last process that writes its identity in this register wellidentified by each process).

The principle that underlies the election when there are m = α n + (n -1) anonymous registers is dual in the sense that each of the n processes can write its identity in α + 1 anonymous registers, except one which can write its identity in only α registers. When this occurs, the corresponding process becomes elected. is such that α registers exactly contain the same pair start, id .

Algorithm 4: n-process election for m = α n + (n -1) anonymous registers

Algorithm. The operational view of this idea is captured by Algorithm 4, obtained from a simple adaptation of Algorithm 1 to the fact that the leader is selected from a memory occupation criterion (instead of a competition on a single read/write register, where the last writer is the winner). The main difference lies in the management of the local variables towrite i , overwritten i , written i , last i , and nb i . Property P1" captures the result of the algorithm, namely, there is a time at which α registers contain the same pair start, id ℓ , and for each j ∈ {1, • • • , n}\{ℓ}, α+1 registers contain start, id j . Its proof is a simple adaptation of the proof of Algorithm 1.

6 Election and De-anonymization for m = α n + β, β ∈ M (n)

This section considers the case where an underlying mutex algorithm, suited to an anonymous memory, is used to elect a leader.

Mutual exclusion in an anonymous system. Mutual exclusion in memory anonymous systems was introduced in [START_REF] Taubenfeld | Coordination without prior agreement[END_REF], which presents a symmetric deadlock-free mutex algorithm for two processes only, and a theorem stating that there no symmetric deadlockfree mutual exclusion algorithm if the size m does not belong to the set M

(n) = { m such that ∀ ℓ : 1 < ℓ ≤ n: gcd(ℓ, m) = 1}\{1}.
Recently, a symmetric deadlockfree mutual exclusion algorithm has been proposed, which works any numbernof processes and for any value m ∈ M (n) [START_REF] Aghazadeh | Optimal memoryanonymous symmetric deadlock-free mutual exclusion[END_REF], from which follows that m ∈ M (n) is a necessary and sufficient condition for anonymous mutual exclusion.

Leader election in a system of m = α n + β anonymous registers. The idea is to rely on the underlying mutex algorithm to elect a leader. But, to this end, the processes have first to isolate a set of β anonymous registers in order to be thereafter able to use a symmetric deadlock-free mutex algorithm accessing this subset of registers. 

init: each SM [x] is initialized to start, ⊥ . START, ⊥ ; m = α n + β, β ∈ M (n). operation election(idi) is % code for process pi, i ∈ {1, • • • , n} ( 
i[x] = start, idi ) ∨ (|{ℓ such that SM i[ℓ] = start, ⊥ }| = β) ; (06) if |{ℓ such that SM i[ℓ] = start, ⊥ }| = β (07) then exit repeat loop (08) else overwritteni ← { x ∈ writteni such that SM i[x] = start, idi }; (09) nbi ← |overwritteni|; (10) towritei ← {lasti + 1, ..., lasti + nbi}; lasti ← lasti + nbi (11)
end if (12) end repeat; % Property P1"': There is a time at which β registers contain the pair start, ⊥ , % and for each j ∈ {1, • • • , n}, α registers contain start, idj (13) let SM βi[1..β] the sub-array of the β registers that do not contain start, id for any process identity id; (14) Now, using the previous sub-array (locally knows as SM βi[1..β] by pi) the processes processes execute a symmetric deadlock-free mutex algorithm at the end of which the last process to enter the critical section is elected. While it is in the critical section, the elected process p ℓ write leader, id ℓ in all the registers of SM β ℓ [1..β], which allows the other processes to know which is the leader.

Algorithm 5: Election in a system of m = α n + β, β ∈ M (n) anonymous reg.

Algorithm 5 realizes this at lines 1-12, which are a simple adaptation of the same line numbers in Algorithm 1 and Algorithm 4. When the processes exit the repeat loop (line 12), we have property P1"', namely, there is a time at which β registers contain the pair start, ⊥ and, for each j ∈ {1, • • • , n}, α registers contain start, id j . Hence, the set of β registers define a common anonymous memory on top of which the n processes can execute a symmetric deadlock-free mutex algorithm. As β ∈ M (n), such mutex algorithms do exist (e.g., [START_REF] Aghazadeh | Optimal memoryanonymous symmetric deadlock-free mutual exclusion[END_REF]). Moreover, as the mutex algorithm is deadlock-free and each process invokes it once, each process eventually enters the critical. It is shown in [START_REF] Godard | Mutex-based de-anonymization of an anonymous read/write memory[END_REF] how a symmetric deadlock-free mutual exclusion algorithm can be used to allow a process to know it is the last that entered the critical section. Finally, the last process to enter is the elected process.

We point out that a memory de-anonymization algorithm is described in [START_REF] Godard | Mutex-based de-anonymization of an anonymous read/write memory[END_REF]. However, as it is based on an underlying mutual exclusion algorithm, it is a specific algorithm that works only for m ∈ M (n), which is not the general case addressed here, namely m = α n + β. Memory de-anonymization in a system of m = α n + β anonymous registers. The previous algorithm can be modified in order to solve de-anomymization. When the last process is inside the critical section, it can impose its mapping function to all the processes by executing lines 4-5 of Algorithm 2, while all the other processes execute lines 5-6 of this algorithm.

Conclusion

This article is on synchronization problems in an n-process system in which the communication is through m anonymous read/write registers only. In such a system there is no a priori agreement on the names of the registers: the same register name A used by several processes can head them to different registers. In such a context, the article addressed the following problems: leader election and memory de-anonymization. It was first shown that these problems are impossible to solve if m = α n, where α is a positive integer. Then, considering m = α n + β, it has presented election algorithms for β = 1, β = n -1, and β ∈ M (n) where M (n) is the set of the memory anonymous sizes for which symmetric deadlock-free mutual exclusion can be solved in n-process systems. De-Anonymization algorithms have also been presented, each based on an underlying election algorithm.

As stated in [START_REF] Taubenfeld | Coordination without prior agreement[END_REF], the memory-anonymous communication model "enables us to better understand the intrinsic limits for coordinating the actions of asynchronous processes". It consequently enriches our knowledge of what can be (or cannot be) done when an adversary replaced a common addressing function, by individual and independent addressing functions, one per process. Additional results regarding the computational power of anonymous and non-anonymous objects can be found in [START_REF] Taubenfeld | Set agreement power is not a precise characterization for oblivious deterministic anonymous objects[END_REF]. On a more practical side, it appears that the concept of an anonymous memory allows us to model epigenetic cell modifications [START_REF] Rashid | Genome wide epigenetic modifications as a shared memory consensus[END_REF].

On the open problems side, it seems that finding a characterization of all the values of m (the size of the read/write anonymous memory) for which leader election (and de-anonymization) can be solved in an n-process system is particularly important as soon as we want to understand the power and the limits of n-process memory anonymous systems. Finally, since we assume a model where participation is required, in the case where the mutex algorithm from [START_REF] Aghazadeh | Optimal memoryanonymous symmetric deadlock-free mutual exclusion[END_REF] (which also works when participation is not required) is used, it might be possible to replace the algorithm from [START_REF] Aghazadeh | Optimal memoryanonymous symmetric deadlock-free mutual exclusion[END_REF] with a simpler algorithm. In such a case we might not need to assume that β ∈ M (n), but something weaker.

  [x].BIT and SM [x].RM (i.e., SM [x] = SM [x].BIT , SM [x].RM ). SM [x].BIT is for example the leftmost bit of SM [x], and SM [x].RM the other bits.
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  The important point is that a process p i never backtracks while scanning SM [1..m], and its successive accesses are SM [f i (1)], SM [f i (2)], etc. -The first writes of a process p i involve the registers SM i [1], .., until SM i [α] (lines 1 and 3). Then, as indicated above, its next writes in SM follows a statically predefined order. The process p i issues a write of start, id i in a register it has not yet written, for each of its previous writes that have been overwritten by another process (line 4). These writes by p i concern entries of SM i [1..n] in which it has not yet written (management of the local variables towrite i , overwritten i , written i , and last

i , at lines 1, 4, and 8-10). As p i writes only in new registers, it follows that, for any p i we have |{x such that SM [x] = start, id i }| ≤ α, and from a global point of view we have n i=1 |{x such that SM [x] = start, id i }| ≤ nα.

  : each SM [x] is initialized to start, ⊥ . START, ⊥ ; m = (α + 1)n -1. There is a time at which α reg. contain the same pair start, id ℓ , % and for each j ∈ {1, • • • , n} \ {ℓ}, α + 1 registers contain start, idj (14) leaderi ← id where id[START_REF] Taubenfeld | Coordination without prior agreement[END_REF] 

	operation election(idi) is % code for process pi, i ∈ {1, • • • , n}
	(01) towritei ← {1, ..., α + 1}; overwritteni ← ∅; writteni ← ∅; lasti ← α + 1;
	(02) repeat
	(03)	for each x ∈ towritei do SM i[x] ← start, idi end do;
	(04)	writteni ← (writteni \ overwritteni) ∪ towritei;
	(05)	wait until (∃ x ∈ writteni : SM i[x] = start, idi )
		∨ (|{ℓ such SM i[ℓ] = start, }| = m) ;
	(06)	if |{ℓ such that SM i[ℓ] = start, ⊥ }| = m
	(07)	then exit repeat loop
	(08)	else overwritteni ← { x ∈ writteni such that SM i[x] = start, idi };
	(09)	nbi ← |overwritteni|;
	(10)	towritei ← {lasti + 1, ..., min(lasti + nbi, m)};
	(11)	lasti ← min(lasti + nbi, m)
	(12)	end if
	(13) end repeat;
		% Property P1":

init

  01) towritei ← {1, ..., α}; overwritteni ← ∅; writteni ← ∅; lasti ← α;

	(02) repeat
	(03)	for each x ∈ towritei do SM i[x] ← start, idi end do;
	(04)	writteni ← (writteni \ overwritteni) ∪ towritei;
	(05)	

wait until (∃ x ∈ writteni : SM

Once a process accesses a register for the first time, say register x, we may map x to any (physical) register that it hasn't accessed yet. However, when it accesses x again, it must access the same register it has accessed before when referring to x.
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