
HAL Id: hal-02445119
https://hal.science/hal-02445119v1

Submitted on 19 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mutex-Based De-anonymization of an Anonymous
Read/Write Memory

Emmanuel Godard, Damien Imbs, Michel Raynal, Gadi Taubenfeld

To cite this version:
Emmanuel Godard, Damien Imbs, Michel Raynal, Gadi Taubenfeld. Mutex-Based De-anonymization
of an Anonymous Read/Write Memory. NETYS 2019 - 7th International Conference on Networked
Systems, Jun 2019, Marrakech, Morocco. pp.311-326, �10.1007/978-3-030-31277-0_21�. �hal-02445119�

https://hal.science/hal-02445119v1
https://hal.archives-ouvertes.fr


Mutex-based De-anonymization of

an Anonymous Read/Write Memory

Emmanuel Godard†, Damien Imbs†, Michel Raynal⋆,‡, Gadi Taubenfeld◦

†LIS, Université d’Aix-Marseille, France
⋆Univ Rennes IRISA, France

‡Department of Computing, Polytechnic University, Hong Kong
◦The Interdisciplinary Center, Herzliya 46150, Israel

Abstract. Anonymous shared memory is a memory in which processes use dif-

ferent names for the same shared read/write register. As an example, a shared

register named A by a process p and a shared register named B by another pro-

cess q can correspond to the very same register X , and similarly for the names

B at p and A at q which can correspond to the same register Y 6= X . Hence,

there is a permanent disagreement on the register names among the processes.

This new notion of anonymity was recently introduced by G. Taubenfeld (PODC

2017), who presented several memory-anonymous algorithms and impossibility

results.

This paper introduces a new problem, that consists in “de-anonymizing” an anony-

mous shared memory. To this end, it presents an algorithm that, starting with a

shared memory made up of m anonymous read/write atomic registers (i.e., there

is no a priori agreement on their names), allows each process to compute a local

addressing mapping, such that all the processes agree on the names of each reg-

ister. The proposed construction is based on an underlying deadlock-free mutex

algorithm for n ≥ 2 processes (recently proposed in a paper co-authored by some

of the authors of this paper), and consequently inherits its necessary and sufficient

condition on the size m of the anonymous memory, namely m must belong to the

set M(n) = {m : such that ∀ ℓ : 1 < ℓ ≤ n : gcd(ℓ,m) = 1} \ {1}. This

algorithm, which is also symmetric in the sense process identities can only be

compared by equality, requires the participation of all the processes; hence it can

be part of the system initialization. Last but not least, the proposed algorithm has

a noteworthy first-class property, namely, its simplicity.

Keywords: Anonymity, Anonymous shared memory, Asynchronous system, Atomic

read/write register, Concurrent algorithm, Deadlock-freedom, Local memory, Map-

ping function, Mutual exclusion, Simplicity, Synchronization.

1 Introduction

Read/write registers. Read/write registers are the basic objects of sequential comput-

ing. From a theoretical point of view, they constitute the cells of a Turing machine tape,

and from a programming point of view, they are the memory locations on top of which

are built high-level objects such as stacks, queues, and trees (to cite a few of the most

common).



2 E.Godard, D. Imbs, M. Raynal, and G. Taubenfeld

In a concurrent programming context, a read/write register can be shared (accessed)

by several processes to coordinate their actions or progress to a common goal. The most

popular consistency condition for registers is atomicity, which states that all its read

and write operations appear as if they have been executed sequentially, this sequence S

being such that, if an operation op1 terminates before operation op2 starts, op1 appears

before op2 in S, and a read operation returns the value written by the closest preceding

write in S [13].

A register is said to be single-reader (SR) or multi-reader (MR) according to the

number of processes that are allowed to read it. Similarly, a register can be single-

writer (SW) or multi-writer (MW). A lot of algorithms have been proposed (e.g., see

the textbooks [19,22]), which build MWMR registers from SWSR or SWMR registers

in the presence of asynchrony and process crashes. In the other direction, an adaptive

construction of SWMR registers from MWMR registers is described in [7].

Anonymous memory. While the notion of process anonymity has been studied for

a long time from an algorithmic and computability point of view, both in message-

passing systems (e.g., [2,5,24]) and shared memory systems (e.g., [4,6,11]), the notion

of memory anonymity has been introduced only very recently in [23]. (See [21] for an

introductory survey on process and memory anonymity).

Let us consider a shared memory SM made up of m atomic read/write registers.

Such a memory can be seen as an array with m entries, namely SM [1..m]. In a non-

anonymous memory system, for any index x, 1 ≤ x ≤ m, if two or more processes

invoke the address SM [x] they access the very same register. As stated in [23], in

the classical system model, there is an a priori agreement on the names of the shared

registers. This a priori agreement facilitates the implementation of the coordination

rules the processes have to follow to progress without violating the safety (consistency)

properties associated with the application they solve [19,22].

This a priori agreement does no longer exist in a memory-anonymous system. In

such a system the very same address identifier SM [x] invoked by a process pi and in-

voked by a different process pj does not necessarily refer to the same atomic read/write

register. More precisely, a memory-anonymous system is such that:

– for each process pi an adversary defined, over the set {1, 2, · · · ,m}, a permutation

fi() such that when pi uses the address SM [x], it actually accesses SM [fi(x)], and

– no process knows the permutations.

Let us notice that the read/write registers of a memory-anonymous system are neces-

sarily MWMR.

Results on anonymous memory. In [23], mutual exclusion, consensus, and renaming,

problems are addressed, and memory-anonymous algorithms and impossibility results

are presented. Concerning deadlock-free mutual exclusion in failure-free asynchronous

read/write systems, the following results are presented:

– A symmetric deadlock-free algorithm for two processes (“symmetric” means pro-

cess identifiers are not ordered and can only be compared for equality, see Sec-

tion 2.2).



Mutex-based de-anonymization of an anonymous read/write memory 3

– A theorem stating there is no deadlock-free algorithm if the number of processes n

is not known.

– A condition on the size m of the anonymous memory which is necessary for

any symmetric deadlock-free algorithm. More precisely, given an n-process sys-

tem where n ≥ 2, there is no deadlock-free mutual exclusion algorithm if the

size m does not belong to the set M(n) = { m such that ∀ ℓ : 1 < ℓ ≤ n:

gcd(ℓ,m) = 1} \ {1}.

Let us observe that the previous condition implies that it is not possible to design a

symmetric deadlock-free mutex algorithm when the size of the anonymous memory m

is an even integer greater than 2. As symmetric deadlock-free mutex algorithms suited

to a non-anonymous memory do not require a parity-related property on the number of

registers they use, it follows that, when the size of the memory m is an even integer

greater than 2, non-anonymous read/write registers are computationally stronger than

anonymous registers.

In the conclusion of [23], a few open problems are presented, one of them being “the

existence of a symmetric starvation-free mutual exclusion algorithm for two processes”,

another one being “the existence of a symmetric deadlock-free mutual exclusion algo-

rithm for more than two processes”. This second problem was recently solved in [3]

where an algorithm is presented, which assumes m ∈ M(n). It follows that the very

existence of this algorithm shows that the condition m ∈M(n) is also a sufficient con-

dition for symmetric deadlock-free mutual exclusion in read/write anonymous memory

systems.

Content of the paper. As shown in [3,23], the design of memory-anonymous algo-

rithms is not a trivial task. We started this work with an attempt to design a starvation-

free memory-anonymous mutual exclusion algorithm. This drove us to the observation

that the fact “there is currently a competition among processes” must be memorized

in one way or another to prevent a process from always defeating other processes, and

thereby ensure starvation-freedom.

Finally, considering an n-process system, after many attempts, this work ended with

a relatively simple symmetric de-anonymization algorithm, namely, an algorithm that

transforms an anonymous read/write memory into a non-anonymous read/write mem-

ory. This algorithm requires the participation of all the processes, and assumes that

processes do not fail. Once memory de-anonymization is obtained (e.g., at system ini-

tialization), it becomes possible to use algorithms based on a non-anonymous memory

on top of anonymous memory.

The proposed construction relies on an underlying memory-anonymous symmetric

deadlock-free mutual exclusion algorithm (the one introduced in [3]). Hence, it inher-

its its requirement on m, namely, m ∈ M(n). It follows that, when m satisfies this

condition, m anonymous registers and m non-anonymous registers have the same com-

putability power from an anonymous/non-anonymous mutual exclusion point of view.

Let us also notice that, if a non-anonymous memory algorithm executed on top of the

proposed construction requires m′ registers where m′ does not belong to the set M(n)
defined above, it is sufficient to select the first integer greater than m′ belonging to

M(n) as the value of m, and, at the non-anonymous memory upper layer, (m − m′)



4 E.Godard, D. Imbs, M. Raynal, and G. Taubenfeld

registers are ignored. Let us notice that the proposed construction is universal in the

sense any concurrent non-anonymous memory algorithm can be executed on top of it.

On the difficulty of the problem. In a non-anonymous memory system, there is no am-

biguity on the read/write registers used by the processes. As already said, its identifiers

are unambiguously shared by all processes, and no other algorithm is concurrently us-

ing these registers. Differently, as, in an anonymous memory system, SM [x] can denote

different registers for distinct processes, a process must (in one way or another) write

“enough” registers to transmit information to other processes. This is a direct conse-

quence of the fact that there is no a priori agreement on the identities of the shared

atomic read/write registers and the fact that – due to its very nature – no anonymous

register can be a single-writer register.

Hence, the difficulty in the construction of a memory de-anonymization algorithm

comes from the fact that, due to memory anonymity, it concurrently uses the same

registers like the ones used by the underlying mutex algorithm it uses as a subroutine. As

we will see, to circumvent this issue, the proposed memory de-anonymization algorithm

will use (in a very simple way) the local memory of each process to store the value of

an increasing counter, which simulates a shared non-anonymous register on which the

processes agree and can consequently use to coordinate their local progress.

The de-anonymization problem addressed in this paper may seem of theoretical

interest only (as many other problems appeared first). As long as its practical interest

is concerned, we do not have to forget that, as nicely expressed by the physicist Niels

Bohr “prediction is very difficult, especially when it about the future!”. Nevertheless,

the results presented in this paper shows that, from a computability point of view, there

are cases where –in a failure-free context– anonymous read/write registers are as strong

as non-anonymous registers.

Let us also notice that a similar problem (but much simpler, even trivial) appears in

message-passing systems, where any two nodes (processes) are connected by a com-

munication channel, locally known as internal ports by each process, porti[x] being the

local name of the channel connecting process pi to some process pj . In this context, it is

possible that for any two processes pi and pk, the local names porti[x] and portk[x] de-

note channels connecting them to two different processes, while porti[x] and portk[y],
x 6= y, connect them to the same process. Differently, from process identities, values

stored in ports are purely local and have no global meaning. Moreover, it is straight-

forward for a process to learn the name of the process it is connected to when it uses a

given local port.

Simplicity is a first class property. The simplicity of the proposed algorithm does

not mean it was simple to obtain. This was not a trivial task as simplicity is rarely

obtained for free. As said by A.J. Perlis (the first Turing Award recipient) “Simplicity

does not precede complexity, but follows it” [16]. Let us also remember the following

sentence written by the mathematician/philosopher Blaise Pascal at the end of a letter

to a friend: “I apologize for having written such a long letter, I had not enough time

to write a shorter one”. The implication “simple⇒ easy” is rarely true for non-trivial

problems [1]. Simplicity requires effort, but is very rewarding. It is a first class scientific



Mutex-based de-anonymization of an anonymous read/write memory 5

property which participates in the beauty of science [9].

Roadmap. The paper is composed of 7 sections. Section 2 introduces the comput-

ing model, the notion of a symmetric algorithm, and mutual exclusion. Section 3 de-

fines the de-anonymization problem. A first de-anonymization algorithm is presented

in Section 4 and proved in Section 5. This algorithm requires each register of the de-

anonymized memory to forever contain 1 + log2m bits of control information. Then,

the previous algorithm is enriched in Section 6 to obtain an algorithm which associates

a single bit of permanent control information with each register of the de-anonymized

memory. Section 7 concludes the paper.

Remark. On a practical side, it appears that the concept of an anonymous memory

allows us to model epigenetic cell modifications [18]. Hence, it could be useful in bio-

logically inspired distributed systems [14,15].

2 System Model, Symmetric Algorithm, and Mutex Algorithm

2.1 Process and Communication Model

Processes. The system is composed of a finite set of n ≥ 2 asynchronous processes

denoted p1, .., pn. The subscript i in pi is only a notational convenience, which is not

known by the processes. Asynchronous means that each process proceeds to its own

speed, which can vary with time and remains always unknown to the other processes.

Each process pi knows its identity idi and the total number of processes n. No two

processes have the same identity.

Anonymous shared memory. The shared memory is made up of m atomic anonymous

read/write registers denoted SM [1...m]. Hence, all registers are anonymous. As indi-

cated in the Introduction, when pi uses the address SM [x], it actually uses SM [fi(x)],
where fi() is a permutation defined by an external adversary. We will use the notation

SM i[x] to denote SM [fi(x)], to stress the fact that no process knows the permutations.

It is assumed that all the registers are initialized to the same value. Otherwise, thanks

to their different initial values, it would be possible to distinguish different registers,

which consequently will no longer be fully anonymous.

To summarize: which adversaries? The adversaries considered in the paper are con-

sequently asynchrony and memory anonymity. There are no process failures (this as-

sumption is motivated by the fact that the proposed construction is based on a mu-

tual exclusion algorithm, and mutual exclusion algorithms are impossible to build from

read/write registers in the presence of process failures). Furthermore, unlike the mutual

exclusion model where a process may never leave its remainder region, we assume that

all the processes must participate in the algorithm.

2.2 Symmetric Algorithm

The notion of a symmetric algorithm dates back to the eighties [10,12]. Here, as in [23],

a symmetric algorithm is an “algorithm in which the processes are executing exactly the



6 E.Godard, D. Imbs, M. Raynal, and G. Taubenfeld

same code and the only way for distinguishing processes is by comparing identifiers.

Identifiers can be written, read, and compared, but there is no way of looking inside an

identifier. Thus it is not possible to know whether an identifier is odd or even”.

Moreover, symmetry can be restricted by considering that the only comparison that

can be applied to identifiers is equality. In this case, there is no order structuring the

identifier name space. In the following, we consider the more restricting definition,

namely, “symmetric” means “ symmetric with comparison limited to equality”.

Let us notice that, as all the processes have the same code and all the registers are

initialized to the same value, process identities become a key element when one has to

design an algorithm in such a constrained context.

2.3 One-Shot Mutual Exclusion

One-Shot Mutual Exclusion. Mutual exclusion is the oldest and certainly the most

important of the synchronization problems. Formalized by E.W. Dijkstra in the mid-

sixties [8], it consists in building what is called a lock (or mutex) object, defined by

two operations, denoted acquire() and release(). (Recent textbooks including mutual

exclusion and variants of it are [19,22].)

The invocation of these operations by a process pi always follows the following

pattern: “acquire(); critical section; release()”, where “critical section” is any sequence

of code. Moreover, “one-shot” means that a process invokes at most once the operations

acquire() and release(). The mutex object satisfying the deadlock-freedom progress

condition is defined by the following two properties.

– Mutual exclusion. No two processes are simultaneously in their critical section.

– Deadlock-freedom progress condition. If there is a process pi that has a pending

operation acquire(), there is a process pj (maybe pj 6= pi) that eventually executes

its critical section.

As already mentioned, a memory-anonymous symmetric deadlock-free mutual exclu-

sion algorithm is presented in [3]. This algorithm assumes that size m of the anony-

mous memory belongs to the set M(n) = {m such that ∀ℓ : 1 < ℓ ≤ n: gcd(ℓ,m) =
1} \ {1}. Hence, the mutex-based read/write memory de-anonymization algorithm pre-

sented in Section 4 is optimal with respect to the values of m for which deadlock-free

mutual exclusion can be built despite memory anonymity.

3 The De-anonymization Problem

Definition. Given an n-process asynchronous system, in which the processes commu-

nicate via a set of m anonymous read/write registers SM [1..m], the aim is for each

process pi to compute an addressing function mapi(), which is a permutation over the

set of the memory indexes {1, · · · ,m}, such that the two following properties are sat-

isfied. It is assumed that all processes participate in the de-anonymization.

– Safety. For any y ∈ {1, · · · ,m} and any process pi, we have SM i[mapi(y)] =
SM [y].



Mutex-based de-anonymization of an anonymous read/write memory 7

– Liveness. There is a finite time after which all the processes have computed their

addressing function mapi().

The safety property states that, once a process pi has computed mapi(), its local anony-

mous memory address SM i[x], where x = mapi(y), denotes the shared register SM [y].

Accessing the de-anonymized memory. Once de-anonymized, the way the memory is

accessed by the processes is illustrated in Fig. 1. For any index y, 1 ≤ y ≤ m, the pro-

cesses access the same register as follow: SM i[mapi[y]] used by pi and SM j [mapj [y]]
used by pj denote the same register.

fj(1) fj(2) fj(3) f((5) fj(6) fj(7) fj(8) fj(9)fj(4)

fi(1) fi(7) fj(9)fi(3)fi(2) fi(4) fi(5) fj(6) fi(8)

SMi[mapi[y]]

Unknown adversary-defined
permutation for pi

Physical registers

Unknown adversary-defined

permutation for pj

SM j [mapj [y]]

Fig. 1. Accessing the memory after de-anonymization

4 A Symmetric De-anonymization Algorithm

4.1 Memory De-anonymization in an n-Process Read/Write System

Underlying principle. The principle that underlies the design of the read/write memory

de-anonymization algorithm (Algorithm 1) is based on an competition/elimination pro-

cess, at the end of which a single winner process imposes its adversary-defined index

permutation to all the processes, which becomes the shared names of the anonymous

read/write registers, on which all processes agree.

The competition/elimination process uses an underlying mutual exclusion algo-

rithm. Each process invokes acquire() and is eliminated when it leaves the critical sec-

tion. The last process to enter the critical section is the winner.

Challenges. In order to detect which process is the last, the processes needs to collabo-

rate to increase a counter whose value will reach n when the last process will enter the

critical section. We stress that because the memory is anonymous there is no straight-

forward way to leverage a critical section. Since there is no agreement on the resources



8 E.Godard, D. Imbs, M. Raynal, and G. Taubenfeld

(here the anonymous registers themselves), we underline that being in critical section

does not grant any restricted access to the memory. In the following, properties of the

underlying algorithm are described, which are used to build the required shared re-

source, namely a shared counter.

Properties of the underlying mutex algorithm that are used. In addition to the fact it

solves mutual exclusion, the underlying mutex algorithm has behavioral properties that

are implicitly used in the design of the de-anonymization algorithm and explicitly used

in its proof.

– Property Mutex-1. A process writes only its identity or⊥ in an anonymous register.

– Property Mutex-2. When a process invokes acquire(), it reads all anonymous reg-

isters.

– Property Mutex-3. When a process is allowed to enter the critical section, all regis-

ters contain its identity.

– Property Mutex-4. After a process is allowed to enter the critical section and be-

fore it invokes release(), any other competing process can issue at most one write

operation. It follows that, when a process pi is inside the critical section, and x

processes are inside their invocations of acquire(), at least (m − x) anonymous

registers contain its identity idi. Moreover, when a process releases the critical sec-

tion (operation release()), it writes ⊥, in all the registers which contain its identity.

Hence, at least (m− x) such registers are reset to their initial value ⊥.

Enriching the underlying mutex algorithm to share a counter. As can be seen from

the previous properties, even when a process is alone in the critical section, it could

happen that some of its writes are overwritten by another process. Property Mutex-4

states that a process, which is not in the critical section, may erase what was written

by the process in critical section only once. That is no more than (n − 1) registers can

be erased. As m − (n − 1) > 0, by copying the value in all the anonymous registers,

the process currently in the critical section ensures that at least one copy will not be

overwritten. From property Mutex-2, the next process to enter the critical section will

learn the correct value of the counter.

Sharing the counter in such a way is more easily done by integrating these opera-

tions within each read and write operation on the anonymous registers, issued by the un-

derlying mutual exclusion algorithm. These basic operations are consequently enriched

as described in Algorithm 2. These modifications are safe for the mutual exclusion al-

gorithm since they do not interfere with operations and variables of this algorithm.

Let us remark that a similar technique, based on appropriate broadcast abstraction

and quorums, is used in message-passing systems to update the local copies of a shared

register [20]. Here the read and write operations issued by the underlying mutex algo-

rithm are enriched to play the role of a broadcast abstraction.

Local variables. Each process s pi manages three local variables.

– cti is a local counter initialized to 0, which will increase inside the integer interval

[0..n]. The set of the n local variables cti implement a shared counter CT which

increases by step 1 from its initial value 0 to n (line 2). (Actually, the set of the final

values of the n local variables cti will be the set {1, 2, . . . , n}.)



Mutex-based de-anonymization of an anonymous read/write memory 9

– smi[1..m] is used to store a local copy of the anonymous memory SMi[1..m].
A process pi reads the anonymous memory by invoking SM i.scan(), which is an

asynchronous (non-atomic) reading of all the anonymous registers.

– last1i is a Boolean, initialized to false, which will be set to true only by the last

process that will access the critical section.

Each register contains a tag and a value. In order not to confuse the values written in

anonymous registers by processes executing statements of Algorithm 1 (not including

the operations acquire() and release()), and the values written by other processes exe-

cuting the underlying mutex algorithm, all the values written in the anonymous memory

are prefixed by a tag. More explicitly, the tag MUTEX is used by the mutex algorithm,

while the tag DESA is used by the de-anonymization algorithm.

Each anonymous read/write register is initialized to MUTEX〈0,⊥〉. The first value

(0) is the initial value of the global counter CT , while the second value (⊥) is the initial

value used by the mutex algorithm.

operation SM i.scan() returns ([SMi[1], · · · , SMi[m]]).

operation de-anonymize(idi) is % code for process pi
(1) acquire(idi);
(2) cti ← cti + 1;

% cti is the local representation of the global counter CT . It is updated at each process

% by the read and write operations of the underlying mutex algorithm (see Algorithm 2)

(3) last1i ← (cti = n);
(4) release(idi); % realizes an implicit broadcast of cti %

(5) if (last1i)
(6) then for each x ∈ {1, · · · ,m} do SM i[x]← DESA(x) end for

% the permutation for pi is: ∀ y ∈ {1, · · · ,m}: map
i
(y) = y %

(7) else repeat smi ← SM i.scan() until (∀ x : smi[x] is tagged DESA) end repeat;

(8) for each x ∈ {1, · · · ,m} do map
i
(y)← x where smi[x]=DESA(y) end for

% the perm. for pi is: ∀ y ∈ {1, · · · ,m}: map
i
(y) = x, where smi[x] = DESA(y)

(9) end if.

Algorithm 1: Memory de-anonymization in an n-process read/write system

Behavior of a process pi: first invoke the mutex algorithm. All the processes invoke

the operation de− anonymize(idi). When a process pi invokes it, it first acquires the

critical section (line 1). The code inside the critical section is a simple increase of the

shared counter CT globally implemented by the local variables cti (line 2). Hence, if

pi is the ℓth process to access the critical section, cti is updated from ℓ− 1 to ℓ, and pi
will inform the other processes of this increase when it will invoke release() (line 4).

Let us notice that, at line 3, pi sets to true its local Boolean variable last1i only if it is

the last process to execute the critical section. Then, the behavior of pi depends on the

fact it is or not the last process to enter the critical section (see below).



10 E.Godard, D. Imbs, M. Raynal, and G. Taubenfeld

Behavior of a process pi: the read and write operations used by the mutex algo-

rithm. As already indicated, to ensure correct dissemination of the last increase of CT

(update of the local variable ctj at a process pj), the read and write operations that al-

low the mutex algorithm to access the anonymous registers are modified as described

in Algorithm 2.

operation read of SM i[x] executed by the mutex algorithm is

(1) 〈ct, val〉 ← SMi[x];
(2) cti ← max(cti, ct);
(3) return(val).

operation write of v in SM i[x] executed by the mutex algorithm is

(4) SMi[x]← MUTEX〈cti, v〉;
(5) return(ok).

Algorithm 2: Modified read and write operations (code for pi)

As the operation release() of the mutex algorithm writes⊥ (i.e., the MUTEX〈CT ,⊥〉)
in at least (m − (n − 1)) anonymous registers (Property Mutex-4), it follows that if a

process pi accesses later the critical section, it updated its local counter cti when it ex-

ecuted acquire(), which reads all anonymous registers (Property Mutex-1).

Behavior of a process pi: the winner imposes its addressing permutation to all. The

de-anonymization is done at lines 5-9. The (n− 1) processes that won the first (n− 1)
critical sections execute line 7, in which they loop until they see all the registers tagged

DESA.

Let pℓ be the last process that entered the critical section (hence, ctℓ = n and

last1ℓ is the only Boolean equal to true). This process imposes its adversary-defined

addressing permutation as the common addressing, which realizes a non-anonymous

memory. To this end, for any x ∈ {1, · · · ,m}, pℓ writes DESA(x) in SMℓ[x] (line 6).

Hence, for any x we have mapℓ(x) = x.

Let pi be any other process that is looping at line 7 until it sees all the registers

tagged DESA. When this occurs, it computes mapi(), which is such that for any x ∈
{1, · · · ,m}, if smi[x] =DESA(y) then mapi(x) = y (line 7).

4.2 Using the De-anonymized Memory

It follows from the de-anonymization algorithm that when a process has written the tag

DESA in all registers, thanks to their local mapping function mapi(), all the processes

share the same indexes for the same registers.

When this occurs, process pk could start executing its local algorithm defined by the

upper layer application, but if it writes an application-related value in some of these reg-

isters, this value can overwrite a value DESA() stored in a register not yet read by other

processes. To prevent this problem from occurring, all the values written by a process



Mutex-based de-anonymization of an anonymous read/write memory 11

at the application level are prefixed by the tag APPL, and include a field containing the

common index y associated with this register. In this way, any process pi will be able

to compute its local mapping function mapi(), and can start its upper layer application

part, as soon as it has computed mapi().
Let us notice that one bit is needed to distinguish the tag DESA and the tag APPL.

Hence, each of a value DESA(x) and a value APPL(x,−) requires (1 + log2 m) control

bits.

5 Proof of the Algorithm

Lemma 1. Each process exits acquire() and, denoting ik the index of the kth pro-

cess that enters the critical section, when pik invokes release(), it writes the value

MUTEX〈k,⊥〉 in at least (m− (n− 1)) anonymous registers.

Proof Let us first observe that, as (i) the underlying mutex algorithm is independent of

the values of the local variables cti, (ii) is deadlock-free, and (iii) each process invokes

acquire() only once, it is actually starvation-free.

Let pi1 be the first process that enters the critical section. As cti1 = 0, it follows that

after line 2 we have cti1 = 1. Then, when pi1 invokes release(), it writes MUTEX〈1,⊥〉
in at least (m − (n − 1)) anonymous registers (Property Mutex-4 and line 4 of Algo-

rithm 2). It follows then (i) from Property Mutex-2 and lines 1-2 of Algorithm 2), and

(ii) Property Mutex-1, Property Mutex-3, and line 4 of Algorithm 2, that when another

process pi2 enters the critical section, pi2 has previously read and written all registers,

from which we conclude from lines 1-5 of Algorithm 2 that cti2 = 1. It follows that pi2
increases cti2 from 1 to 2 at line 2 of Algorithm 1.

The previous reasoning being repeated n times, we eventually have: cti(x) = x at

each process pi(x), 1 ≤ x ≤ n − 1, and ctin = n at process pin . It follows that no

process blocks forever when it executes the lines 1-4 of Algorithm 1. ✷Lemma 1

Lemma 2. The local mapping function mapi() computed by each process pi is a per-

mutation over the set of register indexes {1, · · · ,m}. Moreover, for any index y ∈
{1, · · · ,m} and any pair of processes pi and pj , SM i[mapi(y)] and SM j [mapj(y)]
address the very same register.

Proof Let us assume that a process pi executes line 6. From Lemma 1 there is a single

such process pi. Let pj be any other process that executes lines 7-8. Due to the “repeat”

loop of line 7, pj executes line 8 only after all registers contain the tag DESA. Only

pi writes the registers with this tag, and (at line 6) wrote DESA(y) inside SM i[y], for

each y ∈ {1, ...,m}. Hence, when pj reads DESA(y) from SM j [x], it learns that this

register is known by pi as SM i[y]. At line 8, pj consequently considers x as the value

of mapj(y). It follows that SM j [mapj(y)] (i.e., SM j [x]) and SM i[mapi(y)] (which

is SM i[y]) denote the very same read/write register. As this is true for any process

pj 6= pi, the lemma follows. ✷Lemma 2

Lemma 3. Any process pi terminates the operation de-anonymize().



12 E.Godard, D. Imbs, M. Raynal, and G. Taubenfeld

Proof The proof follows from Lemma 1, which states that all processes enter and leave

the critical section. Moreover, as pin executes line 6 of Algorithm 1, it follows that no

other process can block forever at line 7 of this algorithm, which concludes the proof

of the lemma. ✷Lemma 3

Theorem 1. Algorithm 1 is a symmetric algorithm that solves the de-anonymization

problem in a system made up of n asynchronous processes communicating by read-

ing and writing m anonymous read/write atomic registers, where m belongs to the set

M(n) = {m such that ∀ℓ : 1 < ℓ ≤ n: gcd(ℓ,m) = 1} \ {1}.

Proof A simple examination of the code shows that process identities are compared

only by equality, from which follows the “symmetry” property. The rest of the proof

follows from Lemma 2 and Lemma 3. ✷Theorem 1

6 Reducing the Size of Control Information

Algorithm 1 requires that, once de-anonymized, each register must contain forever

1 + log2m bits of control information. This section shows that this information can

be reduced to a single bit.

Revisiting the shared memory. Each read/write register SM [x] is now assumed to be

composed of two parts SM [x].BIT and SM [x].RM , more precisely, we have SM [x] =
〈SM [x].BIT , SM [x].RM〉. SM [x].BIT is for example the leftmost bit of SM [x], and

SM [x].RM the other bits. The meaning and the use of SM [x].RM are exactly the same

as SM [x] in Algorithm 1 and Algorithm 2. For each x, SM [x].BIT is initialized to 0,

while (as in Algorithm 1) SM [x].RM is initialized to MUTEX〈0,⊥〉.
To simplify both the writing and the reading of the improved algorithm, we write

– “ SM i[x] ← DESA(x)” when the first bit of SM i[x] is not modified by the write

(line 6),

– “SM i.scan() when we are interested in the SM i.RM” part of the registers only

(line 7),

– “BIT i[x] ← 1” when the remaining part of SM i[x] is not modified by the write

(line 15),

– “BIT i.scan()” when we are interested in the bits SM i.BIT only (line 16).

Behavior of a process pi. Algorithm 3 is the improved algorithm. It is Algorithm 1

(lines 1-9), followed by a second global synchronization phase (lines 10-17), which is

similar to the one at lines 1-9.

After the processes have executed line 9 (end of the first global synchronization

phase), each of them knows its mapping function mapi(), but no process knows that all

the other processes know their own mapping function. This motivates the second use

of the mutual exclusion algorithm, which, as the left bit of any register SM [x].BIT

still contains its initial value 0, ensures that when the last process (say pk) that entered

the second critical section exits it, it knows that all the processes have computed their

mapping function, and no process that executes the “repeat” loop of line 16 can exit it.



Mutex-based de-anonymization of an anonymous read/write memory 13

operation SM i.scan() returns ([SMi[1], · · · , SMi[m]]).

operation de-anonymize2(idi) is % code for pi
% the lines 1-9 are the same as in Algorithm 1; the lines 10-17 are new

(1) acquire(idi);
(2) cti ← cti + 1;

(3) last1i ← (cti = n);
(4) release(idi); % realizes an implicit broadcast of cti %

(5) if (last1i)
(6) then for each x ∈ {1, · · · ,m} do SM i[x]← DESA(x) end for

% the permutation for pi is: ∀ y ∈ {1, · · · ,m}: map
i
(y) = y %

(7) else repeat smi ← SM i.scan() until (∀ x : smi[x] is tagged DESA) end repeat;

(8) for each x ∈ {1, · · · ,m} do map
i
(y)← x where smi[x]=DESA(y) end for

% perm. for pi is ∀ y ∈ {1, · · · ,m}: map
i
(y) = x, where smi[x] = DESA(y)

(9) end if;

(10) acquire(idi);
(11) cti ← cti + 1;

(12) last2i ← (cti = 2n);
(13) release(idi); % realizes an implicit broadcast of cti %

(14) if (last2i)
(15) then for each x ∈ {1, · · · ,m} do BIT i[x]← 1 end for

(16) else repeat biti ← BIT i.scan() until (∃ x : biti[x] = 1) end repeat

(17) end if.

Algorithm 3: Algorithm with a single bit of control information

To identify the last process that entered the (second) critical section, when a process

pi is inside the critical section it increases the abstract register CT (line 11), and sets

last2i to true only if it discovers it is the last process that accessed the critical section

(line 12), More precisely, we have the following.

– If pi is not the last process to increase CT (locally represented by cti), last2i is

equal to false, and consequently pi waits until it sees at least one register whose

bit SM i[x].BIT is equal to 1 (line 16). When this occurs pi learns that the second

phase is terminated (hence it knows that all the processes have computed their

mapping function), and it can proceed to execute an upper layer non-anonymous

register algorithm.

– Differently, if pi is the last process to increase CT , it changes to 1 the left bit

of all the registers (line 15), which unblocks all the other processes. As the bits

SM i[x].BIT are never reset to 0, eventually all the processes know that each of

them knows its mapping function.

As they follow the same synchronization pattern, the proof of the second part of Al-

gorithm 3 (lines 10-17) is the same as the one of its first global synchronization phase

(lines 1-9), which is the same as the one of Algorithm 1.



14 E.Godard, D. Imbs, M. Raynal, and G. Taubenfeld

7 Conclusion

In addition to introducing the memory de-anonymization problem, this paper has shown

that, in an n-process system where n ≥ 2 and process identities can only be com-

pared with equality, a shared memory made up of m anonymous read/write registers

and a shared memory made up of m non-anonymous read/write registers have the

same computability power for the values of m satisfying the necessary condition for

deadlock-free anonymous mutex algorithms from [23], namely m must belong to the

set M(n) = { m | such that ∀ℓ : 1 < ℓ ≤ n: gcd(ℓ,m) = 1} \ {1}. Let us observe

that, as it includes an infinite sequence of prime numbers, M(n) is infinite. It follows

that, once de-anonymization (in which all processes participate) is obtained, it becomes

possible to use a symmetric starvation-free mutex algorithm, thereby obtaining a sym-

metric starvation-free mutex algorithm working on top of an anonymous memory1.

We emphasize that the above construction (of running a starvation-free mutex al-

gorithm on top of a de-anonymization layer), does not solve the original open problem

from [20], regarding the existence of a memory-anonymous two-process starvation-free

mutex algorithm. In the definition of the mutex problem participation is not required

(a process may never leave its remainder code), while our implementation of the de-

anonymization layer, assumes that participation is required, or, equivalently, that the

number of participants is known by all processes.

As stated in [23], the memory-anonymous communication model “enables us to

understand better the intrinsic limits for coordinating the actions of asynchronous pro-

cesses”. It consequently enriches our knowledge of what can be (or cannot be) done

when an adversary replaced a common addressing function, by individual and indepen-

dent addressing functions, one per process.

Among problems that remain open, there are the design of de-anonymization al-

gorithms (symmetric with equality only, or symmetric with equality, greater than, and

lower than) not based on an underlying memory anonymous mutex algorithm, and the

statement of a necessary and sufficient condition on the value of m (size of the anony-

mous memory) for which de-anonymization is possible (for each type of symmetry).

Acknowledgments

This work was partially supported by the French ANR project DESCARTES (16-CE40-

0023-03) devoted to layered and modular structures in distributed computing. The au-

thors want to thank the referees for their constructive comments.

References

1. Aigner M. and Ziegler G., Proofs from THE BOOK (4th edition). Springer, 274 pages, ISBN

978-3-642-00856-6 (2010)

1 Peterson’s mutual exclusion algorithm is such a symmetric algorithm [17]. As it requires 2n−1
non-anonymous atomic registers, we need to have both m ∈M(n) and m ≥ 2n− 1.



Mutex-based de-anonymization of an anonymous read/write memory 15

2. Angluin D., Local and global properties in networks of processes. Proc. 12th Symposium on

Theory of Computing (STOC’80), ACM Press, pp. 82-93, (1980)

3. Aghazadeh Z., Imbs D., Raynal M., Taubenfeld G., and Woelfel Ph., Optimal memory-

anonymous symmetric deadlock-free mutual exclusion. Proc. 38th ACM Symposium on Prin-

ciples of Distributed Computing (PODC’19), ACM Press, 10 pages (2019)

4. Attiya H., Gorbach A., and Moran S., Computing in totally anonymous asynchronous shared-

memory systems. Information and Computation, 173(2):162-183 (2002)

5. Bonnet F. and Raynal M., Anonymous asynchronous systems: the case of failure detectors.

Distributed Computing, 26(3):141-158 (2013)

6. Bouzid Z., Raynal M., and Sutra P., Anonymous obstruction-free (n, k)-set agreement with

(n− k + 1) atomic read/write registers. Distributed Computing, 31(2):99-117 (2018)

7. Delporte C., Fauconnier H., Gafni E., and Lamport L., Adaptive register allocation with a

linear number of registers. Proc. 27th Int’l Symposium on Distributed Computing (DISC’13),

Springer LNCS 8205, pp. 269-283 (2013)

8. Dijkstra E.W., Solution of a problem in concurrent programming control. Communications

of the ACM, 8(9):569 (1965)

9. Dijkstra E.W., Some beautiful arguments using mathematical induction. Algorithmica,

13(1):1-8 (1980)

10. Garg V.K. and Ghosh J., Symmetry in spite of hierarchy. Proc. 10th Int’l Conference on

Distributed Computing Systems (ICDCS’90), IEEE Computer Press, pp. 4-11 (1990)

11. Guerraoui R. and Ruppert E., Anonymous and fault-tolerant shared-memory computations.

Distributed Computing, 20:165-177 (2007)

12. Johnson R.E., and Schneider F.B., Symmetry and similarity in distributed systems. Proc.4th

ACM Symposium on Principles of Distributed Computing (PODC’85), pp. 13-22, ACM Press

(1985)

13. Lamport L., On interprocess communication, Part I: basic formalism. Distributed Comput-

ing, 1(2):77-85 (1986)

14. Navlakha S. and Bar-Joseph Z., Algorithms in nature: the convergence of systems biology

and computational thinking. Molecular systems biology, 7(546):1-11 (2011)

15. Navlakha S. and Bar-Joseph Z., Distributed information processing in biological and com-

putational systems. Communications of the ACM, 58(1):94-102 (2015)

16. Perlis A.J., Epigrams on programming, ACM SIGPLAN Notices, 17(1):7-13 (1982)

17. Peterson G.L., Myths about the mutual exclusion problem, Information Processing Letters,

12(3):115-116 (1981)

18. Rashid S., Taubenfeld G., and Bar-Joseph Z., Genome wide epigenetic modifications as a

shared memory consensus. 6th Workshop on Biological Distributed Algorithms (BDA’18),

London (2018)

19. Raynal M., Concurrent programming: algorithms, principles and foundations. Springer, 515

pages, ISBN 978-3-642-32026-2 (2013)

20. Raynal M., Fault-tolerant message-passing distributed systems: an algorithmic approach.

Springer, 492 pages, ISBN 978-3-319-94140-0 (2018)

21. Raynal M. and Cao J., Anonymity in distributed read/write systems: an introductory sur-

vey. Proc. 6th Int’l Conference on Networked Systems (NETYS’18), Springer LNCS 11028,

pp. 122-140 (2018)

22. Taubenfeld G., Synchronization algorithms and concurrent programming. Pearson Educa-

tion/Prentice Hall, 423 pages, ISBN 0-131-97259-6 (2006)

23. Taubenfeld G., Coordination without prior agreement. Proc. 36th ACM Symposium on Prin-

ciples of Distributed Computing (PODC’17), ACM Press, pp. 325-334 (2017)

24. Yamashita M. and Kameda T., Computing on anonymous networks: Part I -characterizing

the solvable cases. IEEE Transactions on Parallel Distributed Systems, 7(1):69-89 (1996)


