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MINIMA AND SLOPES OF RIGID ADELIC SPACES

ÉRIC GAUDRON

Abstract. In this lecture, we present an abstract of the theory of rigid adelic spaces over an
algebraic extension of Q, developed in a previous article with G. Rémond (2017). We define the
Harder-Narasimhan filtration, the slopes and several type of minima associated to such spaces.
This formalism generalizes the Minkowski geometry of numbers for ellipsoids, the twisted height
theory by Roy and Thunder as well as the slope theory of Hermitian vector bundles by Bost.

1. Introduction

We propose here a lecture on the geometry of numbers for normed (adelic) vector spaces over
an algebraic extension of Q. We shall define slopes and several type of minima for these objects
and we shall compare them.

First, let us recall some basic notions of the classical geometry of numbers. Let Ω be a free
Z-module of rank n ≥ 1 and let ‖ ·‖ be an Euclidean norm on Ω⊗ZR. We shall say that the couple
(Ω, ‖ · ‖) is an Euclidean lattice of rank n. To such a lattice are associated n positive real numbers,
called the successive minima of (Ω, ‖ · ‖): for all i ∈ {1, . . . , n},

λi(Ω, ‖ · ‖) = min {r > 0 ; dim VectR (x ∈ Ω ; ‖x‖ ≤ r) ≥ i}
= min {max {‖x1‖, . . . , ‖xi‖} ; x1, . . . , xi ∈ Ω linearly independent}.

We have 0 < λ1(Ω, ‖ · ‖) ≤ · · · ≤ λn(Ω, ‖ · ‖). Given a Z-basis e1, . . . , en of Ω, the (co-)volume of
Ω is the positive real number

vol(Ω) = det (〈ei, ej〉)1/2
1≤i,j≤n

where 〈·, ·〉 denotes the scalar product on Ω⊗Z R associated to ‖ · ‖. Let us define

cI(n,Q) = sup
λ1(Ω, ‖ · ‖)
vol(Ω)1/n

and cII(n,Q) = sup

(
λ1(Ω, ‖ · ‖) · · ·λn(Ω, ‖ · ‖)

vol(Ω)

)1/n

where the suprema are taken over Euclidean lattices (Ω, ‖ · ‖) of rank n. The square γn = cI(n,Q)2

is nothing but the famous Hermite constant. Its exact value is only known for n ≤ 8 and n = 24.
It can also be characterized as the smallest positive real number c such that, for all (a0, . . . , an) ∈
Zn+1 \ {0}, there exists (x0, . . . , xn) ∈ Zn+1 \ {0} satisfying

a0x0 + · · ·+ anxn = 0 and
n∑
i=0

x2
i ≤ c

(
n∑
i=0

a2
i

)1/n

.

Minkowski proved the following statement (see [Mi 1910, § 51]):

Theorem (Minkowski). For every positive integer n, we have cI(n,Q) = cII(n,Q) ≤
√
n.
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2 ÉRIC GAUDRON

We shall generalize this framework in the following manner:

Q −→ Algebraic extension K/Q
Euclidean lattice (Ω, ‖ · ‖) −→ Rigid adelic space E over K

Minimum λi(Ω, ‖ · ‖) −→ Minimum Λi(E)

Volume vol(Ω) −→ Height H(E)

− log vol(Ω)1/n −→ Slope µ(E).

Actually, in the highly flexible world of rigid adelic spaces, there exist numerous types of possible
successive minima, having an interest according to the problems addressed. To be over an algebraic
extension of Q which is not necessarily finite brings some new perspectives, issues and results. In
particular we shall explain how to compute the Hermite constants of the algebraic closure Q of Q.

Contents

1. Introduction 1
2. Rigid adelic spaces 2
3. Minima and slopes 7
4. Comparisons between minima and slopes 14
5. Heights of morphisms and slope-minima inequalities 21
References 25

Acknowledgement. I thank Pascal Autissier and Gaël Rémond for their remarks on a previous
version of this course. I also thank the organizers of the Summer School, Huayi Chen, Emmanuel
Peyre and Gaël Rémond for their invitation.

2. Rigid adelic spaces

Let us begin with a Reader’s Digest of [GR 2017, § 2].

2.1. Algebraic extensions of Q. Let K/Q be an algebraic extension. Let V (K) be the set of
places of K (equivalence classes of non trivial absolute values over K). We can write this set as
the projective limit lim←−L V (L) over finite subextensions Q ⊂ L ⊂ K of K. The discrete topology
on V (L) induces a topology on V (K) by projective limit. It coincides with the topology generated
by the compact open subsets Vv(K) =

{
w ∈ V (K) ; w|L = v

}
for v ∈ V (L) and L varies among

number fields contained in K. On V (K) can be defined a Borel measure σ characterized by

σ(Vv(K)) =
[Lv : Qv]
[L : Q]

for v ∈ V (L)

(Qv = Qp or R depending on v, p-adic or archimedean). We have σ(Vp(K)) = 1 for all p ∈ V (Q).
For v ∈ V (K) we denote by Kv the topological completion of K at v and | · |v is the unique absolute
value on Kv such that |p|v ∈ {1, p, p−1} for every prime number p. Then the product formula is
written

∀x ∈ K \ {0},
∫
V (K)

log |x|v dσ(v) = 0.

Furthermore, the adèles of K is the tensor product AK = K ⊗Q AQ of K with the adèles of Q:

AQ =

(xp)p ∈
∏

p∈V (Q)

Qp ; for every prime p, outside a finite subset, |xp|p ≤ 1

 .

If K is a number field, AK is the usual adèle ring and, for an arbitrary algebraic extension K/Q,
AK =

⋃
L⊂K,[L:Q]<∞ AL.
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2.2. Rigid adelic spaces. From now on, the letter K always denotes an algebraic extension of
Q.

Definition 1. An adelic space E is a K-vector space of finite dimension endowed with norms
‖ · ‖E,v on E ⊗K Kv for every v ∈ V (K).

The (adelic) standard space of dimension n ≥ 1 is the vector space Kn endowed with the
following norms:

∀x = (x1, . . . , xn) ∈ Kn
v , |x|v =

{(
|x1|2v + · · ·+ |xn|2v

)1/2 if v | ∞
max {|x1|v, . . . , |xn|v} if v -∞.

Given an adelic space E over K and v ∈ V (K), a basis (e1, . . . , en) of E ⊗K Kv is said to be
orthonormal if, for all (x1, . . . , xn) ∈ Kn

v , we have ‖
∑n
i=1 xiei‖E,v = |(x1, . . . , xn)|v.

Definition 2. A rigid adelic space is an adelic space E for which there exist an isomorphism
ϕ : E → Kn and an adelic matrix A = (Av)v∈V (K) ∈ GLn(AK) such that

∀x ∈ E ⊗K Kv, ‖x‖E,v = |Avϕv(x)|v
where ϕv = ϕ⊗ idKv

: E ⊗K Kv → Kn
v is the natural extension of ϕ to E ⊗K Kv.

In looser terms, a rigid adelic space is a compact deformation of a standard space.
Remarks.

1) Actually, if E is a rigid adelic space over K of dimension n, for every isomorphism ϕ : E →
Kn, there exists A ∈ GLn(AK), upper triangular, such that (ϕ,A) defines the adelic
structure on E.

2) If x ∈ E\{0} there exists a number field K0 ⊂ K such that A ∈ GLn(AK0
) and ϕ(x) ∈ Kn

0 .
Thus, outside a compact subset of V (K) (finite union of some Vv(K) with v ∈ V (K0)), we
have ‖x‖E,v = 1 and Av is an isometry.

3) A rigid adelic space is an adelic space with an orthonormal basis at each v ∈ V (K) but
the converse is not true.

Examples of rigid adelic spaces.
• Kn (standard space).

• Let (Ω, ‖ · ‖) be an Euclidean lattice and (e1, . . . , en) a Z-basis of Ω. We can consider
EΩ = Ω⊗ZQ over K = Q, endowed with the norm ‖ · ‖ at the archimedean place of Q and
‖
∑n
i=1 xiei‖EΩ,p = max1≤i≤n {|xi|p} at every prime p (xi ∈ Qp). This definition does not

depend on the choice of the Z-basis.

• When K is a number field with ring of integers OK , we have a one-to-one correspon-
dence between rigid adelic spaces over K and Hermitian vector bundles over SpecOK .
Indeed, let E be a rigid adelic space over K. The projective OK-module of finite type
E = {x ∈ E ; ∀ v ∈ V (K) \ V∞(K), ‖x‖E,v ≤ 1} endowed with the Hermitian norms (in-
variant by complex conjugation) ‖ · ‖σ = ‖ · ‖E,v at embeddings σ : K ↪→ C with associated
place v = {σ, σ} form a Hermitian vector bundle over SpecOK .

Definition 3. Given two adelic spaces E,F over K, a linear map f : E → F is an isometry if for
all v ∈ V (K) and x ∈ E ⊗K Kv, we have ‖fv(x)‖F,v = ‖x‖E,v, where fv = f ⊗ idKv

.

The adelic spaces E and F will be called isometric if there exists an isomorphism E → F which is
an isometry.

Operations on adelic spaces. Let E,E′ be adelic spaces over K and F ⊂ E a vector subspace. One
can consider the following adelic spaces:
Induced structure: F with norms ‖ · ‖E,v restricted to F ⊗K Kv.
Quotient: E/F with quotient norms

‖x‖E/F,v = inf {‖z‖E,v ; z ∈ E ⊗K Kv, z = x mod F ⊗K Kv}.

Dual: Ev = HomK(E,K) (linear forms) with operator norms

∀ ` ∈ Ev ⊗K Kv, ‖`‖Ev,v = sup

{
|`(z)|v
‖z‖E,v

; z ∈ E ⊗K Kv \ {0}
}
.
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Given an Euclidean lattice (Ω, ‖ · ‖), the dual of EΩ corresponds to the dual lattice Ω∗ = {ϕ ∈
(Ω⊗Z R)v ; ϕ(Ω) ⊂ Z} with the gauge∗ of the polar body C◦ = {ϕ ∈ (Ω⊗Z R)v ; ϕ(C) ⊂ [−1, 1]}
of the unit ball C = {x ∈ Ω⊗Z R ; ‖x‖ ≤ 1}.
(Hermitian) Direct sum: E ⊕ E′ with norm at v ∈ V (K) given by

∀x ∈ E ⊗K Kv, ∀x′ ∈ E′ ⊗K Kv, ‖(x, x′)‖E⊕E′,v =

{(
‖x‖2E,v + ‖x′‖2E′,v

)1/2 if v | ∞,
max {‖x‖E,v, ‖x′‖E′,v} if v -∞.

Operator norm: HomK(E,E′) (linear maps) with

∀ f ∈ HomK(E,E′)⊗K Kv, ‖f‖v = sup

{
‖f(x)‖E′,v
‖x‖E,v

; x ∈ E ⊗K Kv \ {0}
}
.

Using the natural isomorphism E ⊗K E′ ' HomK(Ev, E′), we get an adelic structure on E ⊗ E′,
denoted E ⊗ε E′ in the sequel (the ε refers to the injective norm for tensor product of Banach
spaces).
Tensor product: Assume E = (ϕ,A) and E′ = (ϕ′, A′) are rigid adelic spaces. The tensor
product E ⊗K E′ is endowed with the (rigid) structure given by (ϕ ⊗ ϕ′, A ⊗ A′). It is the same
as saying that local orthonormal bases of E ⊗K Kv and E′ ⊗K Kv give an orthonormal basis by
tensor product.
Symmetric power: When E = (ϕ,A) is a rigid adelic space and i ∈ N\{0}, the symmetric power
SiE is endowed with (Si(ϕ), Si(A)). It corresponds to the quotient structure of the tensor norm by
the natural surjection E⊗i → SiE. We have ‖xi‖SiE,v = ‖x‖iE,v for all x ∈ E ⊗K Kv. If e1, . . . , en

is an orthonormal basis of E ⊗K Kv, then the vectors ei11 · · · einn with ij ∈ N and i1 + · · ·+ in = i
form an orthogonal basis of SiE and

‖ei11 · · · einn ‖SiE,v =

(
i1! · · · in!

i!

)1/2

if v | ∞ and 1 otherwise.

Exterior power: When E = (ϕ,A) is a rigid adelic space with dimension n and i ∈ {1, . . . , n},
the exterior power

∧i
E is endowed with the rigid structure (

∧i
ϕ,
∧i

A). Given v ∈ V (K), an
orthonormal basis (e1, . . . , en) of E⊗KKv induce an orthonormal basis (ej1 ∧· · ·∧eji)1≤j1<···<ji≤n

of
∧i

E ⊗K Kv. Note that it differs by a coefficient
√
i! from the quotient norm E⊗i →

∧i
E.

When i = dimE, the exterior power
∧i

E is called the determinant of E and denoted by detE.
Scalar extension: Let K ′/K be an algebraic extension and E = (ϕ,A) be a rigid adelic space.
We endow E ⊗K K ′ with the rigid adelic structure given by (ϕ⊗ idK′ , A) where ϕ⊗ idK′ : E ⊗K
K ′ → (K ′)

n is induced by ϕ and A is viewed in GLn(AK′) by means of the diagonal embedding
AK ↪→ AK′ . We denote by EK′ the adelic space obtained in this way.
These definitions do not depend on the chosen couple (ϕ,A). Let us mention that every rigid
adelic space E over K can be written as the scalar extension E0 ⊗K0

K of a rigid adelic space E0

over a number field K0: choose K0 such that A ∈ GLn(AK0
) and define E0 = ϕ−1(Kn

0 ) with the
structure given by (ϕ|E0

, A).

Theorem 4. When E and E′ are rigid adelic spaces, all these adelic structures are rigid ex-
cept (in general) the one on HomK(E,E′) and E ⊗ε E′ (operator norms). Moreover the canon-
ical isomorphisms E ' (Ev)

v and, for F ⊂ E a linear subspace, E/F '
(
F⊥
)v (where

F⊥ = {` ∈ Ev ; `(F ) = {0}}) are isometries.

Proof. See [GR 2017, Proposition 3.6]. �

We can also prove that, given a rigid adelic space E over K with dimension n and r ∈ {0, . . . , n},
the pairing

∧n−r
E ⊗

∧r
E → detE, x⊗ y 7→ x ∧ y, induces an isometric isomorphism

n−r∧
E ' (detE)⊗

(
r∧
E

)v

.

∗Recall that the gauge of a set C is the function j(x) = inf {λ > 0 ; x/λ ∈ C}. When C is a symmetric compact
convex set with non-empty interior in a vector space U, then the gauge defines a norm on U.
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Moreover the natural map
∧r

(Ev)→ (
∧r

E)
v, ϕ1 ∧ · · · ∧ ϕr 7→ (x1 ∧ · · · ∧ xr 7→ ϕ1(x1) · · ·ϕr(xr))

is an isomorphism of rigid adelic spaces (whereas it is false if we replace the exterior power by the
symmetric power).

Height, degree and slope of rigid adelic spaces. Let E be a rigid adelic space over K defined by
(ϕ,A).

• The height of E is the positive real number H(E) = exp
∫
V (K)

log |detAv|v dσ(v). If
E = {0} one has H(E) = 1. This definition does not depend on the choice of (ϕ,A) and
the integral converges since |detAv|v = 1 for v outside a compact subset of V (K).

• The (Arakelov) degree of E is degE = − logH(E) = −
∫
V (K)

log |detAv|v dσ(v).

• The slope of E is µ(E) =
degE

dimE
(only for E 6= {0}).

In the literature, a rigid adelic space is often denoted with a bar (E instead of E) and its degree
and slope are accompanied by a hat (d̂egE instead of degE). Also note that from the definitions,
the height and degree of a rigid adelic space are those of its determinant.
Examples.

1) H(Kn) = 1, degKn = µ(Kn) = 0 for all n ∈ N \ {0}.
2) If (Ω, ‖ · ‖) is an Euclidean lattice, then H(EΩ) = vol(Ω). Indeed, if (e1, . . . , en) is a Z-

basis of Ω, we have H(EΩ) = |detA| where the matrix A characterizes the norm: for every
(x1, . . . , xn) ∈ Rn, ‖x1e1 + · · ·+ xnen‖ = |(x1, . . . , xn)A| that is, AtA = (〈ei, ej〉)1≤i,j≤n.

3) If K is a number field we have H(E) =
∏
v∈V (K) |detAv|

[Kv :Qv ]
[K:Q]

v .

Proposition 5. Let E and E′ be rigid adelic spaces over K and F ⊂ E a linear subspace endowed
with its induced adelic structure. Then

H(E/F ) =
H(E)

H(F )
(degE = degF + degE/F )

H(Ev) = H(E)−1 (degEv = −degE)

H(E ⊕ E′) = H(E)H(E′) (degE ⊕ E′ = degE + degE′)

H(E ⊗ E′) = H(E)dimE′H(E′)dimE (µ(E ⊗ E′) = µ(E) + µ(E′))

H(F⊥) =
H(F )

H(E)
(degF⊥ = degF − degE).

If n = dimE and i ∈ {1, . . . , n}, we also have H
(∧i

E
)

= H(E)(
n−1
i−1), that is, µ

(∧i
E
)

= iµ(E).
Moreover, for all i ∈ N, we have

µ
(
SiE

)
= iµ(E) +

(
2

(
i+ n− 1

n− 1

))−1 ∑
(j1,...,jn)∈Nn
j1+···+jn=i

log
i!

j1! · · · jn!
.

Proof. See [Ga 2008, Lemma 7.3], [GR 2013, § 2.7], [GR 2017, Proposition 3.6]. �

Furthermore, height, degree and slope are invariant by scalar extension: if K ′/K is algebraic, then
H(EK′) = H(E), degEK′ = degE and µ (EK′) = µ(E). Also note that we have an asymptotic
estimate

µ
(
SiE

)
= iµ(E) +

i

2
(Hn − 1)(1 + o(1)) when i→ +∞

in terms of the harmonic number Hn =
∑n
h=1 1/h (see [Ga 2008, Annex]). It may be viewed as a

particular case of the arithmetic Hilbert-Samuel theorem (see the chapter by Chen in this volume).
The following statement is the key result for the existence of the Harder-Narasimhan filtration

of a rigid adelic space which shall be established later (see page 10).

Proposition 6. Let F and G be linear subspaces of a rigid adelic space over K. Then

H(F +G)H(F ∩G) ≤ H(F )H(G) that is, degF + degG ≤ deg(F +G) + degF ∩G.
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Proof. Let ι : F/F ∩ G → (F + G)/G be the natural isomorphism. For all v ∈ V (K) and x ∈
(F/F ∩G)⊗K Kv, we have ‖ιv(x)‖(F+G)/G,v ≤ ‖x‖F/F∩G,v (here ιv = ι⊗ idKv

). In particular, if
e1, . . . , em is an orthonormal basis of (F/F ∩G)⊗K Kv, then

‖ (det ιv) (e1 ∧ · · · ∧ em)‖det(F+G)/G,v

= ‖ιv(e1) ∧ · · · ∧ ιv(em)‖det(F+G)/G,v ≤x
Hadamard inequality

m∏
i=1

‖ιv(ei)‖(F+G)/G,v ≤
m∏
i=1

‖ei‖F/F∩G,v = 1.

In other words, the operator norm ‖det ι‖v of det ι at v is smaller than 1. Thus, using Proposition 5,
we get

H(F +G)H(F ∩G)

H(F )H(G)
=
H((F +G)/G)

H(F/F ∩G)
= H

(
(detF/F ∩G)

v ⊗ det ((F +G)/G)
)

= exp

∫
V (K)

log ‖ det ι‖v dσ(v) ≤ exp 0 = 1.

�

A slightly more natural proof can be obtained from Proposition 42.

Heights of points. Let E be an adelic space over K.

Definition 7. We shall say that the adelic space E is integrable if, for all x ∈ E \{0}, the function
V (K)→ R, v 7→ log ‖x‖E,v is σ-integrable.

A rigid adelic space is integrable as well as ε-tensor products of finitely many rigid adelic spaces.
Indeed we have:

Lemma 8. Let E be rigid adelic space and F be an integrable adelic space over K. Then E ⊗ε F
is integrable.

Proof. Using the isometric isomorphism E⊗εF ' Hom(Ev, F ), it amounts to proving that f̃ : v 7→
log ‖f‖v is σ-integrable for every f ∈ Hom(Ev, F ) \ {0}, that is, this function is Borel and its
absolute value has finite integral. For the measurability, choose a number field K0 ⊂ K such that
E,F, f are defined over K0. Then f̃ is the composite of v 7→ v|K0

and v0 ∈ V (K0) 7→ log ‖f‖v0
.

This latter function is measurable since every subset of V (K0) (endowed with its discrete topology)
is measurable. As for the restriction map v 7→ v|K0

, it is continuous by definition of the topology
put on V (K). Thus f̃ is Borel and we shall now prove that

∫
V (K)

|f̃ | < +∞. Let (e1, . . . , en) be a
K-basis of E. Since E is rigid, there exists a = (ap)p∈V (Q) ∈ A×Q such that, for all v ∈ V (K) above
p ∈ V (Q) and all x = x1e1 + · · ·+ xnen ∈ E ⊗K Kv, we have

|ap|−1
v max

1≤i≤n
{|xi|v} ≤ ‖x‖E,v ≤ |ap|v max

1≤i≤n
{|xi|v}.

Since f(x) =
∑n
i=1 xif(ei), the triangle inequality yields ‖f‖v ≤ |bp|v max1≤i≤n {‖f(ei)‖F,v} where

b∞ = na∞ and bp = ap if p 6=∞. Moreover, since f 6= 0, one can choose m ∈ {1, . . . , n} such that
f(em) 6= 0 and we bound ‖f‖−1

v ≤ ‖em‖E,v/‖f(em)‖F,v ≤ |bp|v/‖f(em)‖F,v. Thus we get

|f̃(v)| = |log ‖f‖v| = log max
{
‖f‖v, ‖f‖−1

v

}
≤ log |bp|v + max

1≤i≤n
{log ‖f(ei)‖F,v,− log ‖f(em)‖F,v}.

In the latter bound, we can restrict to indices i such that f(ei) 6= 0. Since F is integrable, then each
function appearing in the maximum is σ-integrable. We conclude with the fact that the maximum
of a finite number of σ-integrable functions is still σ-integrable (since |max {a, b}| ≤ |a|+ |b|). �

The integrability condition is the minimal condition which allows to define the height of a vector
of an adelic space.

Definition 9. Let E be an integrable adelic space over K and x ∈ E. The height HE(x) is the
nonnegative real number:

HE(0) = 0 and if x 6= 0, HE(x) = exp

∫
V (K)

log ‖x‖E,v dσ(v).
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The product formula entails that HE is a projective height: HE(λx) = HE(x) for all λ ∈ K\{0}.
Examples.

(1) ∀x = (x1, . . . , xn) ∈ Zn \ {0}, one has HQn(x) =
(
x2

1 + · · ·+ x2
n

)1/2
gcd(x1, . . . , xn)−1.

(2) Let (Ω, ‖ · ‖) be an Euclidean lattice and x ∈ EΩ. Then there exists dx ∈ Q \ {0} such that
HEΩ

(x) = ‖dxx‖.

(3) When E is a rigid adelic space of dimension 1, one has HE(x) = H(E) for all x ∈ E \ {0}.

(4) When K is a number field, one has HE(x) =
∏
v∈V (K) ‖x‖

[Kv :Qv ]/[K:Q]
E,v for all x ∈ E.

(5) Let F be the hyperplane a1x1 + · · ·+ anxn = 0 of Kn (given by (a1, . . . , an) ∈ Kn \ {0}).
Then H(F ) = HKn(a1, . . . , an) (since H(F ) = H(F⊥)).

Note that when E is a rigid adelic space, the height HE is invariant by scalar extension: for all
x ∈ E, for every algebraic extension K ′/K, one has HE⊗KK′(x) = HE(x).

Proposition 10 (Convexity inequality for heights). Let N be a positive integer and E1, . . . , EN
be integrable adelic spaces over K. Then the direct sum E1⊕ · · · ⊕EN is integrable. Moreover, for
all (x1, . . . , xN ) ∈ E1 ⊕ · · · ⊕ EN , we have(

N∑
i=1

HEi
(xi)

2

)1/2

≤ HE1⊕···⊕EN
(x1, . . . , xN ).

Proof. For the integrability, we can restrict to N = 2. Observe that for positive real numbers a, b,
we have

| log(a+ b)| ≤ log 2 + log max

{
a,

1

a

}
+ log max

{
b,

1

b

}
= log 2 + | log a|+ | log b|

and | log max {a, b}| ≤ | log a|+ | log b|. Applying this to a = ‖x1‖2E1,v
and b = ‖x2‖2E2,v

the result
comes from the definition of E1 ⊕ E2. As for the height inequality, we proceed as in [GR 2013,
Lemma 2.2]. Applying Jensen inequality on the probability space (V∞(K), σ) to the convex function
u : R→ R, u(x) = log(1 + ex), we get

1 + exp

∫
V∞(K)

log f ≤ exp

∫
V∞(K)

log(1 + f)

for every nonnegative function f . By direct induction, we have
N∑
i=1

exp

∫
V∞(K)

log fi ≤ exp

∫
V∞(K)

log(f1 + · · ·+ fN )

for all nonnegative functions f1, . . . , fN . Choosing fi(v) = ‖xi‖2Ei,v
we get the convexity inequality

but with only the archimedean part of the heights. To complete with the ultrametric part, we
multiply both sides by exp

∫
V (K)\V∞(K)

log max {f1, . . . , fN} and we bound from below this number
by exp

∫
V (K)\V∞(K)

log fi for each i. �

3. Minima and slopes

3.1. Successive minima. Let E be a rigid adelic space with dimension n ≥ 1. We denote
Λ1(E) = inf {HE(x) ; x ∈ E \ {0}}. We define three types of successive minima associated to E
(still others exist in the literature, see [GR 2017]) which have been respectively inspired by the
articles [BC 2013], [RT 1996] and [Zh 1995]. Let i ∈ {1, . . . , n}.

Bost-Chen minima: Λ(i)(E) = sup {Λ1(E/F ) ; F ⊂ E linear subspace, dimF ≤ i− 1}

Roy-Thunder minima: Λi(E) = inf {max {HE(x1), . . . ,HE(xi)} ; dim VectK(x1, . . . , xi) = i}

Zhang minima: Zi(E) = inf

{
sup
x∈S

HE(x) ; S ⊂ E, dim Zar(S) ≥ i
}
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Here Zar(S) means the Zariski closure of K.S = {ax ; a ∈ K, x ∈ S} and its dimension is the one
of the scheme over SpecK defined by the algebraic set Zar(S). We have

0 < Λ(1)(E) ≤ Λ(2)(E) ≤ · · · ≤ Λ(n)(E) <∞

= ≥ ≥
Λ1(E) ≤ Λ2(E) ≤ · · · ≤ Λn(E) <∞

= ≥ ≥
Z1(E) ≤ Z2(E) ≤ · · · ≤ Zn(E) ≤ ∞

A field K is a Northcott field if, for all B > 0, the set {x ∈ K ; HK2(1, x) ≤ B} is finite (for
instance, any number field or, according to [BZ 2001], Q(

√
2,
√

3, . . .) are Northcott fields). It can
be proved that, for every integer n ≥ 2, for every rigid adelic space E with dimE = n, we have
Zn(E) <∞ if and only if K is not a Northcott field (see [GR 2017, Proposition 4.4]).

Examples. Let n be a positive integer and i, j ∈ {1, . . . , n}.

• We have Λ(i)(Kn) = Λi(K
n) = 1.

• If K contains infinitely many roots of unity (e.g., K = Q), then Zi(Kn) =
√
i (consequence

of the convexity inequality for heights, see Proposition 10).

• Let An = {(x0, . . . , xn) ∈ Kn+1 ;
∑n
`=0 x` = 0} ⊂ Kn+1. Then Λi

(∧j
An

)
=
√
j + 1.

In the following, to unify notation, we shall sometimes use λ∗i (E) with ∗ ∈ {BC,Λ, Z} to indicate
λBC
i (E) = Λ(i)(E), λΛ

i (E) = Λi(E) or λZi (E) = Zi(E).

Basic properties. Let E be a rigid adelic space with dimension n and let i ∈ {1, . . . , n}.
(1) For any non-zero linear subspace F ⊂ E, we have λ∗i (E) ≤ λ∗i (F ) for all ∗ ∈ {BC,Λ, Z}

and i ≤ dimF .
(2) For every algebraic extension K ′/K and every ∗ ∈ {BC,Λ, Z}, we have λ∗i (EK′) ≤ λ∗i (E).

The latter property is quite easy to prove (see [GR 2017, Lemma 4.22]) except, maybe, for ∗ = BC,
for which we provide a proof (suggested by G. Rémond): Let us assume that there exists i such
that λBC

i (EK′) > λBC
i (E). We choose it as small as possible and we consider a subspace F ⊂ EK′ ,

(necessarily) with dimension i−1, such that Λ1(EK′/F ) > λBC
i (E). Let G ⊂ E be a subspace with

maximal dimension satisfying G⊗K K ′ ⊂ F . We have dimG ≤ i− 1 and so λBC
i (E) ≥ Λ1(E/G).

Then let us consider x ∈ E \ G such that Λ1(EK′/F ) > HE/G(x mod G). We have x 6∈ F
otherwise G⊕K.x has dimension greater than dimG with (G⊕K.x)⊗K K ′ ⊂ F . Hence, we have
HEK′/F

(x mod F ) ≥ Λ1(EK′/F ) > HE/G(x mod G), contradicting the fact that the w-norm of
x mod F is smaller than the w-norm of x mod G, for all w ∈ V (K ′), since EK′/F is a quotient of
(E/G)⊗K K ′.

In the following result it is convenient to put Λ0(E) = 0 when E is an (integrable) adelic space.

Proposition 11. Let N be a positive integer and let E1, . . . , EN be integrable adelic spaces over
K. Then, for all i ∈ {1, . . . ,

∑N
h=1 dimEh}, we have

Λi(E1 ⊕ · · · ⊕ EN ) = min max {Λa1(E1), . . . ,ΛaN (EN )}

where the minimum is taken over all (a1, . . . , aN ) ∈
∏N
h=1 [0,dimEh] ∩ N such that

∑N
h=1 ah = i.

In particular, Λ1(E1 ⊕ · · · ⊕ EN ) = min {Λ1(E1), . . . ,Λ1(EN )}.

Proof. Fix (a1, . . . , aN ) as above. For each j ∈ {1, . . . , N} such that aj 6= 0, let x(j)
1 , . . . , x

(j)
aj be

linearly independent vectors of Ej . Then {x(j)
h ; 1 ≤ h ≤ aj , 1 ≤ j ≤ N} forms a free family of i

vectors of E := E1 ⊕ · · · ⊕ EN . Thus, by definition of Λi, we get

Λi(E) ≤ max
{
HE

(
x

(j)
h

)
; 1 ≤ h ≤ aj , 1 ≤ j ≤ N

}
.

The infimum of the right hand side when all x(j)
h vary is precisely max {Λa1

(E1), . . . ,ΛaN (EN )} and,
then, we can take the infimum over (a1, . . . , aN ) to obtain Λi(

⊕N
j=1Ej) ≤ min maxj

{
Λaj (Ej)

}
.

For the reverse inequality, consider x(j)
h ∈ Eh for all j ∈ {1, . . . , i} and h ∈ {1, . . . , N} such that

the vectors Xj = (x
(j)
1 , . . . , x

(j)
N )’s are linearly independent. In particular X1 ∧ · · · ∧Xi 6= 0 and,
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writing this vector as a sum of x(1)
τ(1) ∧ · · · ∧ x

(i)
τ(i) over functions τ : {1, . . . , i} → {1, . . . , N}, we

deduce the existence of τ such that {x(1)
τ(1), . . . , x

(i)
τ(i)} is a free family. For each h ∈ {1, . . . , N}, let

nh be the number of u ∈ {1, . . . , i} such that τ(u) = h (the integer nh may be zero). We have∑
h nh = i and the vector space generated by {x(j)

h ; 1 ≤ j ≤ i} has dimension at least nh. From
Proposition 10, we get HE(Xj) ≥ max1≤h≤N HEh

(x
(j)
h ) for all j ∈ {1, . . . , i}, so

max
1≤j≤i

HE(Xj) ≥ max
1≤j≤i

max
1≤h≤N

HEh
(x

(j)
h ) ≥ max

1≤h≤N
Λnh

(Eh).

We then conclude by bounding from below the latter maximum by min∑
h ah=i maxh Λah(Eh). �

3.2. Slopes. In this paragraph, we define the canonical polygon of a rigid adelic space, which gives
birth to its successive slopes. These notions have their origin in the works by Stuhler [St 1976] and
Grayson [Gr 1984] (inspired by the article [HN 1975] of Harder-Narasimhan). Later on, they have
been developed by Bost in two lectures given at the Institut Henri Poincaré in 1997 and 1999 and
in [Bo 1995, Bo 2001], then extended in different ways in [Ga 2008, An 2009, Ch 2010, BC 2013].
Let E be a rigid adelic space over K and n = dimE.

Lemma 12. There exists a positive constant c(E) such that H(F ) ≥ c(E) for every linear subspace
F ⊂ E.

Proof. Let (ϕ,A) be a couple defining the adelic structure of E. There exists a = (ap)p∈V (Q) ∈ A×Q
such that, for all v ∈ V (K) above p ∈ V (Q) and for all x ∈ E ⊗K Kv,

|ap|−1
v |ϕv(x)|v ≤ ‖x‖E,v ≤ |ap|v|ϕv(x)|v.

Define |a| = exp
∫
V (K)

log |ap|v dσ(v) ≥ 1. For every subspace F ⊂ E with dimension `, we have

H(F ) ≥ |a|−`H(ϕ(F )) = |a|−`H(detϕ(F )). Since detϕ(F ) is a non-zero vector of
∧`

Kn, which
is isometric to K(n

`), we have H(detϕ(F )) ≥ 1 and the conclusion follows with c(E) = |a|−n. �

In other words, the set {degF ; F ⊂ E} is bounded from above. This result allows to define
some positive real numbers associated to E: for all i ∈ {0, . . . , n},

σi(E) = inf {H(F ) ; F linear subspace of E and dimF = i}.

For instance, σ0(E) = 1, σ1(E) = Λ1(E) and σn(E) = H(E). Note that we have σn−1(E) =
Λ1(Ev)H(E) and, more generally, σn−i(E) = σi(E

v)H(E) which comes from the isometry E/F '
(F⊥)v (Theorem 4 and Proposition 5). We also have σi(E) ≥ Λ1(

∧i
E). Lemma 12 justifies the

following

Definition 13. Let PE : [0, n] → R denote the piecewise linear function delimiting from above
the convex hull of the set

{
(dimF,degF ) ∈ R2 ; F linear subspace of E

}
. We shall call PE the

canonical polygon of E.

Of course, we can replace the latter set by the (finite) set {(i,− log σi(E)) ; i ∈ {0, . . . , n}}. By
definition, the function PE is a concave function which satisfies PE(0) = 0 and its slopes

µi(E) = PE(i)− PE(i− 1) (i ∈ {1, . . . , n})

form a nonincreasing sequence µ1(E) ≥ µ2(E) ≥ · · · ≥ µn(E), called the successive slopes of E.
The greatest slope µ1(E) is also denoted µmax(E) and the smallest slope µn(E) is µmin(E). This
terminology is also justified by the following key result.

Lemma 14. For every rigid adelic space E over K, we have

µmax(E) = max {µ(F ) ; F 6= {0} linear subspace of E}.

More precisely, there exists a (single) subspace of E, denoted Edes, such that µ(Edes) = µmax(E)
and Edes contains every linear subspace F ⊂ E satisfying µ(F ) = µmax(E).

The subscript “des” refers to the word destabilizing. The proof follows the one of [BC 2013,
Proposition 2.2].
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Proof. Let us temporarily denote by c the supremum of slopes µ(F ) when F runs over non-zero
linear subspaces of E. This is a real number by Lemma 12. Actually, if m = dimF , we have

µ(F ) =
degF

m
≤ PE(m)

m
=
µ1(E) + · · ·+ µm(E)

m
≤ µ1(E)

and so c ≤ µ1(E). On the other hand, for every linear subspace F ⊂ E, we have degF ≤ (dimF )c.
Since m 7→ mc is a concave (linear) function we deduce PE(m) ≤ mc for all m ∈ [0, n] (n = dimE).
Thus µ1(E) = PE(1) ≤ c and we get µ1(E) = c = sup {µ(F ) ; {0} 6= F ⊂ E}. Let us now prove
the existence of Edes. We proceed by induction on n. The statement is clear for n = 1 since
µ1(E) = µ(E) in this case. Assume the existence of the destabilizing rigid adelic space when the
dimension of the ambient space is at most n− 1. Let E be of dimension n. If µ1(E) = µ(E), then
Edes := E is the winner. Otherwise the set {F ⊂ E ; F 6= {0} and µ(F ) > µ(E)} is non-empty and
we can choose F in it with maximal dimension. By induction hypothesis (and since dimF ≤ n−1),
there exists Fdes such that µ(Fdes) = µmax(F ) and such that, for every linear subspace G ⊂ F with
µ(G) = µmax(F ), we have G ⊂ Fdes. Let G be a non-zero linear subspace of E. If G 6⊂ F , then
dim(F +G) > dimF and, by maximality property of dimF , we have µ(F +G) ≤ µ(E). Replacing
this information in the inequality degF + degG ≤ deg(F +G) + degF ∩G given by Proposition 6,
we get

(dimF )µ(F ) + (dimG)µ(G) ≤ (dim(F +G))µ(E) + (dimF ∩G)µmax(F )

and so

(dimG)µ(G) ≤ dim(F+G) (µ(E)− µ(F ))︸ ︷︷ ︸
<0

+ (dim(F +G)− dimF ) µ(F )︸ ︷︷ ︸
≤µmax(F )

+ (dimF ∩G)µmax(F )

then µ(G) < µmax(F ). If G ⊂ F we have µ(G) ≤ µmax(F ). Thus, every non-zero linear subspace
of E has its slope at most µmax(F ) and so µmax(E) = µmax(F ). Then the space Edes := Fdes has
the required properties. �

Definition 15. A rigid adelic space E is semistable if µ(E) = µmax(E) (that is, Edes = E).

In this case, the canonical polygon is a straight line. For instance, Kn and An (defined on pa-
ge 8) are semistable (see [GR 2013, p. 580] for An). Lemma 14 allows to define a unique filtration
of E composed of linear subspaces {0} = E0 ( E1 ( · · · ( EN = E such that Ei+1/Ei is
semistable for every i ∈ {0, 1, . . . , N − 1}: the first spaces E0, . . . , Ei being chosen, take Ei+1

satisfying Ei+1/Ei = (E/Ei)des. This filtration is called the Harder-Narasimhan filtration of E
(shortened in HN-filtration thereafter). By definition we have µ(Ei+1/Ei−1) < µ(Ei/Ei−1) and,
using degEi+1/Ei = degEi+1/Ei−1 − degEi/Ei−1, we deduce that

µ (EN/EN−1) < µ (EN−1/EN−2) < · · · < µ(E1).

Theorem 16. Let E0 = {0} ( E1 ( · · · ( EN = E be the HN-filtration of E. Let mi = dimEi.
Then m1, . . . ,mN−1 are (exactly) the points at which PE is not differentiable and PE(mi) = degEi
for all i ∈ {0, . . . , N}. Moreover, for all i ∈ {1, . . . , N} and j ∈ {1, . . . ,mi − mi−1}, we have
µmi−1+j(E) = µ(Ei/Ei−1).

The proof will use the following result (here n = dimE).

Lemma 17. Let x ∈ [0, n] such that PE is not differentiable at x. Then x is an integer and there
exists a unique linear subspace Fx ⊂ E with dimension x such that PE(x) = degFx. Moreover, if
PE is not differentiable at y ≤ x, then Fy ⊂ Fx.

Proof. By definition of PE , which is a linear function on each interval (h, h+1) for h ∈ {0, . . . , n−1},
the real number x is necessarily an integer. Since F0 = {0} and Fn = E we may assume x ∈
{1, . . . , n− 1}. The construction of PE and its non differentiability at x entail

PE(x) = sup {degF ; F linear subspace of E with dimension x}.

Then, let us choose some linear subspaces A and B of E, with dimension x, such that PE(x) ≤
degA+ ε and PE(x) ≤ degB + ε where

ε =
1

4
min

{
PE(δ)− PE(i)

δ − i
− PE(j)− PE(h)

j − h
; 0 ≤ i < δ ≤ h < j ≤ n, i, δ, h, j ∈ N

}
,
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the minimum being taken over only non-zero quantities (in particular ε > 0 by concavity of PE).
Defining j = dim(A+ B) and i = dimA ∩ B and using degA+ degB ≤ deg(A+ B) + degA ∩ B
(Proposition 6), we get 2PE(x)− 2ε ≤ PE(j) + PE(i) which, if x 6= i, implies

PE(x)− PE(i)

x− i
− PE(j)− PE(x)

j − x
≤ 2ε since x− i = j − x.

Since PE is not differentiable at x, the left hand side is positive, contradicting the definition of ε.
Thus x − i = j − x = 0, that is, A = B. We proved that there exists ε > 0 such that the set
{A ⊂ E ; dimA = x and PE(x) ≤ degA+ ε} is a singleton {Fx}. The same approach with A = Fx
and B = Fy demonstrates dim(Fx + Fy) = dimFx and so Fy ⊂ Fx when y ≤ x. �

Proof of Theorem 16. Let f0 = 0 < f1 < · · · < fM = n be the abscissae for which PE is not
differentiable and F0 = {0} ( F1 ( · · · ( FM the corresponding subspaces given by Lemma 17.
For every linear subspace F ⊂ E and every i ∈ {1, . . . ,M} such that F 6⊂ Fi−1, the concavity of
PE yields

PE(dim(F + Fi−1))− PE(fi−1)

dim(F + Fi−1)− fi−1
≤ PE(fi)− PE(fi−1)

fi − fi−1

and this inequality is strict if dim(F + Fi−1) > fi. Bounding from below PE(dim(F + Fi−1))
by deg(F + Fi−1) we get µ ((F + Fi−1)/Fi−1) ≤ µ (Fi/Fi−1) which proves that µ (Fi/Fi−1) =
µmax(E/Fi−1). The equality can occur only if dim(F + Fi−1) ≤ fi and so Fi/Fi−1 = (E/Fi−1)des.
Thus the sequence (Fi)i satisfies the same definition as the HN-filtration of E and, by unicity, it is
the same: N = M and Fi = Ei and fi = mi for all i. As for the equality µmi−1+j(E) = µ(Ei/Ei−1),
it comes from the fact that µmi−1+1(E) = · · · = µmi(E) (since PE is a line on [mi−1,mi]) and

mi−mi−1∑
j=1

µmi−1+j(E) =

mi−mi−1∑
j=1

PE(mi−1 + j)− PE(mi−1 + j − 1)

= PE(mi)− PE(mi−1) = deg (Ei/Ei−1) = (mi −mi−1)µ (Ei/Ei−1) .

�

From Theorem 16 can be deduced a minimax formula for µi(E).

Proposition 18. Let E be a rigid adelic space over K and i ∈ {1, . . . ,dimE}. Then

µi(E) = sup
A

inf
B
µ (A/B) = inf

B
sup
A
µ (A/B)

where B ⊂ A run over linear subspaces of E with dimB ≤ i− 1 < dimA.

Proof. Let E0 = {0} ( E1 ( · · · ( EN = E be the HN-filtration of E. Let h ∈ {0, . . . , N − 1}
such that dimEh ≤ i − 1 < dimEh+1. Let A be a linear subspace of E with dimension ≥ i (in
particular A 6⊂ Eh). Using Theorem 16, Lemma 14 and Proposition 6, we get

µi(E) = µmax(E/Eh) ≥ µ((A+ Eh)/Eh) ≥ µ(A/(A ∩ Eh))

which is greater than inf {µ(A/B) ; B ⊂ A and dimB ≤ i− 1}. Taking the supremum over A, we
obtain µi(E) ≥ α := supA infB µ(A/B). On the other hand, the concavity of PE implies

µ (Eh+1/B) ≥ PE(dimEh+1)− PE(dimB)

dimEh+1 − dimB
≥ µ (Eh+1/Eh) = µi(E)

for any linear subspace B ⊂ Eh+1 with dimension < i. We conclude using α ≥ infB µ (Eh+1/B).
The same method works with infB supA µ (A/B). �

In particular we have µn(E) = µmin(E) = inf {µ (E/F ) ; F ( E} (where n = dimE). Actually
the infimum is a minimum as the next proposition and Lemma 14 prove it.

The following statement summarizes several properties of the canonical polygon of a rigid adelic
space over an algebraic extension K.

Proposition 19. Let E be a rigid adelic space over K with dimension n.
1) If L is a rigid adelic space over K with dimension 1, then, for all x ∈ [0, n], we have

PE⊗L(x) = PE(x) + x degL. In particular, for all i ∈ {1, . . . , n}, we have µi(E ⊗ L) =
µi(E) + degL.
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2) For all x ∈ [0, n], we have PEv(x) = PE(n−x)−degE. In particular, for all i ∈ {1, . . . , n},
we have µi(Ev) = −µn+1−i(E).

3) Let K ′/K be an algebraic extension. Then we have PEK′ = PE. In particular, for all
i ∈ {1, . . . , n}, we have µi(EK′) = µi(E).

The last property means that the µi’s are absolute minima (that is, over an algebraic closure of
K). The similar feature is not true in general for λ∗i ’s. Moreover this proposition can be restated
in terms of the HN-filtration E0 = {0} ⊂ E1 ⊂ · · · ⊂ EN = E of E: The HN-filtrations of E⊗K L,
Ev, EK′ are (respectively) (Ei ⊗K L)i, (E⊥N−i)i and ((Ei)K′)i.

Proof. 1) Since PE is a linear function on each interval [i, i + 1], i ∈ {0, . . . , n − 1}, it is enough
to prove the equality for x = m ∈ {0, . . . , n}. For every subspace F ⊂ E with dimension m,
we have dimF ⊗K L = m and degF + mdegL = degF ⊗K L ≤ PE⊗KL(m). So degF ≤
PE⊗KL(m) − m degL and since the function m 7→ PE⊗KL(m) − mdegL is concave we deduce
PE(m) ≤ PE⊗KL(m)−m degL. The reverse inequality is obtained replacing E by E ⊗K L and L
by Lv (using the fact that L⊗K Lv is isometric to K). The equality for the i-th slopes arises from
this equality for connecting the canonical polygons and from the definition of µi.
2) As previously, it is enough to prove the equality for x = m ∈ {0, . . . , n}. For a subspace F ⊂ E
with dimension m, the isometric isomorphism E/F '

(
F⊥
)v yields degF − degE = degF⊥ and

degF ≤ degE + PEv(n−m). Then we deduce PE(m) ≤ degE + PEv(n−m) since the right hand
side is a concave function of m. For the reverse inequality, replace E by Ev, m by n−m and use
(Ev)

v ' E (Theorem 4).
3) For every subspace F ⊂ E with dimension m, we have degF = degF ⊗K K ′ and so degF ≤
PEK′ (m) and then PE(m) ≤ PEK′ (m). It implies that in order to prove the reverse inequality,
we may assume that K ′/K is Galois. Let {0} = F0 ( F1 ( · · · ( FN = E ⊗K K ′ be the HN-
filtration of EK′ and di = dimFi. Let e1, . . . , en be a K-basis of E. For every τ ∈ Gal(K ′/K),
the correspondence ιτ : E ⊗K K ′ → E ⊗K K ′ which sends

∑n
i=1 xiei (xi ∈ K ′) to

∑n
i=1 τ(xi)ei

is a bijection that preserves dimension and degree of subspaces of EK′ . Using Theorem 16 and
Lemma 17, we deduce ιτ (Fi) = Fi for all i. Now, let us fix i ∈ {1, . . . , N}. Even if it means
permuting the vectors e1, . . . , en, we can find a K ′-basis f1, . . . , fdi of Fi and scalars αj,h ∈ K ′ for
all 1 ≤ j ≤ di and di + 1 ≤ h ≤ n such that

(?) ∀ j ∈ {1, . . . , di}, fj = ej +

n∑
h=di+1

αj,heh (Gaussian elimination).

The Galois closureK ′0 of the field generated byK and all algebraic numbers αj,h’s is both a subfield
of K ′ and a finite extension of K. So we can consider its normalized trace function Tr: K ′0 → K
(Tr(1) = 1). Since ιτ (Fi) = Fi for all τ ∈ Gal(K ′0/K), the vector

Tr fj :=
1

[K ′0 : K]

∑
τ∈Gal(K′0/K)

ιτ (fj)

belongs to Fi for all j ∈ {1, . . . , di}. With (?), the element Tr fj can also be written
ej+

∑n
h=di+1 Tr(αj,h)eh which implies, in particular, Tr fj ∈ E and the family {Tr f1, . . . ,Tr fdi} is

free. Then the linear subspace Gi := VectK (Tr f1, . . . ,Tr fdi) of Fi has the same dimension di as Fi
and so Fi = Gi⊗KK ′. We deduce PEK′ (di) = degFi = degGi ≤ PE(di), hence PEK′ (di) = PE(di).
Since PEK′ is linear on [di, di+1] and PE ≤ PEK′ are both concave functions on this interval, we
get the equality PE = PEK′ on [di, di+1] and then on [0, n] by varying i. �

In general PE is difficult to compute, starting with its first value PE(1) = µmax(E). To conclude
this paragraph, let us outline an application of the above results to direct sums of rigid adelic
spaces, obtaining a counterpart to the formula for Λi(E1 ⊕ · · · ⊕ EN ) given by Proposition 11. In
the following statement, the term µa(E) is +∞ if a < 1 and −∞ if a > dimE.

Theorem 20. Let E,F be some rigid adelic spaces over K and (E`)`∈{0,...,N} and (Fh)h∈{0,...,M}
their respective HN-filtrations. Then the HN-filtration of E ⊕ F is formed with some subspaces of
the shape E`⊕Fh, beginning with {0}. To go from one notch to the next, the rule is the following:
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E` ⊕ Fh

E`+1 ⊕ Fh if µ (E`+1/E`) > µ (Fh+1/Fh)

E`+1 ⊕ Fh+1 if µ (E`+1/E`) = µ (Fh+1/Fh)

E` ⊕ Fh+1 if µ (E`+1/E`) < µ (Fh+1/Fh).

In particular we have µi(E ⊕ F ) = max
a,b∈N
a+b=i

min {µa(E), µb(F )} for all i ∈ N.

A straightforward induction yields a formula for the i-th slope of a general direct sum: Let N
be a positive integer and E1, . . . , EN be some rigid adelic spaces over K. Then, for all i, we have

µi(E1 ⊕ · · · ⊕ EN ) = max
a1,...,aN∈N
a1+···+aN=i

min {µa1
(E1), . . . , µaN (EN )}.

The key statement for proving Theorem 20 is

Lemma 21. Let A,B be rigid adelic spaces over K. Then we have

(A⊕B)des =


Ades if µmax(A) > µmax(B)

Ades ⊕Bdes if µmax(A) = µmax(B)

Bdes if µmax(A) < µmax(B).

From this lemma we deduce at once the well-known formula

µmax(A⊕B) = max {µmax(A), µmax(B)}.

Moreover, it can be checked that the map Av ⊕ Bv → (A⊕B)
v, (ϕ,ψ) 7→ ((a, b) 7→ ϕ(a) + ψ(b))

is an (isometric) isomorphism of rigid adelic spaces. In particular their maximal slopes are equal.
Then Proposition 19 and Lemma 21 give µmin(A⊕B) = min {µmin(A), µmin(B)}.

Proof of Lemma 21. First note that since A and B are linear subspaces of A ⊕ B, their maximal
slopes are at most the maximal slope of A⊕B (Lemma 14). Now let us consider C = (A⊕B)des,
CA = C ∩ A and CB = Im(C → B) where C → B is the restriction to C of the second projection
A⊕B → B. The linear space CB is isometrically isomorphic to (A+ C)/A. Then, if CA and CB
are not reduced to {0}, Proposition 6 implies

µ(C) ≤ nAµ(CA) + nBµ(CB)

nA + nB

where nA = dimCA and nB = dimCB . Since CA ⊂ A and CB ⊂ B, we deduce µmax(A ⊕ B) =
µ(C) ≤ max {µmax(A), µmax(B)}. In view of the lower bound for µ(C) mentioned at the beginning,
it is necessarily an equality and so µ(C) = µ(CA) = µ(CB) = µmax(A) = µmax(B). From Lemma 14
we deduce CB ⊂ Bdes and the same reasoning with CA (we still have CA and CB non-zero) proves
that CA ⊂ Ades. Finally we get C ⊂ Ades ⊕ Bdes and, since this latter space has slope equal
to µmax(A ⊕ B), we have C = Ades ⊕ Bdes. If CA = {0}, then µ(C) ≤ µ(CB) ≤ µmax(B); so
there is equality and Bdes ⊂ C

∼−→ CB ⊂ Bdes. This proves that C = Bdes. Besides we have
µmax(B) > µmax(A) since otherwise there would be equality and we should have Ades ⊂ C, then
Ades ⊂ CA, contradicting CA = {0}. When CA 6= {0} but CB = {0} we have C = C ∩ A and
µ(C) = µmax(A), so Ades = C. Here again we have µmax(A) > µmax(B) since otherwise we should
have Bdes ⊂ C, contradicting CB = {0}. �

To prove Theorem 20 we shall use the fact that if E′ is a non-zero linear subspace of a rigid
adelic space E, then µi(E′) ≤ µi(E) for all i (consequence of Proposition 18).

Proof of Theorem 20. We build the HN-filtration of E ⊕ F step by step. Let us suppose that we
got the notch E` ⊕ Fh where the integers `, h may be zero. According to the construction of the
HN-filtration (p. 10), the next step in the filtration of E⊕F is its subspace G, (strictly) containing
E` ⊕ Fh such that

G/E` ⊕ Fh = (E ⊕ F/E` ⊕ Fh)des = (E/E` ⊕ F/Fh)des .
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Then we apply the previous lemma to A = E/E` and B = F/Fh. It gives the first part of Theo-
rem 20 by observing that Ades = E`+1/E` and Bdes = Fh+1/Fh. Let us now establish the formula
for the i-th slope of E⊕F . Define δ(i) = maxa+b=i min {µa(E), µb(F )} and fix a ∈ {1, . . . ,dimE}
and b ∈ {1, . . . ,dimF} such that a + b = i for some i ∈ {1, . . . ,dimE + dimF}. There exists
` ∈ {0, . . . , N − 1} (resp. h ∈ {0, . . . ,M − 1}) such that µa(E) = µ(E`+1/E`) (resp. µb(F ) =
µ(Fh+1/Fh)). Besides we have a ∈ {dimE`+1, . . . ,dimE`+1} and b ∈ {dimFh+1, . . . ,dimFh+1}.
Then we have

µi(E ⊕ F ) ≥ µdimE`+1+dimFh+1
(E ⊕ F )

≥ µdimE`+1+dimFh+1
(E`+1 ⊕ Fh+1) = µmin(E`+1 ⊕ Fh+1)

= min {µmin(E`+1), µmin(Fh+1)} = min {µa(E), µb(F )}.

If a or b equals i, this inequality remains true since µi(E ⊕ F ) ≥ max {µi(E), µi(F )}. Thus, for
all i, we have µi(E ⊕ F ) ≥ δ(i). Observe now that i 7→ δ(i) is a nonincreasing function since, for
a+ b = i+ 1, we have

min {µa(E), µb(F )} ≤

{
min {µa−1(E), µb(F )} if a ≥ 1,

min {µa(E), µb−1(F )} if a = 0.

Starting from E` ⊕ Fh, let us call G the next notch in the HN-filtration of E ⊕ F . We now
prove that µi(E ⊕ F ) = δ(i) for i ∈ {dimE` + dimFh + 1, . . . ,dimG}. The crucial observation
is that either Fh = {0} or Fh 6= {0} and the appearance of Fh at the notch E` ⊕ Fh was caused
by the fact that ` = 0 and µ(Fh/Fh−1) > µmax(E) or that ` ≥ 1 and the slope µ(Fh/Fh−1) is
greater than µ(Em/Em−1) = µdimEm(E) for some integer 1 ≤ m ≤ `. In every case, we have
µdimFh

(F ) > µdimE`+1
(E). The same reasoning with E` gives µdimE`

(E) > µdimFh+1
(F ). Now, if

µ(E`+1/E`) > µ(Fh+1/Fh), then G = E`+1 ⊕ Fh and

δ(i) ≥ δ(dimG) ≥ min
{
µdimE`+1

(E), µdimFh
(F )
}

= µdimE`+1
(E) = µi(E ⊕ F ).

The two other possibilities for G are treated in the same way, which allows to conclude. �

4. Comparisons between minima and slopes

4.1. Lower bounds. The following inequality is as simple as fundamental. It is an extension
of the fact that n ∈ Z and n 6= 0 implies 1 ≤ |n| and can be seen as a variant of the Liouville
inequality in transcendence theory. Let E be a rigid adelic space over K with dimension n.

Proposition 22. We have 1 ≤ Λ1(E) expµ1(E).

Proof. Observe that for every x ∈ E \ {0}, we have − logHE(x) = degK.x ≤ PE(1) = µ1(E). We
conclude using Λ1(E) = inf {HE(x) ; x ∈ E \ {0}}. �

Corollary 23. For all i ∈ {1, . . . , n}, we have 1 ≤ Λ(i)(E) expµi(E).

In particular 1 ≤ λ∗i (E) expµi(E) for all ∗ ∈ {BC,Λ, Z} (since Λ(i)(E) ≤ Λi(E) ≤ Zi(E)).

Proof. Let i ∈ {1, . . . , n} and E0 = {0} ( E1 ( · · · ( EN = E be the HN-filtration of E. Consider
the index h such that dimEh ≤ i− 1 < dimEh+1, so that the maximal slope of E/Eh is equal to
µi(E) (Theorem 16). We apply the previous proposition to E/Eh and we conclude bounding from
above Λ1(E/Eh) by Λ(i)(E). �

Corollary 24. We have H(E) ≤
∏n
i=1 Λ(i)(E).

Proof. We multiply the inequalities of the previous corollary and we use
∑n
i=1 µi(E) = degE =

− logH(E). �

Often, the weaker Hadamard inequality H(E) ≤ Λ1(E) · · ·Λn(E) is used.
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4.2. Upper bounds. Let us recall that λ∗i (E) = Λ(i)(E), Λi(E) or Zi(E) according to ∗ = BC,
Λ or Z. Given a positive integer n, let us define several constants:

• cI(n,K) = sup
dimE=n

Λ1(E)H(E)−1/n = sup
dimE=n

Λ1(E) expµ(E)

• c∗II(n,K) = sup
dimE=n

(
λ∗1(E) · · ·λ∗n(E)

H(E)

)1/n

• ∀ i ∈ {1, . . . , n}, c∗i (n,K) = sup
dimE=n

λ∗i (E) expµi(E).

Here the suprema are taken upon all the rigid adelic spaces over K with dimension n. As
in [GR 2017, § 4.8], we can prove that it is enough to consider hyperplanes of the standard space
Kn+1 (instead of E) to obtain the same numbers. Note that these constants can be infinite (see
below).

Some simple observations. Here n is a positive integer.
1) The number cI(n,Q) = cΛII (n,Q) is the square root of the Hermite constant γn mentioned

at the beginning of the text.
2) We have 1 ≤ cI(n,K) ≤ cBC

II (n,K) ≤ cΛII (n,K) ≤ cZII (n,K).
3) We have c∗II(n,K)n ≤

∏n
i=1 c

∗
i (n,K).

4) For all i ∈ {1, . . . , n}, we have 1 ≤ c∗i (n,K) ≤ c∗II(n,K)n.
5) The function n 7→ cI(n,K)n is nondecreasing.

To prove this last property, we can take E ⊕ L with dimL = 1 and H(L) = Λ1(E). To my
knowledge it is not known whether n 7→ cI(n,K) is nondecreasing, even for K = Q. Nevertheless
we shall see it is true when K = Q. In the opposite direction, we have the

Theorem (Mordell inequality). For every integer n ≥ 2, we have cI(n+1,K) ≤ cI(n,K)n/(n−1).

Proof. Let E be a rigid adelic space of dimension n+ 1. Let ε be a positive real number and x ∈
E \{0} such that HE(x) ≤ Λ1(E)+ε. The hyperplane F = {x}⊥ ⊂ Ev satisfies Λ1(Ev) ≤ Λ1(F ) ≤
cI(n,K)H(F )1/n. Since F ' (E/K.x)

v, we have H(F ) = HE(x)/H(E) ≤ Λ1(E)/H(E) + ε/H(E).
Replacing this bound in the previous inequality and letting ε→ 0 leads to

Λ1 (Ev) ≤ cI(n,K)

(
Λ1(E)

H(E)

)1/n

.

Applying this estimate to Ev instead of E and combining both inequalities we obtain Λ1(E) ≤
cI(n,K)n/(n−1)H(E)1/(n+1). �

With a bit more pain, one can also prove that cZII (n,K) ≤ cZII (2,K)2n

(see [GR 2017, Proposi-
tion 4.14]). Let us also mention the analogue of Minkowski’s theorem: For every positive integer n,
we have cI(n,K) = cΛII (n,K) (in particular cI(n,K) = cBC

II (n,K)). The proof is based on a defor-
mation metric argument. To a rigid adelic space E over K, we associate another rigid adelic space
E′ such that Λ1(E′) ≥ 1 and H(E′) = H(E) (Λ1(E) · · ·Λn(E))

−1 (see [GR 2017, Theorem 4.12]).

Definition 25. An algebraic extension K/Q is called a Siegel field if cΛII (n,K) <∞ for all n ≥ 1.

With the previous observations, K is a Siegel field if and only if cI(2,K) < ∞. In a more
elementary approach, K is a Siegel field if and only if it has the following property: There exists
a positive real number α such that, for every (a, b, c) ∈ K3 \ {0} there exists (x, y, z) ∈ K3 \ {0}
such that ax+ by + cz = 0 and HK3(x, y, z) ≤ αHK3(a, b, c)1/2.

Examples of Siegel fields.
• Q, number fields (Minkowski),
• Q (Zhang [Zh 1995] and Roy & Thunder [RT 1996]),
• Hilbert class field towers of number fields [GR 2017, § 5.5].

Note that a finite extension of a Siegel field is still a Siegel field.
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The following result comes from [GR 2017, Theorem 1.1 and Corollary 1.2].

Theorem 26.
1) ∀n ≥ 2, cZII (n,K) <∞ if and only if K is a Siegel field of infinite degree.

2) A Northcott field is a Siegel field if and only if it is a number field.

The second claim is a direct consequence of the first one: If K is both a Northcott and a Siegel
field, then Zi(E) = ∞ for all i ∈ {2, . . . ,dimE} and so cZII (n,K) = ∞ as soon as n ≥ 2 and by
1), K is a number field. Besides the implication ⇒ in 1) is easy enough: use cΛII (n,K) ≤ cZII (n,K)
and Zi(E) =∞ for 2 ≤ i ≤ dimE when K is a number field. So the striking part of Theorem 26
is that it suffices to be a Siegel field of infinite degree to have cZII (2,K) < ∞. The proof rests on
a deformation metric argument at some ultrametric place, much more subtle than for Minkowski
theorem (see [GR 2017, § 4.6]). To be a little more precise, let us define the impurity index u(K) of
an algebraic extension K/Q. If v ∈ V (K) \V∞(K) we denote by σ(v) the measure of the singleton
{v}, by pv the prime number associated to v, by ev the ramification index at v and by fv its
residual degree. The impurity index of K is

u(K) := sup
N≥1

inf
{
pσ(v)/ev
v ; v ∈ V (K) \ V∞(K), pfvv ≥ N

}
with the conventions: pσ(v)/ev

v = 1 if ev = +∞ (or σ(v) = 0) and pfvv ≥ N is true if fv = +∞. We
can check that u(K) < +∞ if and only if [K : Q] = ∞. Note also that u(Q) = 1 and that, for
every real number B, there exists an algebraic extension K such that B < u(K) < +∞.

Proposition 27. Let E be a rigid adelic space over K with dimension n. For each i ∈ {1, . . . , n},
let αi be a real number such that 0 < αi < Zi(E). Then there exists a rigid adelic space E′ over
K with dimension n such that

α1 · · ·αn
H(E)

≤ (u(K)Λ1(E′))
n

H(E′)
.

This proposition leads to the bound cZII (n,K) ≤ u(K)cI(n,K) for all n ≥ 1, thus yielding the
first equivalence in Theorem 26.

In short, every constant cI(n,K), c∗II(n,K), c∗i (n,K) is finite when K is a Siegel field of infinite
degree and, if ∗ 6= Z, this remains true when K is a number field. In everyday life it is useful
to have some concrete bounds for c∗II(n,K). In general it seems to be a difficult problem. Let us
mention two cases (see [GR 2017, § 5.1 and § 5.2]):

1) If K is number field with root discriminant δK/Q = |∆K/Q|1/[K:Q], then

cI(n,K) = cΛII (n,K) ≤
(
nδK/Q

)1/2
.

2) If K = Q, then

cI(n,Q) = cBC
II (n,Q) = cΛII (n,Q) = cZII (n,Q) = exp

(
Hn − 1

2

)
where Hn =

∑n
i=1 1/i.

The numbers cI(n,Q) are the only Hermite constants computed for every positive integer n, a
situation which contrasts with the classical case K = Q.

Let us now discuss in more details the constants c∗i (n,K).

Proposition 28. For every integer n ≥ 1, we have c∗1(n,K) = max
1≤i≤n

cI(i,K).

Proof. The constant c∗1(n,K) does not depend on ∗ since λ∗1(E) = Λ1(E) and so c∗1(n,K) =
supdimE=n Λ1(E) expµ1(E). Let us consider a rigid adelic space E over K with dimension n and
Edes its destabilizing space. If d = dimEdes we have Λ1(E) ≤ Λ1(Edes) and µ1(E) = µ(Edes). So
we get

Λ1(E) expµ1(E) ≤ Λ1(Edes) expµ(Edes) ≤ cI(d,K) ≤ max
1≤i≤n

cI(i,K).
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Conversely, let F be a rigid adelic space of dimension i ∈ {1, . . . , n} and G = L⊕(n−i) where
L is a rigid adelic line with Λ1(L) = Λ1(F ). Then we have dimF ⊕ G = n, Λ1(F ⊕ G) =
min {Λ1(F ),Λ1(G)} = Λ1(F ) (Proposition 11) and µ(F ) ≤ µ1(F ⊕ G) (since F is a subspace of
F ⊕G). We get

Λ1(F ) expµ(F ) ≤ Λ1(F ⊕G) expµ1(F ⊕G) ≤ c∗1(n,K)

and so cI(i,K) ≤ c∗1(n,K). �

Proposition 29. For every positive integer n and ∗ ∈ {BC,Λ, Z}, we have c∗1(n,K) ≤ c∗2(n,K) ≤
· · · ≤ c∗n(n,K).

The proof rests on two auxiliary results.

Lemma 30. We have c∗i (n,K) ≤ c∗i (n+ 1,K) for every integer i ∈ {1, . . . , n}.

Proof. Let E be a rigid adelic space of dimension n. For any rigid adelic line L, we have
min {λ∗i (E),Λ1(L)} ≤ λ∗i (E ⊕ L). Indeed, for ∗ = BC and F ⊂ E of dimension ≤ i− 1,

min {Λ1(E/F ),Λ1(L)} = Λ1 ((E/F )⊕ L) = Λ1 ((E ⊕ L) / (F ⊕ {0})) ≤ λBC
i (E ⊕ L)

and we make Λ1(E/F )→ λBC
i (E). For ∗ = Λ or Z we use Proposition 10: Consider a subset S ⊂

E⊕L such that Vect(S) or Zar(S) has dimension≥ i. Either S ⊂ E and we have supx∈S HE⊕L(x) =
supx∈S HE(x) ≥ λ∗i (E). Or there exists a ∈ E and ` ∈ L \ {0} such that (a, `) ∈ S and then
supx∈S HE⊕L(x) ≥ HE⊕L(a, `) ≥ HL(`) = Λ1(L). In any case, we get the wanted inequality for
λ∗i (E ⊕ L). Next, choosing L such that Λ1(L) = λ∗i (E), we get λ∗i (E) ≤ λ∗i (E ⊕ L). Moreover we
have µi(E) ≤ µi(E ⊕ L) (see the comment before the proof of Theorem 20, on page 13). So

λ∗i (E) expµi(E) ≤ λ∗i (E ⊕ L) expµi(E ⊕ L) ≤ c∗i (n+ 1,K)

and Lemma 30 follows. �

Lemma 31. The function n 7→ c∗n(n,K) is nondecreasing.

Proof. Let L be a rigid adelic line over K such that Λ1(L) = exp (−µmin(E)). We have λ∗n+1(E ⊕
L) ≥ λ∗n(E) and, by Theorem 20, we have µmin(E⊕L) = min {µmin(E), µmin(L)} = µmin(E) since
µmin(L) = degL = µmin(E). We get

λ∗n(E) expµmin(E) ≤ λ∗n+1(E ⊕ L) expµmin(E ⊕ L) ≤ c∗n+1(n+ 1,K).

�

Proof of Proposition 29. We proceed by induction on n assuming c∗i (j,K) ≤ c∗i+1(j,K) is true for
all integers j ≤ n − 1 and i ≤ j − 1. Let E be a rigid adelic space of dimension n and an integer
0 ≤ i ≤ n − 1. If µi(E) = µi+1(E), then λ∗i (E) expµi(E) ≤ λ∗i+1(E) expµi+1(E) ≤ c∗i+1(n,K).
Otherwise the HN-filtration {0} ( E1 ( · · · ( EN = E of E is not trivial (that is, N ≥ 2).

• If i+1 ≤ dimEN−1, then µi(E) = µi(EN−1) (since the restriction of the canonical polygon
of E to the interval [0,dimEN−1] equals PEN−1

). We deduce

λ∗i (E) expµi(E) ≤ λ∗i (EN−1) expµi(EN−1) ≤ c∗i (dimEN−1,K)

≤
↑

Induction hypothesis

c∗i+1(dimEN−1,K) ≤
↑

Lemma 30

c∗i+1(n,K).

• If i + 1 > dimEN−1, then dimEN−1 = i since µj(E) = µmin(E) for j ≥ dimEN−1 + 1
and µi(E) 6= µi+1(E) (see Theorem 16). Thus we get µi+1(E) = µmin(E) and µi(EN−1) =
µmin(EN−1) = µi(E). We deduce

λ∗i (E) expµi(E) ≤ λ∗i (EN−1) expµi(EN−1) ≤ c∗i (i,K) ≤
↑

Lemma 31

c∗i+1(i+ 1,K) ≤
↑

Lemma 30

c∗i+1(n,K).

In any case, we have λ∗i (E) expµi(E) ≤ c∗i+1(n,K), which implies Proposition 29. �

Actually, for ∗ = BC, we have cBC
1 (n,K) = · · · = cBC

n (n,K). Indeed, for every linear subspace
F ( E, we have Λ1(E/F ) expµmax(E/F ) ≤ c1(n,K) (= cBC

1 (n,K)). Using Proposition 18, we get
Λ1(E/F ) expµmin(E) ≤ c1(n,K) and, taking the supremum over F allows to replace Λ1(E/F ) by
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Λ(n)(E). In the end, we obtain cBC
n (n,K) ≤ c1(n,K) and the equality follows from Proposition 29.

In summary we have

cI(n,K) = cBC
II (n,K) = cΛII (n,K)
≥

cBC
1 (n,K) = cBC

2 (n,K) = · · · = cBC
n (n,K)

= ≥ ≥
cΛ1 (n,K) ≤ cΛ2 (n,K) ≤ · · · ≤ cΛn(n,K)

= ≥ ≥
cZ1 (n,K) ≤ cZ2 (n,K) ≤ · · · ≤ cZn (n,K)

=
max

1≤i≤n
cI(i,K)

Other relations between these constants.

Proposition 32. Let E be a rigid adelic space of dimension n over K. Then, for every m ∈
{1, . . . , n} and every ∗ ∈ {BC,Λ, Z}, we have

1) λ∗1(E) · · ·λ∗m(E) expPE(m) ≤ c∗II(n,K)n,

2) λ∗1(E) · · ·λ∗m(E) ≤ c∗II(n,K)mH(E)m/n.

Question 33. Is the first bound true with c∗II(n,K)m on the right hand side?

Since PE(m) ≥ mµ(E), a positive answer to this question would improve both 1) and 2) of the
proposition. A weak form of Question 33 might be:

Question 34. Is c∗i (n,K) ≤ c∗II(n,K)i for 1 ≤ i ≤ n?

One can prove that these last two questions have affirmative answers if n 7→ c∗II(n,K) is a
nondecreasing function.

Proof of Proposition 32. For the first inequality, we use the definition of the constant c∗II(n,K)
and λ∗i (E) expµi(E) ≥ 1 for every i ∈ {m + 1, . . . , n} (Corollary 23). We get the result with
degE −

∑n
i=m+1 µi(E) = PE(m). As for the second inequality, we still use the definition of

c∗II(n,K) but, i being as above, we bound from below λ∗i (E) by (λ∗1(E) · · ·λ∗m(E))
1/m. �

Regarding the second point of the proposition, one can prove that if, for i ∈ {1, . . . , n}, we
denote by

a∗i (n,K) = sup
dimE=n

(λ∗1(E) · · ·λ∗i (E))
1/i

H(E)1/n

(E varies among rigid adelic spaces over K of dimension n), then cI(n,K) = a∗1(n,K) ≤ a∗2(n,K) ≤
· · · ≤ a∗n(n,K) = c∗II(n,K). In particular, when cI(n,K) = c∗II(n,K), all these constants are equal
and c∗II(n,K) is the best constant in Proposition 32-2). There exist other constants in the literature
such as the Rankin constant associated to two integers 1 ≤ m ≤ n and to an algebraic extension
K:

R(m,n,K) = sup

{
σm(E)

H(E)m/n
; dimE = n

}
(recall σm(E) = inf {H(F ) ; F ⊂ E, dimF = m}, see page 9). We leave the following properties
as an exercise, whose solution can be found in the book [Ma 2003, § 2.8] by Martinet. Here
1 ≤ i ≤ m ≤ n are integers and R(m,n,K) is shortened in R(m,n) since K is fixed.

a) R(1, n) = cI(n,K),
b) R(m,n) = R(n−m,n),
c) R(m,n) ≤ cI(n,K)m,
d) R(i, n) ≤ R(i,m)R(m,n)i/m (Generalization of Mordell inequality),
e) a∗i (n,K) ≤ a∗i (m,K)R(m,n)1/m.



MINIMA AND SLOPES OF RIGID ADELIC SPACES 19

4.3. Transference theorems. Let E be a rigid adelic space of dimension n over K and let i ∈
{1, . . . , n}. A transference theorem gives an upper bound of λ∗i (E)λ∗n−i+1(Ev) for ∗ ∈ {BC,Λ, Z}.
To establish such a theorem, we are therefore naturally led to introduce the following quantity:

t∗i (n,K) := sup
{
λ∗i (E)λ∗n−i+1(Ev) ; dimE = n

}
where E varies among rigid adelic spaces over K with dimension n. From the definition, we get
t∗i (n,K) = t∗n−i+1(n,K) and tBC

i (n,K) ≤ tΛi (n,K) ≤ tZi (n,K). Also note that Proposition 19
implies that the product

λ∗i (E)λ∗n−i+1(Ev) = (λ∗i (E) expµi(E))
(
λ∗n−i+1(Ev) expµn−i+1 (Ev)

)
is greater than 1 (Corollary 23) and at most c∗i (n,K)c∗n−i+1(n,K). Moreover we have

λ∗i (E) expµi(E) ≤ λ∗i (E)λ∗n−i+1(Ev) and so, c∗i (n,K) ≤ t∗i (n,K).

That proves that t∗i (n,K) < ∞ is a real number as soon as K is a Siegel field for ∗ ∈ {BC,Λ} or
a Siegel field of infinite degree for ∗ = Z. We do not know if we can expect a polynomial bound
in n for t∗i (n,K) when K is a Siegel field. In particular can we bound tZi (n,Q) polynomially in n?
In a very optimistic view, we would like to answer positively to the

Question 35. Is t∗i (n,K) ≤ c∗II(n,K)2 true?

The square might be justified by several observations. Firstly, this inequality (and even the
equality) is true for n = 2 and ∗ = Λ (Theorem 37 below). Then, for K = Q, we have
cZII (n,Q)2 = exp (Hn − 1) ' n whereas tZi (n,Q) ≥ Zi(Q

n
)Zn−i+1(Qn) =

√
i(n− i+ 1) is greater

than n/2 for i = b(n + 1)/2c. That proves we cannot replace the square by a lower exponent in
Question 35. Moreover, for ∗ = BC, since cBC

i (n,K) = cBC
n−i+1(n,K) = c1(n,K) (see page 17), we

have tBC
i (n,K) ≤ c1(n,K)2. However cBC

II (n,K) = cI(n,K) ≤ c1(n,K) and so we only got a weak
version of Question 35. At last we have the following result valid for any number field and proved
by Banaszczyk for K = Q in his article [Ba 1993]. The upper bound for tΛi (n,K) given hereunder
is not too far from cΛII (n,K)2 = cI(n,K)2 if we take into account the inequalities

nδ
(1−1/n)
K/Q

25 max {1, log δK/Q}
2/n
≤ cΛII (n,K)2 ≤ nδK/Q

where δK/Q =
∣∣∆K/Q

∣∣1/[K:Q] is the root discriminant of K (see [GR 2017, Proposition 5.2]).

Theorem 36. When K is a number field, we have tΛi (n,K) ≤ nδK/Q.

Let us outline the proof. The problem is to reduce to the case K = Q and to apply Banaszczyk’s
theorem. For this, we use the scalar restriction ResK/QE of a rigid adelic space E over a number
field K (for a more general finite extension L/K, see [GR 2017, Lemma 4.24]). It is the rigid adelic
space over Q built from the space E viewed as a Q-vector space (with dimension [K : Q] dimE)
endowed with

‖x‖ResK/Q E,∞ =

 ∑
v∈V∞(K)

[Kv : Qv]‖x‖2E,v

1/2

at the archimedean place ∞ of Q and ‖x‖ResK/Q E,p = maxv|p ‖x‖2E,v at ultrametric places p of Q.
By [GR 2017, Lemma 4.29], the height of ResK/QE is

H
(
ResK/QE

)
= H(E)[K:Q]

∣∣∆K/Q
∣∣(dimE)/2

.

Associated to K we also have its differential (rigid) adelic space ωK over K whose underlying space
is HomQ(K,Q) viewed as a K-vector space with the scalar multiplication: λ.ϕ(x) = ϕ(λ.x) for
λ, x ∈ K and ϕ ∈ HomQ(K,Q). The trace TrK/Q is a basis of ωK (dimωK = 1) and it allows to
define rigid adelic metrics on ωK by stating ‖TrK/Q ‖v = 1 if v ∈ V∞(K) and, otherwise,

‖TrK/Q ‖v = inf
{
|λ|v ; λ ∈ Kv \ {0} and λ−1 TrK/Q ∈ HomZp

(OKv
,Zp)

}
.
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It is known that H(ωK) = δ−1
K/Q (see [Ne 1999, p. 219]). Besides, given a rigid adelic space E over

K, the Q-linear map Ev⊗K ωK → HomQ(E,Q), ϕ⊗λ 7→ λ◦ϕ induces an (isometric) isomorphism
of rigid adelic spaces over Q:

ResK/Q (Ev ⊗K ωK) '
(
ResK/QE

)v
(see [BK 2010, Proposition 3.2.2]). With these reminders being done, we can now easily prove
Theorem 36. Corollary 4.28 of [GR 2017] gives Λi(E) ≤ [K : Q]−1/2Λ(i−1)[K:Q]+1(ResK/QE).
Applying this inequality with Ev⊗K ωK and using Λn−i+1(Ev⊗K ωK) = Λn−i+1(Ev)H(ωK) (since
ωK is a line), we get

Λi(E)Λn−i+1(Ev) ≤
δK/Q

[K : Q]
× Λi[K:Q]

(
ResK/QE

)
Λ(n−i)[K:Q]+1

((
ResK/QE

)v)
and the last product of minima is at most [K : Q]n by [Ba 1993, Theorem 2.1].

Pekker’s theorem. In this paragraph we build on the work [Pe 2008] of Pekker about tΛi (n,Q) to
generalize it to any Siegel field. It allows to give some general upper bounds for tΛi (n,K) exponential
in n, as in the following result.

Theorem 37. Let 1 ≤ i ≤ n be integers. Then, for any algebraic extension K/Q, we have

1) tΛ1 (2,K) = tΛ2 (2,K) = cI(2,K)2

2) tΛi (n,K) ≤ tΛ1 (i,K)tΛ1 (n− i+ 1,K)

3) For n ≥ 2, tΛ1 (n,K) ≤ tΛ1 (n− 1,K)tΛ1 (2,K)

4) tΛi (n,K) ≤ tΛ1 (2,K)n−1

Question 38. Do we have similar results for tZi (n,K)?

For the proof of Theorem 37 we need an auxiliary result.

Lemma 39. Let E be a rigid adelic space of dimension n over K. Let ε be a positive real number.
Then there exists a hyperplane F ⊂ E such that

H(F ) ≤ (1 + ε)σn−1(E) and Λn(E)H(F ) ≤ (1 + ε)H(E)tΛ1 (n,K).

Proof. Let ϕ ∈ Ev \ {0} such that HEv(ϕ) ≤ (1 + ε)Λ1(Ev) and consider F = Kerϕ. The first
bound comes from H(F ) = HEv(ϕ)H(E) (see Proposition 5) and σn−1(E) = Λ1(Ev)H(E) (see
page 9). The other one uses in addition the definition of tΛ1 (n,K). �

Proof of Theorem 37. 1) When E is a rigid adelic space with dimension 2, we have Λ1(E) =
σ2−1(E) = Λ1(Ev)H(E) so Λ1(E)Λ2(Ev) = Λ1(Ev)Λ2(Ev)/H(Ev) and

tΛ1 (2,K) = sup
dimE=2

Λ1(E)Λ2(E)

H(E)
= cΛII (2,K)2 = cI(2,K)2 (Minkowski theorem).

2) Let E be a rigid adelic space over K with dimension n and let G be a linear subspace of
dimension i − 1 of Ev. We apply Lemma 39 to G⊥ (viewed as a subspace of E): there exists a
hyperplane A ⊂ G⊥ such that Λn−i+1(G⊥)H(A) ≤ (1 + ε)H(G⊥)tΛ1 (n − i + 1,K). Let us apply
again (in the same way) Lemma 39 to A⊥ ⊂ Ev: there exists a hyperplane B ⊂ A⊥ such that
Λi(A

⊥)H(B) ≤ (1 + ε)tΛ1 (i,K)H(A⊥). We have dimB = i − 1 and H(B) ≥ σi−1(Ev). Moreover
Λn−i+1(G⊥) ≥ Λn−i+1(E) and Λi(A

⊥) ≥ Λi(E
v). Multiplying the above inequalities given by

Lemma 39 we get

Λn−i+1(E)Λi(E
v) ≤ (1 + ε)2tΛ1 (n− i+ 1,K)tΛ1 (i,K)× H(A⊥)H(G⊥)

H(B)H(A)
.

By Proposition 5 the latter quotient equals H(G)/H(B) and so it is at most H(G)/σi−1(Ev). We
conclude by letting H(G)→ σi−1(Ev) and ε→ 0.
3) Let E be a rigid adelic space over K with dimension n. Let ϕ,ψ ∈ Ev be linearly independent
linear forms. Define V = Kerϕ and W = Kerψ. By Lemma 39, there exist hyperplanes V ′ ⊂ V
and W ′ ⊂ W such that Λn−1(V )H(V ′) ≤ (1 + ε)H(V )tΛ1 (n − 1,K) and Λn−1(W )H(W ′) ≤ (1 +
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ε)H(W )tΛ1 (n− 1,K). Moreover we have H(V )/HEv(ϕ) = H(W )/HEv(ψ) = H(E). By hypothesis
V 6= W and so V +W = E which gives Λn(E) ≤ max {Λn−1(V ),Λn−1(W )}. The latter maximum
is attained for one of the two spaces V or W and we denote by G the corresponding hyperplane
V ′ or W ′. Hence we get

Λn(E)H(G) ≤ (1 + ε)H(E)tΛ1 (n− 1,K) max {HEv(ϕ), HEv(ψ)}.
Choosing ϕ and ψ such that their heights be at most (1 + ε)Λ2(Ev) and using H(G⊥) =
H(G)/H(E), we get Λn(E)H(G⊥) ≤ (1 + ε)2tΛ1 (n − 1,K)Λ2(Ev). Multiplying both sides by
Λ1(Ev), we find that the quantity Λn(E)Λ1(Ev) is at most

(1 + ε)2tΛ1 (n− 1,K)× Λ1(Ev)Λ2(Ev)

H(G⊥)
≤ (1 + ε)2tΛ1 (n− 1,K)× Λ1(G⊥)Λ2(G⊥)

H(G⊥)

and, lastly, smaller than (1 + ε)2tΛ1 (n − 1,K)cΛII (2,K)2. We conclude with the first statement of
Theorem 37 and ε→ 0.
4) As a direct consequence of 3), we get tΛ1 (n,K) ≤ tΛ1 (2,K)n−1. Then the changeover to tΛi (n,K)
arises from point 2) of Theorem 37. �

The equality Λ1(E) = Λ1(Ev)H(E) when dimE = 2 allows to prove

sup {Λ1(E)Λ1(Ev) ; dimE = 2} = cI(2,K)2.

In general, the definition of cI(n,K) provides the upper bound sup {Λ1(E)Λ1(Ev) ; dimE = n} ≤
cI(n,K)2, but, when K = Q and n = 3, Bergé and Martinet proved that the equality is no longer
true [BM 1989, Proposition 2.13 (iii)]. Notwithstanding this, when K = Q and for every n ≥ 1, a
result by Banaszczyk [Ba 1996, Theorem 2], based on Siegel’s mean value theorem, states that

sup {Λ1(E)Λ1(Ev) ; dimE = n} > n

2πe
.

Question 40. Do we have a similar lower bound, true for any K and n ≥ 1, with a function
growing to infinity with n, or even linear in n?

5. Heights of morphisms and slope-minima inequalities

5.1. Until now we have considered only rigid adelic spaces. Nevertheless it may be useful (or even
crucial) to work with HomK(E,F ) endowed with the operator norms, which is not Hermitian in
general.

Definition 41. Let E and F be adelic spaces over K such that Ev ⊗ε F is integrable. The height
of ϕ ∈ HomK(E,F ) \ {0} is

h(ϕ) = h(E,F ;ϕ) =

∫
V (K)

log ‖ϕ‖Ev⊗εF,v dσ(v).

We may also use H(ϕ) = exph(ϕ). Here, as defined on page 4,

‖ϕ‖Ev⊗εF,v = sup

{
‖ϕ(x)‖F,v
‖x‖E,v

; x ∈ (E ⊗K Kv) \ {0}
}

is the operator norm. Note that if E′ ⊂ E is a linear subspace, then h(E′, F ;ϕ|E′) ≤ h(E,F ;ϕ).
When E and F are rigid adelic spaces over K, there is also the Hilbert-Schmidt height for ϕ built
with ‖ϕ‖Ev⊗F,v, which is greater than h(ϕ). In this paragraph, our aim is to compare minima and
slopes of two (rigid) adelic spaces connected by a linear map. In the following results, E and F
are some rigid adelic spaces over K and ϕ : E → F a linear map.

Proposition 42. If ϕ : E → F is an isomorphism, then

1) degE = degF + h(detE,detF ; detϕ) and 2) µ(E) ≤ µ(F ) + h(ϕ).

Proof. 1) By hypothesis detϕ : detE → detF is an isomorphism between rigid adelic lines and,
for all v ∈ V (K) and x ∈ (detE)⊗K Kv \ {0}, we have

|detϕ|v =
‖ detϕ(x)‖detF,v

‖x‖detE,v
.

We take logarithms and we integrate over v to conclude. 2) The second statement is a direct
consequence of the first one and of Hadamard’s inequality |detϕ|v ≤ ‖ϕ‖dimE

Ev⊗εF,v
. �
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Theorem 43. If ϕ : E → F is injective, then

µmax(E) ≤ µmax(F ) + h(ϕ) and Λ1(F ) ≤ Λ1(E)H(ϕ).

More generally, if ϕ 6= 0, then for all i ∈ {1, . . . , rkϕ} and ∗ ∈ {BC,Λ, Z} we have

µi+dim Kerϕ(E) ≤ µi(F ) + h(ϕ) and λ∗i (F ) ≤ λ∗i+dim Kerϕ(E)H(ϕ).

Proof. First assume that ϕ is injective. Let E0 ⊂ E be a non-zero linear subspace and F0 = ϕ(E0).
Since ϕ is injective the induced map ϕ̃ : E0 → F0 is an isomorphism and, by Proposition 42,

µ(E0) ≤ µ(F0) + h(E0, F0; ϕ̃) ≤ µmax(F ) + h(ϕ).

Taking the supremum over E0 on the left hand side leads to the first maximal slopes inequality. As
for the inequality for the first minima, if x ∈ E \ {0}, then ϕ(x) ∈ F \ {0} so Λ1(F ) ≤ HF (ϕ(x)) ≤
HE(x)H(ϕ) and we take the infimum over x to replace HE(x) by Λ1(E). Now just assume ϕ 6= 0.
Let F0 ⊂ F be a linear subspace with dimension ≤ i − 1 and A ⊂ E a linear subspace such that
dimA ≥ i+ dim kerϕ. We have dimϕ−1(F0) ≤ dim Kerϕ+ i− 1 and dimϕ(A) ≥ i. Moreover the
induced map ϕ : A/A ∩ ϕ−1(F0) → (ϕ(A) + F0)/F0 is an isomorphism. Using Proposition 42 and
h(ϕ) ≤ h(ϕ), we get µ(A/A ∩ ϕ−1(F0)) ≤ µ((ϕ(A) + F0)/F0) + h(ϕ), from which we deduce

inf {µ(A/B) ; B ⊂ A and dimB ≤ i+ dim kerϕ− 1}
≤ sup {µ(F1/F0) ; F0 ⊂ F1 ⊂ F and dimF1 ≥ i}+ h(ϕ).

We conclude with Proposition 18, taking the supremum over A on the left hand side and the
infimum over F0 on the right. As for the analogous inequality for λ∗i , we distinguish the three
cases ∗ = BC,Λ, Z. For ∗ = BC, we proceed as above: Λ1(F/F0) ≤ Λ1(E/E0)H(ϕ) (where
E0 = ϕ−1(F0) and ϕ : E/E0 → F/F0 is the map induced by ϕ). Since dimE0 ≤ dim Kerϕ+ i− 1
we have Λ1(E/E0) ≤ Λ(i+dim Kerϕ)(E). So

Λ(i)(F ) = sup
dimF0≤i−1

Λ1(F/F0) ≤ Λ(i+dim Kerϕ)(E)H(ϕ).

For ∗ = Λ or Z we get an injective map from ϕ making the quotient by Kerϕ, which yields
λ∗i (F ) ≤ λ∗i (E/Kerϕ)H(ϕ) and we conclude with λ∗i (E/Kerϕ) ≤ λ∗i+dim Kerϕ(E) (for instance,
for ∗ = Λ it means that if {e1, . . . , ei+dim Kerϕ} ⊂ E is a free family, then at least i of the images
of the vectors ej in E/Kerϕ are also linearly independent). �

Corollary 44. Let ϕ : E → F be a linear map.
1) If ϕ 6= 0, then µmin(E) ≤ µmax(F ) + h(ϕ) and λ∗1(F ) ≤ λ∗dimE(E)H(ϕ).

2) If ϕ is surjective, then µmin(E) ≤ µmin(F ) + h(ϕ) and λ∗dimF (F ) ≤ λ∗dimE(E)H(ϕ).

3) If ϕ is surjective, then µmax(F ) ≤ degF − (dimF − 1)µmin(E) + (dimF − 1)h(ϕ).

Proof. 1) Take i = rkϕ in Theorem 43, bound from below i by 1 and use dimE = dim Kerϕ+rkϕ.
2) Same method but keep i = rkϕ which is equal to dimF since ϕ is surjective. 3) Observe
degF = µmax(F ) +

∑dimF
i=2 µi(F ) ≥ µmax(F ) + (dimF − 1)µmin(F ) and use 2). �

One can prove that if ϕ is injective, then for all i ∈ {1, . . . ,dimE}, one has

(?) PE(i) ≤ PF (i) + h(

i∧
E,

i∧
F ;

i∧
ϕ).

For this, observe that, for all v ∈ V (K), the function i 7→ ‖
∧i

ϕ‖v/‖
∧i−1

ϕ‖v is a nonin-
creasing function, so

(
h(
∧i

ϕ)− h(
∧i−1

ϕ)
)

1≤i≤rkϕ
is a decreasing sequence and i 7→ PF (i) +

h
(∧i

E,
∧i

F ;
∧i

ϕ
)
is a concave function. The case i = 1 in (?) corresponds to the first state-

ment of Theorem 43.
To conclude this part, let us prove a variant of the first bound in Corollary 44 where we replace

the height built with the operator norms by the Hilbert-Schmidt height hHS(ϕ) := logHEv⊗F (ϕ)
of ϕ.
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Proposition 45. Let ϕ : E → F be a linear map. Then

µmin(E) +
1

2
log rkϕ ≤ µmax(F ) + hHS(ϕ).

This statement derives almost immediatly from the following result.

Lemma 46. If ϕ : E → F is an isomorphism, then µ(E) + 1
2 log dimE ≤ µ(F ) + hHS(ϕ).

Proof. With Proposition 42, it amounts to proving h(detE,detF ; detϕ) ≤ n
(
hHS(ϕ)− 1

2 log n
)

where n denotes the dimension of E. If v ∈ V (K) is an ultrametric place, we simply bound
|detϕ|v ≤ ‖ϕ‖nv = ‖ϕ‖nEv⊗F,v. If v is archimedean, we use the Hermitian adjoint ϕ∗v of ϕv : E ⊗K
Kv → F ⊗K Kv to write |detϕ|v = det (ϕ∗vϕv)

1/2. We conclude with the inequality of arithmetic
and geometric means applied to the eigenvalues of the positive operator ϕ∗vϕv:

n (detϕ∗vϕv)
1/n ≤ Tr (ϕ∗vϕv) = ‖ϕ‖2Ev⊗F,v.

�

We use this lemma with the isomorphism ϕ : E/Kerϕ → Imϕ and the bounds µmin(E) ≤
µ(E/Kerϕ) and µ(Imϕ) ≤ µmax(F ) (Proposition 18) as well as hHS(ϕ) = hHS(ϕ) to get Proposi-
tion 45.

When K = Q or K = Q, we have log Λ1(F ) ≤ −µ(F ) + 1
2 log dimF since cI(n,K) ≤

√
n (see

page 16). In particular, for every non-zero ϕ : E → F , the same technique gives log Λ1(Imϕ) +
µmin(E) ≤ hHS(ϕ) and so log Λ1(F ) + µmin(E) ≤ log Λ1(Ev ⊗ F ) for all rigid adelic spaces E,F
over Q (see [GR 2013, Theorem 1.3] for K = Q). This leads us to the last part of our course.

5.2. Tensor product. We will conclude this lecture by raising the problem of the behaviour
of minima and slopes (only the first ones) with respect to tensor product. It has been seen that
µ(E⊗F ) = µ(E)+µ(F ) for every rigid adelic spaces E and F overK. What happens for Λ1(E⊗F )
and µ1(E ⊗ F )? Let us start with two inequalities, always true:

Λ1(E ⊗ F ) ≤ Λ1(E)Λ1(F ) and µmax(E) + µmax(F ) ≤ µmax(E ⊗ F ).

To prove the first one, we can observe that, for all v ∈ V (K), x ∈ E ⊗K Kv, y ∈ F ⊗K Kv, we
have ‖x⊗ y‖E⊗F,v ≤ ‖x‖E,v‖y‖F,v. That gives HE⊗F (e⊗ f) ≤ HE(e)HF (f) for e ∈ E and f ∈ F .
When e and f are not zero, e⊗ f is not zero either and HE⊗F (e⊗ f) ≥ Λ1(E ⊗F ), leading to the
first bound. As for the second one, we can note that

µmax(E) + µmax(F ) = µ(Edes) + µ(Fdes) = µ(Edes ⊗ Fdes) ≤ µmax(E ⊗ F ).

So the problem is whether these inequalities are equalities. For Λ1 the answer is no, in general.
Actually it has been proved by Steinberg that, for any integer n ≥ 292, there exists a rigid adelic
space E over Q with dimension n such that Λ1(E ⊗ E) 6= Λ1(E)2 [MH 1973, p. 47]. Coulangeon
obtained similar results for some imaginary quadratic fields K [Co 2000]. The author and Rémond
proved that for every integers n,m both ≥ 2, there exist some rigid adelic spaces E and F over
Q with dimE = n and dimF = m such that Λ1(E ⊗ F ) 6= Λ1(E)Λ1(F ) [GR 2013, Theorem 1.5].
Actually all the difficulty of the proof lies in the case n = m = 2. Here we shall give a different
proof, due to Gaël Rémond, not yet published.

Proposition 47. There exists a rigid adelic plane E over Q such that Λ1(E⊗Ev) 6= Λ1(E)Λ1(Ev).

Proof. Let us recall that cI(2,Q) = exp H2−1
2 = exp 1

4 (see page 16). Let us choose 0 < ε < 1 such
that e(1− ε)4 > 2. Let E be a rigid adelic plane over Q such that Λ1(E) ≥ (1− ε)H(E)1/2cI(2,Q)
(definition of cI(2,Q)). Since dimE = 2 we have Λ1(Ev)/H(Ev)1/2 = Λ1(E)/H(E)1/2. From this
equality, we deduce

Λ1(E)Λ1(Ev) =

(
Λ1(E)

H(E)1/2

)2

≥ (1− ε)2 exp
1

2
.

Furthermore, considering a basis {e1, e2} of E and the identity map x = e1 ⊗ ev1 + e2 ⊗ ev2 we have
Λ1(E ⊗ Ev) ≤ HE⊗Ev(x) =

√
2. The choice of ε makes it possible to conclude Λ1(E ⊗ Ev) <

Λ1(E)Λ1(Ev). �
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The heart of the proof is a lower bound for Λ1(E)Λ1(Ev) which is compared to Λ1(E⊗Ev) ≤
√
n.

Using Banaszczyk’s lower bound given before Question 40, we can easily prove that Λ1(E)Λ1(Ev) 6=
Λ1(E⊗Ev) when K = Q and

√
n < n/(2πe), that is for n ≥ 292 (the integer 292 is the upper part

of (2πe)2). In this way we obtain a variant of Steinberg’s result.
It may be the phenomenon enlighted by Proposition 47 does not occur for the maximal slope.

Bost’s conjecture. For all rigid adelic spaces E and F over K, we have µmax(E⊗F ) = µmax(E)+
µmax(F ).

The field K is not important here since we can freely replace it by (one of) its algebraic closure,
due to the invariance by scalar extension of the maximal slope (Proposition 19). This conjecture
is known to be true when dimE × dimF ≤ 9 (see [BC 2013]) or, as recently proved by Rémond,
when there is a group acting isometrically on E⊗KK such that this vector space is a direct sum of
some non isomorphic irreducible vector subspaces [Ré 2019]. Here we shall prove a weaker result,
also due to Bost and Chen (ibid.). We recall that Hn = 1+1/2+ · · ·+1/n is the harmonic number.

Theorem 48. Let E and F be some rigid adelic spaces over K and n = dimE. Then we have

µmax(E ⊗ F ) ≤ µmax(E) + µmax(F ) +
Hn − 1

2
.

Lemma 49. For any rigid adelic space E and integrable adelic space F over K, we have

Λ1(F ) ≤ Λ(dimE)(E)Λ1(Ev ⊗ε F ).

Proof. As for the first statement of Corollary 44 with ∗ = BC, extended to an integrable space
(same proof), we have Λ1(F ) ≤ Λ(dimE)(E)H(ϕ) for every non-zero ϕ ∈ Ev ⊗ε F . We conclude
making H(ϕ) tend to Λ1(Ev ⊗ε F ). �

Lemma 50. For all rigid adelic spaces A and B, we have

exp {−µmax(A)− µmax(B)} ≤ Λ1(A⊗ε B).

Proof. If ϕ ∈ A⊗εB = Hom(Av, B) and ϕ 6= 0, we saw µmin(Av) ≤ µmax(B)+h(ϕ) (Corollary 44).
The left hand side equals to −µmax(A) (Proposition 19). We conclude with making h(ϕ) tend to
log Λ1(A⊗ε B). �

In particular, for every rigid adelic space E, we have Λ1(E⊗εEv
des) = 1. Indeed, by this lemma,

the first minimum is greater than 1 but it is also at most 1 since the injection map Edes ↪→ E has
height at most 1.

Lemma 51. For all rigid adelic spaces A,B,E over K, we have

1 ≤ Λ1(Ev ⊗ε A⊗ε B)Λ(dimE)(E) exp {µmax(A) + µmax(B)}.

Proof. Replace F by A⊗ε B in Lemma 49 and apply Lemma 50. �

Lemma 52. For all rigid adelic spaces E and F over K, we have

µmax(E ⊗ F ) ≤ µmax(F ) + log Λ(dimE)(Ev).

Proof. Let us replace E by its dual Ev and take A = F and B = (E ⊗ F )
v
des in Lemma 51. We get

1 ≤ Λ1(E ⊗ε F ⊗ε (E ⊗ F )
v
des)Λ

(dimE)(Ev) exp {µmax(F )− µmax(E ⊗ F )}.

Then, since the operator norm is smaller than the Hilbert-Schmidt norm, we can bound from above
the first minimum on the right by Λ1(E ⊗ F ⊗ε (E ⊗ F )

v
des) = 1. �

Proof of Theorem 48. Let us apply Lemma 52 and use the inequality

Λ(dimE)(Ev) expµmin(Ev) ≤ cBC
n (n,Q)

(definition of the constant on the right). We have µmin(Ev) = −µmax(E) (Proposition 19) and we
saw that cBC

n (n,Q) = exp ((Hn − 1)/2) (see pages 16 and 17). �
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