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COMPLEXITY AND INTEGRABILITY IN 4D BI-RATIONAL MAPS WITH TWO INVARIANTS
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In this letter we give fourth-order autonomous recurrence relations with two invariants, whose degree growth is cubic or exponential. These examples contradict the common belief that maps with sufficiently many invariants can have at most quadratic growth. Cubic growth may reflect the existence of non-elliptic fibrations of invariants, whereas we conjecture that the exponentially growing cases lack the necessary conditions for the applicability of the discrete Liouville theorem.

Introduction

Bi-rational maps in two dimensions have played a crucial role in the study of integrable discrete dynamical systems since the seminal paper of [START_REF] Penrose | A quadratic mapping with invariant cubic curve[END_REF] and the introduction of the QRT mappings in [START_REF] Quispel | Integrable mappings and soliton equations[END_REF][START_REF] Quispel | Integrable mappings and soliton equations II[END_REF]. Elliptic curves and rational elliptic surfaces proved to be one of the main tools in understanding the geometry behind this kind of integrability, see [START_REF] Duistermaat | Discrete Integrable Systems: QRT Maps and Elliptic Surfaces[END_REF][START_REF] Sakai | Rational surfaces associated with affine root systems and geometry of the Painlevé Equations[END_REF][START_REF] Tsuda | Integrable mappings via rational elliptic surfaces[END_REF]. In this letter we give examples of higherorder maps whose properties go beyond those of the two-dimensional maps, and show that the geometry of elliptic fibrations is no longer sufficient to explain their behaviour.

Up to now the QRT mappings appear to describe almost totality of the known integrable examples in dimension two. With some notable exceptions [START_REF] Duistermaat | Discrete Integrable Systems: QRT Maps and Elliptic Surfaces[END_REF][START_REF] Viallet | On the integrability of correspondences associated to integral curves[END_REF], no general framework exists for higher order maps. A generalization of the QRT scheme [START_REF] Quispel | Integrable mappings and soliton equations[END_REF][START_REF] Quispel | Integrable mappings and soliton equations II[END_REF] in dimension four was given in [START_REF] Capel | A new family of four-dimensional symplectic and integrable mappings[END_REF]. Certain maps obtained in [START_REF] Capel | A new family of four-dimensional symplectic and integrable mappings[END_REF] were shown in [START_REF] Hay | Hierarchies of nonlinear integrable q-difference equations from series of Lax pairs[END_REF] to be autonomous reductions of members of q-Painlevé hierarchies (multiplicative equations in Sakai's scheme [START_REF] Sakai | Rational surfaces associated with affine root systems and geometry of the Painlevé Equations[END_REF]). Since hierarchies are known also for the additive discrete Painlevé equations [START_REF] Cresswell | The discrete first, second and thirty-fourth Painlevé hierarchies[END_REF], it is clear that the cases considered in [START_REF] Capel | A new family of four-dimensional symplectic and integrable mappings[END_REF] cannot exhaust all the possible integrable autonomous maps in four dimensions, as already shown in [START_REF] Joshi | Rational maps with invariant surfaces[END_REF]. We mention that other examples of discrete mappings of higher orders were produced either by periodic or symmetry reduction of integrable partial difference equations [START_REF] Levi | Continuous symmetries of difference equations[END_REF][START_REF] Papageorgiou | Integrable mappings and nonlinear integrable lattice equations[END_REF][START_REF] Quispel | Integrable mappings derived from soliton equations[END_REF][START_REF] Van Der Kamp | The staircase method: integrals for periodic reductions of integrable lattice equations[END_REF] or as Kahan-Hirota-Kimura discretization [START_REF] Kahan | Unconventional numerical methods for trajectory calculations[END_REF][START_REF] Kimura | Discretization of the Lagrange top[END_REF] of continuous integrable systems [START_REF] Celledoni | Geometric properties of Kahan's method[END_REF][START_REF] Celledoni | Integrability properties of Kahan's method[END_REF][START_REF] Petrera | On integrability of Hirota-Kimura type discretizations: Experimental study of the discrete Clebsch system[END_REF][START_REF] Petrera | On the Hamiltonian structure of Hirota-Kimura discretization of the Euler top[END_REF].

In this letter, we focus on the study of integrability properties of autonomous recurrence relations. Here a autonomous recurrence relation is given by bi-rational map of the complex projective space into itself: [START_REF] Arnol'd | Dynamics of complexity of intersections[END_REF] ϕ :

[x] ∈ CP n → [x ′ ] ∈ CP n ,
where n > 1 1 . We take [x] = [x 1 : x 2 : • • • : x n+1 ] and [x ′ ] = x ′ 1 : x ′ 2 : • • • : x ′ n+1 to be homogeneous coordinates on CP n . In this language non-autonomous recurrence relations of order n are represented by bi-rational maps Φ : CP n+1 → CP n+1 , where one of the variables x k , for k ∈ {1, . . . , n + 1} fixed, in affine coordinates has a linear evolution. Moreover we recall that a bi-rational map is a rational map ϕ : V → W of algebraic varieties V and W such that there exists a map ψ : W → V , which is the inverse of ϕ in the dense subset where both maps are defined [START_REF] Shafarevich | Basic Algebraic Geometry 1, volume 213 of Grundlehren der mathematischen Wissenschaften[END_REF].

Integrability for autonomous recurrence relations (discrete equations) can be characterized in different ways. In the continuous case, for finite dimensional systems, integrability is usually understood as the existence of a "sufficiently" high number of first integrals, i.e. of non-trivial functions constant along the solution of the differential system. In the Hamiltonian setting a characterization of integrability was given by Liouville [START_REF] Liouville | Note sur l'intégration des équations différentielles de la Dynamique, présentée au Bureau des Longitudes le 29 juin 1853[END_REF]. In the case of maps (1) the analogue of first integrals are the invariants. To be more precise we state the following: Definition 1. An invariant of a bi-rational map ϕ : CP n → CP n is a homogeneous function I : CP n → C such that it is left unaltered by action of the map, i.e. For n > 1, an invariant is said to be non-degenerate if:

(3)

∂I ∂x 1 ∂I ∂x n = 0.
Otherwise an invariant is said to be degenerate.

In what follows we will concentrate on a particular class of invariants:

Definition 2. An invariant I is said to be polynomial, if in the affine chart [x 1 : • • • : x n : 1] the function I is a polynomial function.
A polynomial invariant in the sense of definition 2 written in homogeneous variables is always a rational function homogeneous of degree 0. The form of the polynomial invariant in homogeneous coordinates is then given by: (4)

I ([x]) = I ′ ([x]) t d , d = deg I ′ ([x]
) , where deg is the total degree.

To better characterize the properties of these invariants we introduce the following: Definition 3. Given a polynomial function F : CP n → V , where V can be either CP n or C, we define the degree pattern of F to be: [START_REF] Byrnes | Sufficient conditions for dynamical systems to have pre-symplectic or pre-implectic structures[END_REF] dp

F = deg x1 F, deg x2 F, . . . , deg xn F . Example 1. Consider the following map in CP 2 : (6) ϕ : [x : y : t] → [-y(x 2 -t 2 ) + 2axt 2 : x(x 2 -t 2 ) : t(x 2 -t 2 )]
This map is known as the McMillan map [START_REF] Mcmillan | A problem in the stability of periodic systems[END_REF] and possesses the following invariant:

(7)

t 4 I McM = x 2 y 2 + (x 2 + y 2 -2axy)t 2
1 Bi-rational maps in CP 1 are just Möbius transformations so everything is trivial.

We have dp I McM = (2, 2), i.e. it is a bi-quadratic polynomial. We also note that the invariant of a QRT map [START_REF] Quispel | Integrable mappings and soliton equations[END_REF][START_REF] Quispel | Integrable mappings and soliton equations II[END_REF], I QRT , which is a generalization of the McMillan map [START_REF] Capel | A new family of four-dimensional symplectic and integrable mappings[END_REF], is the ratio of two bi-quadratic in the dynamical variables of CP 2 . Hence QRT mappings leave invariant a pencil of curves of degree pattern (2, 2).

Example 2. The invariants of the maps presented in [START_REF] Capel | A new family of four-dimensional symplectic and integrable mappings[END_REF], I CS , are are ratios of biquadratic in all the four dynamical variables of CP 4 , i.e. ratios of polynomial of degree pattern (2, 2, 2, 2). In this sense the classification of [START_REF] Capel | A new family of four-dimensional symplectic and integrable mappings[END_REF] is an extension of the one in [START_REF] Quispel | Integrable mappings and soliton equations[END_REF][START_REF] Quispel | Integrable mappings and soliton equations II[END_REF].

Finally we will consider invariants are not of the most general kind, but satisfy the following condition Definition 4. We say that a invariant I : CP n → C is symmetric if it is left unaltered by the following involution: [START_REF] Celledoni | Integrability properties of Kahan's method[END_REF] ι : [x 1 :

x 2 : • • • : x n : x n+1 ] → [x n : x n-1 : • • • : x 1 : x n+1 ] ,
i.e. ι * (I) = I.

We then have the following characterization of integrability for autonomous recurrence relations: 

(i) Existence of invariants A n-dimensional
J li ∂J jk ∂w l-1 + J lj ∂J ki ∂w l-1 + J lk ∂J ij ∂w l-1 = 0, ∀i, j, k. and (10) d ϕJ(w) d ϕ T = J(w ′ ),
where d ϕ is the Jacobian matrix of the map ϕ, see [START_REF] Capel | A new family of four-dimensional symplectic and integrable mappings[END_REF][START_REF] Olver | Applications of Lie Groups to Differential Equations[END_REF]. The Poisson bracket of two smooth functions f and g is defined as

(11) {f, g} = ∇f J (∇g) T ,
where ∇f is the gradient of f . We can easily see that {w i-1 , w j-1 } = J ij . We note that in the case where the Poisson structure has full rank, i.e. n = 2r, we only need n/2 invariants which are in involution. In this case the Poisson matrix is invertible, and its inverse is called a symplectic matrix. A symplectic matrix give raise to a sympectic structure. (iii) Existence of a Lax pair [START_REF] Lax | Integrals of nonlinear equations of evolution and solitary waves[END_REF] A n-dimensional map is integrable if it arises as compatibility condition of an overdetermined linear system. (iv) Low growth condition [START_REF] Bellon | Algebraic entropy[END_REF][START_REF] Falqui | Singularity, complexity, and quasi-integrability of rational mappings[END_REF][START_REF] Veselov | Growth and integrability in the dynamics of mappings[END_REF] A n-dimensional bi-rational map is integrable if the degree of growth of the iterated map ϕ k is polynomial with respect to the initial conditions [x 0 ]. Integrability is then equivalent to the vanishing of the algebraic entropy:

(12) ε = lim k→∞ 1 k log deg [x0] ϕ k .
Algebraic entropy is a measure of the complexity of a map, analogous to the one introduced by Arnol'd [START_REF] Arnol'd | Dynamics of complexity of intersections[END_REF] for diffeomorphisms. In this sense growth is given by computing the number of intersections of the successive images of a straight line with a generic hyperplane in complex projective space [START_REF] Veselov | Growth and integrability in the dynamics of mappings[END_REF]. We underline that the above list is not meant to be completely exhaustive of all the possible definitions of integrability. Since we are focused on autonomous recurrence relations we choosed to cover only the most used definition for these ones. Additional definitions of integrability have been proposed by other for nonautonomous systems.

Remark 1. In principle, the definition of algebraic entropy in equation ( 12) requires us to compute all the iterates of a bi-rational map ϕ to obtain the sequence

d k = deg [x0] ϕ k ∞ k=0
. Fortunately, for the majority of applications the form of the sequence can be inferred by using generating functions [START_REF] Lando | Lectures on Generating Functions[END_REF]:

(13) g (z) = ∞ n=0 d k z k .
A generating function is a predictive tool which can be used to test the successive members of a finite sequence. It follows that the algebraic entropy is given by the logarithm of the smallest pole of the generating function, see [START_REF] Grammaticos | How to detect the integrability of discrete systems[END_REF][START_REF] Gubbiotti | Integrability of difference equations through algebraic entropy and generalized symmetries[END_REF].

Remark 2. The condition of Liouville integrability [START_REF] Bruschi | Integrable symplectic maps[END_REF][START_REF] Maeda | Completely integrable symplectic mapping[END_REF][START_REF] Veselov | Integrable maps[END_REF] is stronger than the existence of integrals. Indeed, for a map, being measure preserving and preserving a Poisson/symplectic structure are very strong conditions. However, they lead to a great drop in the number of invariants needed for integrability. The same can be said for the existence of a Lax pair, since it is well known that a well posed Lax pair gives all the invariants of the system through the spectral relations. Finally, the low growth condition means that the complexity of the map is very low, and it is known that invariants help in reducing the complexity of a map. Indeed the growth of a map possessing invariants cannot be generic since the motion is constrained to take place on the intersection of hypersurfaces defined by the integrals. For maps in CP 2 , it was proved in [START_REF] Diller | Dynamics of bimeromorphic maps of surfaces[END_REF] that the growth can be only bounded, linear, quadratic or exponential. Linear cases are trivially integrable in the sense of invariants. We note that for polynomial maps, it was already known from [START_REF] Veselov | Growth and integrability in the dynamics of mappings[END_REF] that the growth can be only linear or exponential. It is known that QRT mappings and other maps with invariants in CP 2 possess quadratic growth [START_REF] Duistermaat | Discrete Integrable Systems: QRT Maps and Elliptic Surfaces[END_REF], so the two notions are actually equivalent for large class of integrable systems. Now we discuss briefly the concept of duality for rational maps, which was introduced in [START_REF] Quispel | Duality for discrete integrable systems[END_REF]. Let us assume that our map ϕ possesses L independent invariants, i.e.I j for j ∈ {1, . . . , L}. Then we can form the linear combination:

(14) H = α 1 I 1 + • • • + α L I L .
For an unspecified autonomous recurrence relation

(15) [x 1 : x 2 : • • • : x n+1 ] → [x ′ 1 : x 1 : • • • : x n ]
we can write down the invariant condition for H (14): ( 16)

H(x ′ 1 , [x]) = H ([x ′ ]) -H ([x]) = 0. Since we know that [x ′ ] = ϕ ([x]
) is a solution of ( 16) we have the following factorization:

(17) H(x ′ 1 , [x]) = A (x ′ 1 , [x]) B (x ′ 1 , [x]
) . We can assume without loss of generality that the map ϕ corresponds to the annihilation of A in [START_REF] Hay | Hierarchies of nonlinear integrable q-difference equations from series of Lax pairs[END_REF] 17) is non constant 2 . In general, since the map ϕ is bi-rational, we have the following equalities: 

deg B x ′ 1 = deg x ′ 1 H -deg x ′ 1 A = deg x1 H -1, (18a) deg B xn = deg xn H -deg xn A = deg xn H -1. (18b)
H (x ′ 1 , [x]) = d i=1 A i (x ′ 1 , [x]
) , but we will not consider this case here. Now assume that the invariants (and hence the map ϕ) depends on some arbitrary constants I i = I i ([x]; a i ), for i = 1, . . . , M . Choosing some of the a i in such a way that there remains M arbitrary constants and such that for a subset a i k we can write equation [START_REF] Grammaticos | How to detect the integrability of discrete systems[END_REF] in the following way:

(20) H = a i1 J 1 + a i2 J 2 + • • • + a iK J ai K ,
where

J i = J i ([x]
), i = 1, 2, . . . , K are new functions. Then using the factorization [START_REF] Hay | Hierarchies of nonlinear integrable q-difference equations from series of Lax pairs[END_REF] we have that the J i functions are invariants for the dual maps.

Remark 4. It is clear from equation [START_REF] Kimura | Discretization of the Lagrange top[END_REF] that even though the dual map is naturally equipped with some integrals, it is not necessarily equipped with a sufficient number of integrals to claim integrability. In fact there exist examples of dual maps with any possible behaviour, integrable, superintegrable and non-integrable [START_REF] Gubbiotti | Integrability properties of a class of 4d bi-rational maps with two invariants[END_REF][START_REF] Joshi | Rational maps with invariant surfaces[END_REF].

In a recent paper [START_REF] Joshi | Rational maps with invariant surfaces[END_REF], the authors considered the autonomous limit of the second member of the dP I and dP II hierarchies [START_REF] Cresswell | The discrete first, second and thirty-fourth Painlevé hierarchies[END_REF]. We will denote these equations as dP II equations are given by autonomous recurrence relations of order four, and showed to be integrable according to the algebraic entropy approach. They showed that both maps possess two invariants, one of degree pattern (1, 3, 3, 1) and one of degree pattern [START_REF] Bellon | Algebraic entropy[END_REF][START_REF] Bruschi | Integrable symplectic maps[END_REF][START_REF] Bruschi | Integrable symplectic maps[END_REF][START_REF] Bellon | Algebraic entropy[END_REF]. Using these invariants, they showed that the dual maps of the dP II equations are integrable according to the algebraic entropy test and moreover, produced some 2 We remark that this assertion is possible because we are assuming that all the invariants are non-degenerate. It is easy to see that degenerate invariants can violate this property.

integrals, showing that these dual maps were actually superintegrable. Finally they gave a scheme to construct autonomous recurrence relations with the assigned degree pattern (1, 3, 3, 1) associated with I low and (2, 4, 4, 2) associated with I high and they provided some new examples out of this construction.

In a forthcoming paper [START_REF] Gubbiotti | Integrability properties of a class of 4d bi-rational maps with two invariants[END_REF] we consider the problem of finding all fourth order bi-rational maps ϕ : [x : y : z : u : t] → [x ′ : y ′ : z ′ : u ′ : t ′ ] possessing a polynomial a symmetric invariant I low such that dp I low = (1, 3, 3, 1) where the only non-zero coefficients are those appearing in the (1, 3, 3, 1) integral of both the dP In this letter we will present in detail four particular examples of this class. In Section 2, we will discuss two pairs of main-dual maps. We will discuss the integrability property of these maps in light of their invariants and of their growth. We will present maps possessing two invariants and integrable according to the algebraic entropy test with cubic growth. This implies that another rational invariant cannot exist. Indeed, the orbits of superintegrable maps with rational invariant are confined to elliptic curves and the growth is at most quadratic [START_REF] Bellon | Algebraic entropy of birational maps with invariant curves[END_REF][START_REF] Kh | Rational g-surfaces[END_REF]. From this general statement follows that a four-dimensional map with cubic growth can possess at most two rational first integrals. We note that some examples of cubic growth were already presented in [START_REF] Joshi | Rational maps with invariant surfaces[END_REF]. However, it was pointed out that these examples can be deflated to lower dimensional maps with quadratic growth. This also holds for our maps, i.e. we can deflate them to integrable maps in lower dimension. Furthermore, we will present a map with two invariants and exponential growth, that is non-integrable according to the algebraic entropy test. We discuss some possible reasons why this map is non-integrable even though it possesses two invariants. In the final Section, we will give some conclusions and an outlook on the future perspectives of this approach.

Notable examples

In this section we discuss two pairs of maps, which arise as part of a systematic classification to be presented in [START_REF] Gubbiotti | Integrability properties of a class of 4d bi-rational maps with two invariants[END_REF]. The interest in these particular maps arises since the relation between the invariants and the growth properties is non trivial. In both cases the main maps possess two functionally independent invariants, but one has cubic degree growth, and the other one has exponential degree growth. In both cases, the degree growth property of the dual maps reflect the growth of the main map. However, we note that not always the degree growth of the dual map reflects the main map one [START_REF] Gubbiotti | Integrability properties of a class of 4d bi-rational maps with two invariants[END_REF].

(P.i) and its dual map (Q.i). Consider the map

[x] → ϕ i ([x]) = [x ′ ]
given as follows:

(P.i)

x ′ = -{[νt 2 (x + z) + uz 2 ]y + t 2 µuz + (x + z) 2 y 2 }d -at 4 , y ′ = x 2 d(t 2 µ + xy), z ′ = yxd(t 2 µ + xy), u ′ = zxd(t 2 µ + xy), t ′ = txd(t 2 µ + xy).
This map depends on four parameters a, d and µ, ν.

From the construction in [START_REF] Gubbiotti | Integrability properties of a class of 4d bi-rational maps with two invariants[END_REF] we know that the map (P.i) possesses the following invariants: 22) is given by: (23) g P.i (s) = s 7 -3s 6 + s 5 -s 4 + 3s 3 + 3s 2 + s + 1 (s + 1)(s 2 + 1)(s -1) 4 .

t 6 I P.i low = at 4 yz + d νy 2 z 2 -yz(ux -uz -xy)µ t 2 -y 2 z 2 d(ux -xy -yz -uz), (21a) 
Due to the presence of (s -1) 4 in the denominator we have that the growth of the map (P.i) is fitted by a cubic polynonomial. As discussed in the Introduction this means at once that the map is integrable according to the algebraic entropy test and that another rational invariant cannot exist. This simple observation on the degree of growth also shows that the geometry of the orbits of the map (P.i) is nontrivial, and goes beyond the existence of elliptic fibrations.

The dual map

[x] → ϕ ∨ i ([x]) = [x ′ ]
of (P.i) is given by: (Q.i)

x ′ = [β(2xy -2yz + uz)µ + (βν -α)y(x -z)] t 2
+ βy(z 2 y -x 2 y + uz 2 )

y ′ = x 2 β(t 2 µ + xy), z ′ = yxβ(t 2 µ + xy), u ′ = zxβ(t 2 µ + xy), t ′ = txβ(t 2 µ + xy).
This map depends on three parameters α, β, and µ, ν. The parameters µ and ν are shared with the main map (P.i).

The main map (P.i) possesses two integrals and depends on a and d whereas the dual map (Q.i) do not depend on them. Then according to [START_REF] Kimura | Discretization of the Lagrange top[END_REF] we can write down the invariants for the dual map (Q.i) as: [START_REF] Liouville | Note sur l'intégration des équations différentielles de la Dynamique, présentée au Bureau des Longitudes le 29 juin 1853[END_REF] αI P.i low + βI P.i high = aI Q.i low + dI Q.i high .

Therefore, we obtain the following expressions: 

t 4 I Q.i low = [yzα + (µxy -yzµ -yνz + µuz)β]t 2 + βyz(xy + yz + uz), (25a) 
t 8 I Q.i high = y 2 z 2 ν -yz(ux -uz -xy)µ α + (uz + xy -yz) 2 µ 2 + 2yz(ux -yz)νµ -ν 2 y 2 z 2 β
(27) g Q.i (s) = (s 3 -2s 2 -1)(s 3 -s 2 -s -1) (s 2 + s + 1)(s -1) 4 .
This means that the dual map is integrable according to the algebraic entropy test with cubic growth, just like the main map. Therefore, the pair of main-dual maps (P.i) and (Q.i) consists of two integrable equations with non-standard degree of growth. However, as remarked above the degree pattern of the invariants of the maps (P.i) and (Q.i) differ slightly.

We now consider the maps (P.i) and (Q.i) in affine coordinates which are given by [START_REF] Papageorgiou | Integrable mappings and nonlinear integrable lattice equations[END_REF] ϕ : (w 3 , w 2 , w 1 , w 0 ) → (w 4 , w 3 , w 2 , w 1 ),

where

w 4 = N 1 dw 3 (w 2 w 3 + µ) , (AP.i) w 4 = N 2 β w 3 (w 2 w 3 + µ) , (AD.i) with N 1 = -d w 0 w 2 1 w 2 + w 2 1 w 2 2 + 2w 1 w 2 2 w 3 + w 2 2 w 2 3 + µw 0 w 1 + νw 1 w 2 + νw 2 w 3 -a, (29) 
N 2 = βw 0 w 2 1 w 2 + βµw 0 w 1 + βw 2 1 w 2 2 + (α -2βµ -βν) w 1 w 2 -βw 2 3 w 2 2 + (2βµ + βν -α) w 2 w 3 . ( 30 
)
Invariants for these maps are obtained from I low and I high respectively by taking t = 1, u = w 0 , z = w 1 , y = w 2 , and x = w 3 . We note that when a Poisson structure has the full rank, using equation ( 10), one gets [START_REF] Petrera | On the Hamiltonian structure of Hirota-Kimura discretization of the Euler top[END_REF] det(d ϕ)

2 = det J(w ′ ) det J(w) .
This implies that the map ϕ is either volume or anti-volume preserving.

We recall that a map ϕ is called (anti)volume preserving if there is a function Ω(w) such that the following volume form is preserved ( 32)

Ω(w) d w 0 ∧ d w 1 ∧ . . . ∧ d w n-1 = ±Ω(w ′ ) d w ′ 0 ∧ d w ′ 1 ∧ . . . ∧ d w ′ n-1 .
Thus, we can write

(33) ∂ w ′ 0 , w ′ 1 , . . . , w ′ n-1 ∂ w 0 , w 1 , . . . , w n-1 = ± Ω(w) Ω(w ′ ) ,
where the left hand side is the determinant of the Jacobian matrix of the map ϕ.

In [START_REF] Byrnes | Sufficient conditions for dynamical systems to have pre-symplectic or pre-implectic structures[END_REF] it was proved that if a map in n dimension is (anti) volume preserving and possesses n-2 invariant, then we can construct an (anti) Poisson structure of rank 2 from these invariants. However, these invariants turn out to be Casimirs (functions that Poisson commute with all other functions) of this Poisson bracket. Therefore, in order to have Liouville integrability we need an extra invariant apart from the known n -2 invariants if we want to use use Poisson structures constructed this way. In other words, the map is super integrable. Thus, to discuss about Liouville integrability of the maps (AP.i) and (AQ.i) we need to find either the third invariant or a Poisson bracket of rank 4. We do not have that information for these maps but we can show they reduce to three dimensional Liouville integrable maps via a process called inflation [START_REF] Joshi | Rational maps with invariant surfaces[END_REF]. This process will preserve the integrals, and in dimension three, two integrals are sufficient to claim integrability in the general sense as discussed in the Introduction.

It is easy to check that the maps (AP.i) and (AQ.i) are volume and anti-volume preserving, respectively, with respect to the same volume form:

(34) Ω = w 1 w 2 (w 1 w 2 + µ).
We now construct the (anti) Poisson structures for these two maps following [START_REF] Byrnes | Sufficient conditions for dynamical systems to have pre-symplectic or pre-implectic structures[END_REF].

We consider the dual multi-vector of the volume form

(35) τ = m ∂ w 0 ∧ ∂ w 1 ∧ ∂ w 2 ∧ ∂ w 3 ,
where m = 1/Ω. A degenerate Poisson structure for the map (AP.i) and a degenerate anti-Poisson structure for the map (AQ.i) are given by the following contraction

(36) J = τ ⌋ d I low ⌋ d I high ,
where I low and I high are invariants for these maps in affine coordinates. Since these (anti) Poisson structures are quite big, we do not present them here.

Remark 5. The Poisson structures which can be constructed using the method of [START_REF] Byrnes | Sufficient conditions for dynamical systems to have pre-symplectic or pre-implectic structures[END_REF] are degenerate and cannot be used to explain the integrability of the two maps (AP.i) and (AQ.i).

We also note that the maps (AP.i) and (AQ.i) can be reduced to three dimensional maps using a deflation v i = w i w i+1 . The recurrences for these maps are denoted by (DP.i) and (DQ.i) and are given as follows

dµ (v 0 + v 3 ) + dν (v 1 + v 2 ) + d v 0 v 1 + v 2 1 + 2v 1 v 2 + v 2 2 + v 2 v 3 + a = 0, (DP.i) βµ (-v 0 + 2 βv 1 -2 βv 2 + v 3 ) + (βν -α) (v 1 -v 2 ) (DQ.i) + β -v 0 v 1 -v 2 1 + v 2 2 + v 2 v 3 = 0.
Each of the maps (DP.i) and (DQ.i) has two functionally independent invariants which can be obtained directly from I low and I high even though they live in a different space. One can check that the map (DP.i) and (DQ.i) are anti-volume preserving and volume preserving with Ω = v 1 + µ. Therefore, we can construct their (anti) Poisson structure using the three dimensional version of [START_REF] Roberts | Birational maps that send biquadratic curves to biquadratic curves[END_REF]. Using the following invariant from I low for (DP.i) [START_REF] Sakai | Rational surfaces associated with affine root systems and geometry of the Painlevé Equations[END_REF] 

I P.i 1 = dµv 0 v 1 -dµv 0 v 2 +dµv 1 v 2 +dνv 1 2 +dv 0 v 1 2 -dv 0 v 1 v 2 +dv 1 3 +dv 1 2 v 2 +av 1
we have found that the map (dP.i) has an anti-Poisson structure given by

J P.i 12 = d(v 1 -v 0 ), J P.i 2,3 = d(v 1 -v 2 ) J P.i 13 = -dµv 0 -dµv 2 -2dνv 1 -2dv 0 v 1 + dv 0 v 2 -3dv 1 2 -2dv 1 v 2 -a µ + v 1 .
Similarly, for the map (DQ.i) we obtain the invariant (38)

I DQ.i 1 = βµv 0 -βµv 1 + βµv 2 -νβv 1 + βv 0 v 1 + βv 1 2 + βv 1 v 2 + αv 1 ,
and the corresponding Poisson structure (39)

J Q.i =      0 β β (µ + ν -v 0 -2v 1 -v 2 ) -α µ + v 1 -β 0 β - β (µ + ν -v 0 -2v 1 -v 2 ) -α µ + v 1 -β 0      .
For these constructions, I P.i 1 and I Q.i 1 are Casimirs for their associated (anti) Poisson structures. Their second (anti) Poisson structures can be obtained from the invariant I high but we do not present here as they are quite big.

It is important to note that the (anti) Poisson structures of (AP.i)and (AQ.i) under inflation give us the trivial Poisson structures for (DP.i) and (DQ.i), i.e. J = 0, where 0 is the zero matrix. On the other hand, from the common factor that appears in the Poisson structure of (AP.i), we have found that there exists an anti-invariant K P.i for this map, i.e. K P.i (w) = -K P.i (w ′ )where (40) K P.i = 2d w 2 w 2 1 w 0 +w 2 2 w 2 1 +w 1 w 2 2 w 3 +µw 0 w 1 -µw 1 w 2 +µw 2 w 3 +νw 1 w 2 +a. However, K P.i is functionally dependent with I P.i low and I P.i high through the relation (41) K P.i 2 -4d I P.i high -8d νI P.i low = a 2 . Using this anti-invariant, we obtain the following anti-invariant for the map (DP.i)

(42) K DP.i = 2dµv 0 -2dµv 1 + 2dµv 2 + 2dνv 1 + 2dv 0 v 1 + 2dv 1 2 + 2dv 1 v 2 + a.
Therefore, using this anti-invariant, we get a Poisson structure for (DP.i) as follows (after factoring out a constant term) (43)

J P.i 2 =      0 1 µ -ν -v 0 -2v 1 -v 2 µ + v 1 -1 0 1 - µ -ν -v 0 -2v 1 -v 2 µ + v 1 -1 0      .
We can check directly that the invariants inherited from the affine map (AP.i) are in involution with respect to the Poisson structure [START_REF] Viallet | On the integrability of correspondences associated to integral curves[END_REF]. In the sense of the definition given in the Introduction, this means that the reduced maps (DP.i) and (DQ.i) are Liouville integrable.

Remark 6. We notice that we can always use the invariants ( 37) and [START_REF] Shafarevich | Basic Algebraic Geometry 1, volume 213 of Grundlehren der mathematischen Wissenschaften[END_REF] to reduce the three dimensional maps (DP.i) and (DQ.i) to two dimensional maps and relate them to QRT maps. To be more specific we have that the reduced map of (DQ.i) preserves a bi-quadratic curve so that it is of the QRT type. On the other hand, using the anti-invariant, the reduced map of (DP.i) sends a bi-quadratic to another bi-quadratic and fits in the framework of [START_REF] Roberts | Birational maps that send biquadratic curves to biquadratic curves[END_REF]. (P.ii)

x ′ = (x 2 + z 2 )y -uz 2 µ -t 2 (u -2y), y ′ = x(t 2 + µx 2 ), z ′ = y(t 2 + µx 2 ), u ′ = z(t 2 + µx 2 ), t ′ = t(t 2 + µx 2 ).
This map only depends on the parameter µ.

From the construction in [START_REF] Gubbiotti | Integrability properties of a class of 4d bi-rational maps with two invariants[END_REF] we know that the map (P.ii) has the following invariants:

t 5 I P.ii low = (x -z) (u -y) t 2 + z 2 µ µy 2 + t 2 , (44a) t 6 I P.ii high = (x -z) 2 y 4 + y 2 z 4 -2yz 4 u + u 2 z 4 µ 2 + 2t 2 x 2 -2xz + 2z 2 y 2 -2yz 2 u + u 2 z 2 µ + t 4 z 2 + u 2 + x 2 + y 2 -2uy -2xz . (44b) 
Moreover, the map (P.ii) has the following degrees of iterates: .

This means that despite the existence of the two invariants (44) the map (P.ii) is non-integrable according to the algebraic entropy test: its entropy is positive and given by ε = log 2. Therefore we have that the map (P.ii) is an example of non-integrable admitting two invariants.

Again following [START_REF] Byrnes | Sufficient conditions for dynamical systems to have pre-symplectic or pre-implectic structures[END_REF] we can produce a Poisson structure of rank 2 for (P.ii) as the affine version of (P.ii) is volume preserving with Ω = (1 + µw 2 1 )(1 + µw 2 2 ), where we have taken t = 1, u = w 0 , z = w 1 , y = w 2 , and x = w 3 . By the construction, the two invariants (44) become Casimir functions for it, so again the existence of such Poisson structure do not imply any form of Liouville integrability. However, we notice that there are common factors appear at every non-zero entries of this structure. Thus, we have found the following anti-invariant for the map (P.ii) using these common factors (47)

K P.ii = µ w 0 w 2 1 -w 1 2 w 2 -w 1 w 2 2 + w 2 2 w 3 + w 0 -w 1 -w 2 + w 3 × µ w 0 w 2 1 -w 2 1 w 2 + w 1 w 2 2 -w 2 2 w 3 + w 0 + w 1 -w 2 -w 3 = F 1 F 2
This suggests that we should check each factor of K P.ii to see whether they are (anti) invariants of (Pii). By direct calculation we can see that the first factor F 1 is an anti-invariant and F 2 is an invariant for (P.ii), but they are not functionally independent with I low and I high . In fact, their relations are (48) I P.ii high -F 2 1 + 2I P.ii low = 0, and I P.ii high -F 2 2 -2I P.ii low = 0. Therefore, the map (P.ii) actually has two invariants of degrees (1, 2, 2, 1) and (1, 3, 3, 1). Nevertheless, despite the existence of such invariants the map (P.ii) is non-integrable in the sense of the algebraic entropy.

Remark 7. We can use F 1 and F 2 to construct an anti-Poisson structure for (P.ii) using the formula [START_REF] Roberts | Birational maps that send biquadratic curves to biquadratic curves[END_REF] (49) J 1,2 = -1, J 2,3 = 1, J 3,4 = -1 

J 1,3 =

The dual map [x] → ϕ ∨

ii ([x]) = [x ′ ] of (P.ii) is given as follows:

(Q.ii)

x ′ = α x 2 -z 2 y + uz 2 µ + t 2 αu + βy 2 (x -z) µ + t 2 β (x -z) , y ′ = αx t 2 + µx 2 , z ′ = αy t 2 + µx 2 , u ′ = αz t 2 + µx 2 , t ′ = αt t 2 + µx 2 .

This map depends on three parameters α, β and B. The parameter µ is shared with the main map (P.ii). Since the main map (P.ii) possess two integrals depending only on one parameter µ then according to [START_REF] Kimura | Discretization of the Lagrange top[END_REF] we can write down only a single first integrals for the dual map (Q.ii):

(50) I Q.ii = αI P.ii high + βI P.ii low . The first integral (50) has degree pattern [START_REF] Bellon | Algebraic entropy[END_REF][START_REF] Bruschi | Integrable symplectic maps[END_REF][START_REF] Bruschi | Integrable symplectic maps[END_REF][START_REF] Bellon | Algebraic entropy[END_REF].

We have then that the dual map (Q.ii) has the following fast-growing degrees of iterates: This means that the dual map is non-integrable with same rate of growth as the main map. In this case we can show that the map is anti-volume preserving with the same measure as the main map (P.ii). Moreover, we proved that the map (Q.ii) do not possesses any addition integral up to order 14. Therefore at the present stage we cannot construct a Poisson structure using the method of [START_REF] Byrnes | Sufficient conditions for dynamical systems to have pre-symplectic or pre-implectic structures[END_REF].

( 2 )

 2 ϕ * (I) = I, where ϕ * (I) means the pullback of I through the map ϕ, i.e. ϕ * (I) = I (ϕ ([x])).

  II equations. These dP

  IIequation, and such that ϕ possesses a polynomial symmetric invariant I high such that dp I high = (2, 4, 4, 2). The two invariants I low and I high are assumed to be functionally independent and non-degenerate. Within this class we have found the known dP II equations as well as new examples of maps with these properties.

2. 2 .

 2 (P.ii) and its dual map (Q.ii). Consider the map [x] → ϕ ii ([x]) = [x ′ ] given as follows:

  {d n } P.ii = 1, 3, 9, 21, 45, 93, 189, 381, 765, 1533 . . . with generating function: (46) g P.ii (s) = 1 + 2s 2 (2s -1)(s -1)

  (51) {d n } Q.ii = 1, 3, 9, 21, 45, 93, 189, 381, 765, 1533, 3069 . . ..The growth (51) is clearly exponential and its generating function:(52) g Q.ii (s) = 1 + 2s 2 (2s -1)(s -1), confirms this showing that the algebraic entropy is positive and equal to ε = log 2.

  . Now since deg x ′ 1 H = deg x1 H and deg xn H = deg xn H we have that if if deg x1 H, deg xn H > 1 the factor B in (

  Therefore we have that if deg x1 H, deg xn H > 2, the annihilation of B does not define a bi-rational map in general, but an algebraic one. However when deg x1 H, deg xn H = 2 the annihilation of B defines a bi-rational projective map. We call this map the dual map and we denote it by ϕ ∨ . Remark 3. We note that in principle for deg x1 H = deg xn H = d > 2, more general factorizations can be considered:

	(19)

  t 8 I P.i high = [(uz + xy -yz)µ -νyz] at 6 + yz(xy + yz + uz)a + dµ 2 (uz + xy -yz) 2 + 2dµνyz(ux -yz) -dν 2 y 2 z 2 t 4 + 2dzy(uz + xy -yz)(xy + yz + uz)µ + 2dy 2 z 2 νux t 2 + dy 2 z 2 (xy + yz + uz) 2 .

	(21b)	
	Moreover, the map (P.i) has the following degrees of iterates:
	(22)	{d n } P.i =1, 4, 12, 28, 52, 86, 130, 188, 260, 348, 452, 576, 720, 886, 1074, 1288, 1528, 1796, 2092 . . .

The generating function of the sequence (

  t 4 + z 2 y 2 (xy + yz -ux + uz)α + 2yz(uz + xy -yz)(xy + yz + uz)µ + 2y 2 z 2 νux β t 2 + z 2 y 2 (xy + yz + uz) 2 β.

	(25b)	
	We remark that the invariant (25a) has degree pattern (1, 2, 2, 1) which differs from
	dp I P.i low .	
	The map (Q.i) has the following degrees of iterates:
	(26)	{d n } Q.i = 1, 4, 12, 26, 48, 78, 118, 170, 234, 312, 406, 516, 644, 792 . . .
	with generating function:

  2µw 1 (w 2 -w 0 ) J 1,4 = -µ 2 w 1 w 2 [4 (w 0 w 1 -w 0 w 3 + w 2 w 3 ) -3w 1 w 2 ] + µ w 2We have checked that F 2 and I P.ii low are in involution with respect to this anti-Poisson structure. A Poisson structure can be obtained by multiplying this anti-Poisson structure with the anti-invariant F 1 .

	µw 2 1 + 1	, J 2,4 = -	2µw 2 (w 3 -w 1 ) µw 2 2 + 1
			1 + w 2 2 + 1
		(µw 2 1 + 1) (µw 2 2 + 1)

Conclusions and outlook

In this letter, we gave some examples of fourth order bi-rational maps with two invariants possessing interesting degree growth properties. These examples come from our forthcoming classification of all the fourth-order autonomous recurrence relations possessing two invariants in a given class of degree patterns [START_REF] Gubbiotti | Integrability properties of a class of 4d bi-rational maps with two invariants[END_REF] .

The first pair of bi-rational maps is given by the map (P.i) and its dual (Q.i) and consists of integrable maps with cubic growth. The interest in maps with cubic growth arises from geometrical considerations: maps with polynomial but higher than quadratic growth, can arise only in dimension greater than two [START_REF] Diller | Dynamics of bimeromorphic maps of surfaces[END_REF] and prove, in the case of superintegrable maps, the existence of non-elliptic fibrations of invariant varieties [START_REF] Bellon | Algebraic entropy[END_REF]. The interest in maps with this type of growth arose recently following the examples given in [START_REF] Joshi | Rational maps with invariant surfaces[END_REF] and we expect them to lead to many new and interesting geometric structures.

The second pair of fourth order bi-rational maps given by the map (P.ii) and its dual (Q.ii), consists of non-integrable maps with exponential growth. There are various possible reasons why the map (P.ii) is non-integrable despite possessing two invariants. To claim integrability with two invariants according to the discrete Liouville theorem [START_REF] Bruschi | Integrable symplectic maps[END_REF][START_REF] Maeda | Completely integrable symplectic mapping[END_REF][START_REF] Veselov | Integrable maps[END_REF] we need to prove that the map has a symplectic structure and that the two invariants commute with respect to this symplectic structure. Hence, either the map (P.ii) does not admit any symplectic structure, or the map (P.ii) admits only symplectic structures such that the two integrals (44) do not commute. Since, usually, from a set of non-commuting integrals it is possible to find a set of functionally independent commuting integrals we are more leaned to conjecture that equation (P.ii) is devoid of a non-degenerate Poisson structure.

Work is in progress to characterize the surfaces generated by the invariants in both integrable and non-integrable cases. We expect this to give new results in the geometric theory of integrable systems.