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Introduction

A network is a fundamental generic and interdisciplinary object. It represents a large number of interacting individual elements, for which individuals are the nodes and links illustrate the interactions between the nodes. Such networks are the subject of widespread investigation in various domains. Neural networks, metabolic networks, the Internet, the World Wide Web, social networks etc., are typical examples of such systems. Many complex systems cannot be fully understood simply by analysing their components. An apparently unplanned and evolving selforganization leads to a typical global structure for a wide range of such systems. Many concepts and statistical measures have been designed to capture their underlying organizing principles. Analysis results have led to the conclusion that, despite their many differences, such complex networks are governed by common laws that determine their behaviour. The terms 'small-world', 'scale-free', and 'community structure' refer to three salient properties of complex networks. These common features allow common tools to be developed, in order to understand and to process the networks. There also have been some important advances, particularly on the topics of network resilience, epidemiological processes, and networks mining.

Web services are also likely to benefit from network science. Those distributed Web applications solve one of the biggest challenges faced by businesses: aligning the native software systems on the fly, according to the market requirements. Rather than designing a new application in order to support a new process, the system is structured from the existing service components throughout the composition process. Web services provide a rapid way to share and distribute information between clients, providers, and commercial partners through the intercommunication of loosely-coupled and reusable components [START_REF] Papazoglou | Service-Oriented Computing: State of the Art and Research Challenges[END_REF]. Unfortunately, the promises of Service Oriented Architecture (SOA) have not yet been achieved. The widespread use of Web services has been slowed down because of some major issues. Issues of heterogeneity, volatility, security, and growth must be solved in order to provide solutions that ensure availability, reliability, and scalability. To address heterogeneity, semantics has been introduced into Web services by enriching the descriptions with ontological concepts. However, the benefit of semantics is hindered by the ever-growing amount of information provided by this living, complex system. Besides, the Web services space is highly dynamic, as services are susceptible to changes, relocations, and suppressions. Understanding the characteristics that hold Web services together and their complex interactions within the composition is of prime interest. Such knowledge should lead to more efficient solutions within management of the Web services composition lifecycle. The challenge is to organize, coordinate, and unite Web services, in order to achieve successful SOAs. To cope with the features of Web services, the network paradigm has been proposed as a potential solution compared to current composition approaches that are primarily based on artificial intelligence planning techniques.

Similar to other complex systems, the set of interacting Web services can be thought of as a graph. The network paradigm has been used in a number of works. In [START_REF] Arpinar | Ontology-driven Web Services Composition Platform[END_REF][START_REF] Hashemian | A Graph-Based Approach to Web Services Composition[END_REF][START_REF] Talantikite | Semantic Annotations for Web Services Discovery and Composition[END_REF][START_REF] Liu | Design and Implementation of an Extended UDDI Registration Center for Web Service Graph[END_REF][START_REF] Liu | Design and Implementation of an Extended UDDI Registration Center for Web Service Graph[END_REF][START_REF] Kwon | PSR : Pre-computing Solutions in RDBMS for Fast Web Services Composition Search[END_REF], networks are mostly used for synthesizing compositions with various techniques such as graphs mapping, chaining algorithms, and databases query. Recently, some studies have integrated Web services social dimension that is related to privacy, trust, and traceability within the networks. The main application of this is discovery enhancement [START_REF] Faci | Which Social Networks Should Web Services Sign-Up In?[END_REF][START_REF] Louati | Trust-Based Service Discovery in Multi-relation Social Networks[END_REF][START_REF] Sumathi | Social Networks' Interaction and Social Web Services[END_REF]. The common point of these works is that they do not exploit any "a priori" information about a network's topological properties.

Network science, meanwhile, gives new opportunities for representation and exploration of the Web services ecosystem. In [START_REF] Oh | Complex Network Theory Based Web Services Composition Benchmark Toolkit[END_REF], the authors present a benchmark toolkit that generates synthetic, syntactic Web services files in order to test discovery and composition algorithms. The generated corresponding networks possess some usual properties encountered in real-world networks. In (Cherifi and Santucci 2013a), models of semantic interaction Web services networks are presented. The topology investigation shows that the networks exhibit the small-world property and an inhomogeneous degree distribution. These results yield valuable insight into the development of composition search algorithms and into dealing with security threats in the composition process. In [START_REF] Chen | Social Network Analysis on the Interaction and Collaboration Behavior Among Web Services[END_REF], interactions and competition relationships between semantic Web services are modelled by two complementary networks. The authors highlight the small-world and scale-free properties of those networks. [START_REF] Huang | BSNet: a Network-based Framework for Service-oriented Business Ecosystem Management[END_REF] propose a model based on a set of correlated networks to manage the Web services space. Three correlated networks capture the various relationships within the Service Oriented Business Ecosystem. The framework is designed for service recommendations, alliances, strategic decisions, and evaluation of the Web services population.

The community structure of Web services networks has also triggered researchers' interest. In [START_REF] Han | Empirical Studies on Community Structure for Networked Web Services[END_REF] the community structure of a semantic Web services network is revealed. A detailed analysis of one community's content is performed, highlighting a collaboration-oriented community structure. In (Cherifi and Santucci 2013b) the authors investigate the community structure of semantic Web services networks. A new Web services classification approach, based on the ability of the Web services to be composed, is validated.

To summarize, all these works demonstrate that networks are an appropriate representation for dealing with Web services. Nevertheless, different types of interaction networks can be defined, depending on the choice of nodes. Indeed, nodes can represent input or output parameters, operations, or Web services. In this chapter, we focus on parameter and operation networks. In an interaction network of parameters, the nodes are the input and output parameters of a Web service, and the links represent the operations. In an interaction network of operations, the nodes are the operations of a Web service, and the links represent an elementary composition between two operations. In this chapter, our intent is twofold. First, we define and characterize the topological properties of Web services interaction networks. Based on these results, we study how these properties can be leveraged in order to enhance the composition life cycle.

The remainder of the chapter is organized as follows. The next two sections are devoted to a comparative evaluation of the basic topological properties of the semantic Web services interaction networks. Four operation networks are considered, along with a parameter network. The operation networks, based on various ontological similarity functions, reflect more or less effective compositions. The semantic relationships therefore, are clearly defined and are split into several dimensions. Next, these networks are compared to some other well-known real-world networks. In the community structure section, a comparative evaluation of the outputs of a set of community detection algorithms is reported, and the community structure is analysed. Finally, we build a bridge between the composition and some remarkable topological properties that can guide the process. We highlight properties that can be useful for Web services classification. We discuss security issues and how some specific properties can help to plan protection strategies.

Interaction network of operations Definitions

A Web service can be seen from different points of view. It can be considered as a software system that exposes a set of functionalities through its operations. An operation has a set of input parameters and a set of a set of output parameters, i.e., data to be communicated to and from a Web service. Such a view is simply an input/output perspective. Additionally, we can consider preconditions and effects. A precondition defines a set of assertions that must be met before a Web service operation can be invoked. An effect defines the result of invoking an operation. A Web service can also be described by the constraints specification of its operations execution order. In this case, operations that are said to be identical when considering the input/output perspective are not identical if they have different behavioural descriptions. Finally, a set of nonfunctional attributes, such as the quality of service, could be considered. Throughout this chapter, we consider a Web service as a distributed application that exports a view of its functionalities in terms of input and output. Hence, a Web service consists of a set of operations and their parameters. Thereafter, we use the following notation. A Web service is a set of operations. A Greek letter represents its name. Each operation numbered by a digit contains a set of input parameters noted I, and a set of output parameters noted O.

Figure 10-1 represents a Web service α with two operations 1 and 2, input parameters I1={a,b}, I2={c}, and output parameters O1={d}, O2={e,f}. In a syntactic description, a string denoted by name describes each parameter. Additionally, in a semantic description, each parameter is described by an ontological concept that we designate by concept. An interaction network of operations is a directed graph in which nodes represent the Web services operations, and relationships materialize an information flow between them. Let i be an operation described by its sets of input and output parameters (Ii, Oi). To represent an interaction relationship between this source operation to a target operation j described by (Ij, Oj), a link is created from i to j if and only if there is, for each input parameter of operation j, a similar output parameter of i. The link exists only if operation i provides all the input data required by operation j. For illustrative purposes, consider the Web services of Figure 10-2. The upper part of this figure shows three Web services α, β, and γ. Their four operations are numbered 1, 2, 3, and 4. The nine input and output parameters are labelled from a to i. The bottom part of the figure corresponds to the associated operation network. As the input set of operation 3, i.e., I3={f}, is included in the output set of operation 2, O2={e, f}, there is a link from operation 2 to operation 3. There is no other link in this network because no other operation provides all the inputs needed. Note that, to link two operations, a less restrictive definition is conceivable. An interaction can exist even if only a subset of the input parameters needed to invoke an operation is provided. Nevertheless, for such a partial invocation that leads to a correct composition, the nonprovided parameters must be optional. Otherwise, it involves the use of additional operations to completely fulfil a composition goal. While partial invocation allows more composition possibilities, it is less effective than full invocation [START_REF] Cherifi | Classification et Composition de Services Web : Une Perspective Réseaux Complexes[END_REF].

In this example, we suppose that if two parameters share the same name, then they are identical. This is not the case in practice. Indeed, different providers can attach a different semantic meaning to the same string. So, the comparison of parameters should be based on semantic descriptions of Web services using ontological concepts. In order to decide whether two parameters, one being an output of a source operation and the other being an input of a target operation, are similar, one must use a matching function. The comparison of two concepts can be achieved by exploring the ontological hierarchy. Classically, subsumption relationships are used [START_REF] Paolucci | Semantic Matching of Web Services Capabilities[END_REF]. In an exact match, two parameters are similar if they are described by the same ontological concept. The plugin match represents the case in which the concept of the output parameter is more specific than that of the input parameter. For example, the output concept is a Yorkshire while the input concept is a dog. The subsume match occurs when the concept of the output parameter is more general that one of the input parameter. We also consider a fourth situation, named fitin, which encompass both exact and plugin concept relationships. (Cherifi and Santucci 2013a). According to these matching functions, four different operation networks can be defined. The greater or lesser effectiveness of the compositions allows us to rank the networks. The exact network offers the best possible match between an output parameter of an operation and an input parameter of another operation. The fitin network is better than the plugin network because it allows for both plugin and exact relationships within the same interaction. Finally, the subsume network allows the recovery of less relevant compositions than the previous operators.

Basic Topological Properties

Experiments are conducted on the four networks corresponding to the different levels of similarity (exact, plugin, subsume, fitin). Those networks are extracted from the SAWSDL-TC1 benchmark1 with WS-NEXT, a network extractor toolkit specifically designed for this purpose [START_REF] Cherifi | WS-NEXT, a Web Services Network Extractor Toolkit[END_REF]. Originally made of real-world descriptions, this collection has been re-sampled to increase its size. It contains 894 descriptions, among which 654 are classified into seven domains (economy, education, travel, communication, food, medical, weapon). Each web service description contains a single operation. The collection contains 2136 parameter instances. As our first goal is to check whether Web services networks share typical complex network properties, we concentrate on measurements of the overall structure rather than on local properties of nodes. Starting from the overall organization, we then focus on the largest component to compute the main topological properties.

Real-world complex networks are generally divided into independent sub-networks called components. A component is a (maximal) subset of vertices connected by paths through the network. The size of the largest one is an important quantity. For example, in a communication network the size of the largest component represents the largest fraction of the network within which communication is possible. It is therefore a measure of the effectiveness of the network at doing its job. Studies on component organization generally focus on the size of the components.

The four networks share the same global structure. A "giant" component stands along with a set of small components and numerous isolated nodes. The proportion of these three elements is presented in Table 10-1. The number of nodes is the same in all the networks (785). It corresponds to the number of operations in the collection. Globally, operations are equally dispatched between isolated nodes and the giant component, while the small components contain a lower proportion of nodes. This structure reflects the decomposition of the collection into several non-interacting groups of operations. The fitin network contains the highest percentage of operations in the giant component and the lower percentage of isolated nodes. This is due to a less restrictive matching function. Indeed, it is easier to link the operations with this matching function, which includes two types of relationships (exact and plugin). The plugin network contains the highest percentage of isolated nodes and the lowest proportion of nodes in the small components. This reflects the fact that, when there is a subsumption relationship between two concepts, the situations in which the input concepts are more general than the output concepts are less numerous. Accordingly, the subsume network has the lowest percentage of isolated nodes. Indeed, the matching function in this case is complementary to the plugin one. Note that the number of nodes in the small components of the subsume network is quite high. It represents one quarter of the giant component's nodes. Note that all the operations in both small and giant components can be composed. According to the total percentage of nodes they account for, the networks can be classified in the following order: fitin, subsume, exact, plugin. The effectiveness of the fitin network is tied to the matching function, as reported earlier. The second rank of the subsume network reflects the fact that, in this benchmark, Web services developers had a slight tendency to use ontological concepts associated with output parameters more general than those associated with the inputs. In the four networks, the giant components contain the great majority of links, as compared to the small components. The proportion of links ranges from 95% to 99%. The number of links in the exact and subsume giant component is of the same order of magnitude, while in the plugin, giant component relations are less numerous. Unsurprisingly, due to its definition, the fitin giant component contains the largest number of links.

Subsume and fitin giant components are the densest; they are two times denser than the plugin one. The exact giant component lies in between.

To compute the complex network's typical properties, we restrict our attention to the giant components of each network. For brevity, in the following, we may use the word 'network' when referring to the giant component of the network.

The small-world property is typical of many real-world complex systems. In a small-world network, most nodes are not neighbours of one another, but they can be reached from every other node by a small number of links. This property was demonstrated by Milgram's experimental study on the structure of networks of social acquaintances. Results showed that a chain of "a friend of a friend" can be made, on average, to connect any two people in six steps or fewer. This experience gave rise to a myth that became popular under the statement of "Six degrees of separation". Smallworld is therefore a notion related to the network distance between two nodes. It is defined as the average number of links in the shortest path between any two nodes. In small-world networks, the average distance over all pairs of nodes is low, and it varies with the total number of nodes, typically as a logarithm [START_REF] Newman | The Structure and Function of Complex Networks[END_REF]. The existence of shortcuts connecting different areas of the network can be interpreted as propagation efficiency. This property has been observed in a variety of real-world networks. For example, the Web network where pages are nodes and links represent hyperlinks between pages has an average distance value of 18.59 for 8.108 nodes [START_REF] Albert | The Diameter of the World Wide Web[END_REF]. This phenomenon even occurs in the random Erdős-Rényi networks, where each pair of nodes is joined by a link with probability p at random. Comparing the average distance of some networks of interest to the one estimated for Erdős-Rényi networks containing the same numbers of nodes and links, allows the assessment of their small-worldness. The four Web services operation networks have the small-world property; they exhibit a small average distance. Table 10-3 shows the ratio between the network's average distance and the average distance of the corresponding Erdős-Rényi network. The ratio is around one half for the plugin and subsume networks. It is higher for the exact network and reaches almost 1 in the fitin network. Note that the average distance increases globally with the number of links. The superposition of exact and plugin links in the fitin network does not result in a decrease of the average distance. We observe quite the opposite, as the average distance value is almost doubled. Between some remote nodes, the additional links are not shortcuts. These nodes must be plugged in at the periphery of the networks. The diameter values measure the maximum value of the shortest paths between any two nodes of a graph. As we can see in Table 10-3, the diameter exhibits the same behaviour as the average distance, according to the network definition. It also increases with the number of links. This confirms that the network grows at its periphery without changing its overall organization.

Clustering, also known as transitivity, quantifies how well-connected the neighbours of a node are. It is a typical property of friendship networks, where two individuals with a common friend are likely to be friends. A triangle being a set of three vertices connected to each other, the clustering is formally defined as the triangle density of the network. It is obtained by the ratio of existing to possible triangles in the network under consideration [START_REF] Newman | The Structure and Function of Complex Networks[END_REF]. Its value ranges from 0 (the network does not contain any triangle) to 1 (each link in the network is a part of a triangle). In contrast to the classical Erdős-Rényi random graph model, social networks are typically characterized by a high clustering coefficient. Others, such as technological and information networks, exhibit a low transitivity value [START_REF] Boccaletti | Complex Networks: Structure and Dynamics[END_REF]. The ratio between the clustering coefficient of the Web services operation networks and the clustering coefficient of the Erdős-Rényi networks is always below 1 (Table 10-3). As Erdős-Rényi networks are not transitive, this clearly demonstrates that all the operation networks are also not transitive. The fitin component has the highest transitivity, certainly indicated by the fact that it has the highest number of links. Nevertheless, the proportion of 3-cliques is negligible; rather, as we can see in 10-5, nodes are organized hierarchically.

Assortativity allows us to qualify how nodes tend to associate together. It expresses preferential attachments that may exist between them. For example, in social networks, people tend to connect to each other according to some shared features. They may tend to associate preferentially with people who are similar to themselves in some way.

That is what we call 'assortative mixing'. The number of links connected to a node, referred as the node degree, is the most prominent similarity criterion used. It can be interpreted as a measure of the leadership of a node in the network. In this case, the degree of correlation reveals the way nodes are related to their neighbours according to their degree. A network is said to exhibit assortative mixing if nodes are preferentially linked to others of a similar degree. Otherwise, it is called 'disassortative'. This property is measured by the degree correlation [START_REF] Boccaletti | Complex Networks: Structure and Dynamics[END_REF]. It takes its value between -1 (perfectly disassortative) and 1 (perfectly assortative). Social networks generally tend to be assortatively mixed, while other kinds of networks are generally disassortatively mixed [START_REF] Newman | The Structure and Function of Complex Networks[END_REF]. The degree of correlation values of the Web services operation networks is of the same order for the four networks (Table 10-3). The negative values indicate that, like many real-world networks, such as information, technological, or biological networks, Web services operation networks are disassortative. Hubs and authorities are preferentially linked to weakly connected nodes rather than being linked together. This is typical of the behaviour observed in many complex systems emerging from an unplanned organization. Newcomers tend to aggregate to the structure while favouring elements that have a strong connectivity. The degree distribution has significant consequences for our understanding of natural and man-made phenomena, as it is particularly revealing of a network structure. Typically, random networks are "homogeneous". The degree of their nodes tends to be concentrated around a typical value. In contrast, many real-world networks are highly inhomogeneous, with a few highly connected nodes and a large majority of nodes with low degree. Such networks tend to have quite a heavy-tailed degree distribution, often described by a power law of the form pk ≈ ck -γ , with values of γ typically between 2 and 4. The so-called scale-free networks emerge in the context of a growing network where new nodes connect preferentially to existing nodes with a probability proportional to their degree. This preferential attachment is illustrated by the expression "The rich get richer". Networks can be characterized by different inhomogeneous distributions, such as truncated scale-free networks, which are characterized by a power law connectivity distribution followed by a sharp cut-off with an exponential tail. Note that for directed networks, three degree distributions can be estimated: out-degree distribution for outgoing links, in-degree distribution for incoming links, and joint indegree and out-degree distribution [START_REF] Costa | Characterization of Complex Networks: A Survey of Measurements[END_REF]). Figure shows the cumulative degree distributions of the Web services operation networks. They all reflect an inhomogeneous behaviour, as observed in many real-world networks. Indeed, few nodes have a high degree and the great majority have a low degree. Nevertheless, when inspecting the low degree node distribution zone, we observe that a great proportion of median degree nodes stand along with a very low proportion of small degree nodes. This last feature is unusual in real-world networks, which exhibit a scale-free degree distribution. To go deeper, we fitted the distributions to a power law and to an exponential distribution. Figure 10-3 (Right) shows the exact giant component cumulative degree distribution (blue). The power law distribution that best fits the empirical data is obtained with an exponent value of 1.1. The best fit for the exponential law exhibits an exponent value of 0.05. We can distinguish two areas delimitated by the degree value 10. For degree values below 10, the exponential law is a better fit than the power law, while it is the opposite for degree values above 10. Hence, only the tail of the distribution follows a power law. Note that the degree axis is represented until a value of 100. Indeed, the curves merge from this value. This heavy tail behaviour is typical of real-world networks as compared to random ones. The mixed behaviour for low degree nodes seems to occur because of the re-sampling process. Indeed, the "cloning" of some services has a greater and more visible impact on nodes with few connections. While high degree nodes keep their high degree values, there is a shift for low degree nodes to median values. The three other network degree distributions exhibit the same behaviour. Fig. 10-3. Left: Log-log plot of the cumulative degree distribution in operations giant components: plugin (red), exact (blue), subsume (green), fitin (purple). Right: Log-log plot of the degree distribution in the exact operation giant component with power law fit (red, exponent = 1.1) and exponential fit (green, exponent = 0.05).
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Interaction network of parameters Definition

An interaction parameter network is defined as a directed graph in which nodes represent the set of parameters and links materialize the operations. In other words, a link is created between each of the input parameters of an operation and each of its output parameters. In this context, each operation i can be defined as a triplet (Ii, Oi, Ki), where Ii is the set of input parameters, Oi is the set of output parameters and Ki is the set of link dependencies. To build the set of interdependencies, we consider that each output parameter of an operation depends on each input parameter of the same operation. The upper part of Figure 10-4 shows three Web services α, β, and γ, with four operations numbered 1, 2, 3, and 4. As an example of the dependency relationships between the parameters, consider operation 2. It is defined by (I2, O2, K2), where I2={c}, O2={e,f}, K2={(c,e),(c,f)}. Figure 10-4 (Bottom) represents the parameter network corresponding to the three operations. Connectivity within an interaction network of parameters is partly due to the fact that some parameters can be used by several operations. Moreover, they can be used as input parameters by some operations and as output parameters by others. For example, {d, f, g} parameters appear more than once, either as the input or as the output of several operations. They are represented by a single node in the network. 

Basic Topological Properties

To perform the experiments, we extract the interaction parameter network from the SAWSDL-TC1 benchmark. The network exhibits the same global structure as the operation networks. Nodes are distributed among a large component, a few small components, and isolated nodes. Nevertheless, the node's repartition is quite different. In the following, we concentrate on the exact parameter network and its counterpart, the exact operation network. In Table 10-4, we report the proportion of nodes in the different elements.

The parameter network size ( 357) is equal to the size of the vocabulary used to describe the parameters, while the operation network size ( 785) is the number of operations. This situation leads to a parameter network that is more than two times smaller than the operation network. Many of the 2136 parameters of the collection appear several times. For example, the parameter _AUTHOR has 74 occurrences. As each instance of this parameter is related to the same ontological concept, a unique node represents them. The representation of several occurrences of a parameter in one node has a direct consequence for the number of links. Indeed, in some situations, there are less links between parameters than the corresponding number of operations. Figure 10-5 is an extract of the parameter network, with 7 links built from 9 operations. In this example, 3 operations have the parameter _COUNTRY as input and the parameter _TIMEMEASURE as output. In the parameter network, those operations are represented by a single link. Fig. 10-5. Extract of the parameter network: effect of grouping parameters on the number of links. _COUNTRY and _TIMEMEASURE nodes respectively represent 2 parameters belonging to 3 distinct operations. The unique link between them represents those 3 operations.

The proportion of isolated nodes is much lower in the parameter network, which contains almost 12 times less isolated nodes than the operation network. In an operation network, isolated nodes are operations that do not interact, while in a parameter network, isolated nodes belong to operations with only one type of parameter, input or output. For example, the parameter Dutytax appears only once in the collection as an output parameter of the Camerataxedpricedutytax operation, which has no input parameter. Hence, it is represented as an isolated node. The low percentage of isolated nodes in the network indicates that few parameters have those characteristics. The great majority of them are shared by several operations. This explains that they mainly populate the small components and the giant component. The small components in the parameter network contain three times more nodes than in the operation network, and their size is more homogeneous. We note the presence of a few authorities, which reflect two different situations. An authority can emerge when different operations share the same output parameter, or when a single operation has many input parameters with a single output parameter. Among other differences, smaller components do not emerge from the same domains. For example, the largest one contains three authorities. All of its parameters belong to the "unclassified" domain of the collection, while in all the operation networks, small components emerge either from the travel or the education domain. A big difference is related to the fact that a small component may contain no composition. Indeed, in an operation network, a component necessarily represents one or several compositions. The smallest possible component of two nodes embodies two operations in an interaction relation. This is not the case in the parameter network, where a component may represent a single operation. If it contains several operations, they share some parameters, but this does not imply that a composition emerges from it. Note that the giant component contains the great majority of the nodes in the parameter network. The characteristics of the giant components are reported in Table 10-5. The number of links is almost six times smaller in the parameter network. This results in a sparser network. Indeed, parameters of different operations are grouped into the same nodes and, consequently, links represent several operations. Although the proportion of links of the giant component is 10% higher for the operation network, in both cases the giant component concentrates the vast majority of links. Those features can be observed in the representation of the two giant components in Figure 10-6. The parameter network is smaller, with less nodes and links. The parameter network exhibits the small-world property. As shown in Table 10-6, the ratio of the average distance of the giant component and the average distance of the corresponding Erdős-Réyni network is far below 1. Despite that, it is sparser; the parameter network has an average distance just slightly higher compared to the operation network.

The clustering coefficients of the parameter and operation networks are also reported in Table 10-6. They are very low, and therefore the networks are not transitive. In the parameter network, the coefficient is slightly higher, and the ratio between the coefficient of the network and the one of the Erdős-Réyni network is above 1. Nevertheless, this does not mean that there is a great proportion of triangles. As confirmed by the networks visualized in Figure 10-6, nodes are, to the contrary, hierarchically organized. Fig. 10-6. Exact operation (left) and parameter (right) giant components.

The negative degree correlation values, reported in Table 10-6, reveal a disassortative behaviour in both networks. Nodes tend to connect to other nodes with dissimilar degree values. However, this is far less pronounced for the parameter network. The degree distribution of parameter and exact operation networks is non-homogeneous, with heavy tail behaviour. However, the parameter network has the scale-free property. Its degree distribution follows a power law. The maximum likelihood estimate of the power law coefficient value is γ = 3.04. The p-value of the Kolmogorov-Smirnov test (0.84) shows that it is a good fit to the empirical data. Figure 10-7 presents the plots of the empirical degree distribution and the estimated power law on a log-log scale. In such a representation, the signature of a power law is a straight line. The impact of the collection re-sampling process affects the degree distribution of the operation network, while the parameter network is insensitive to this modification. Indeed, when a Web service is duplicated, there is no impact on the parameter network, while there will be a new node and also new links in the operation network. Fig. 10-7. Log-log plot of the degree distribution in the exact parameter giant component (cross) and estimated power law with exponent value 3.04 (line).
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Comparison with other real-world complex networks

In Table 10-7, we recall common topological properties of information/communication, biological, and social networks [START_REF] Boccaletti | Complex Networks: Structure and Dynamics[END_REF]) along with values measured on the giant component of the parameter and exact operation networks. AS2001 stands for the Internet at the autonomous system (AS) level on April 16th, 2001. Routers indicate the router level graph representation of the Internet. Gnutella is a peer-to-peer network provided by Clip2 Distributed Search Solutions. The World Wide Web (WWW) is a directed network formed by the hyperlinks between Web pages. Each Web page has a number of incoming links and a number of outgoing links pointing to other Web pages. The protein network is a yeast protein-protein interaction network where nodes are proteins. Two nodes are linked together if the corresponding proteins physically interact, e.g., if two amino acid chains are binding to each other. The metabolic reaction network is a directed network whose nodes are chemicals that are connected to one another through the existence of metabolic reactions. Math1999 is a collaboration graph of mathematicians defined by paper co-authorships. Actors is a movie-actor collaboration network based on the Internet Movie Database, a network made up of actors that have been casted together in the same movie. Independently of their nature, all the networks exhibit a small average distance and a power law degree distribution. High transitivity coefficients are observed in AS2011 and Actors networks. The networks also differ in their degree correlation.

The Web services networks have an average distance of the same order of magnitude as that of the protein network. The degree distribution of the parameter network is similar to that of the WWW. We note that the WWW, the metabolic network, and the Web services networks are directed networks; the two values of the power law exponent, respectively, represent the in/out-degree exponents of the power law. The low transitivity of the two Web services networks is similar to that of the router network. The AS2001 network, Gnutella, biological networks, and Web services networks have in common a disassortative behaviour.

Community Structure

Community detection

The community structure is a network feature that depicts the organization of nodes into communities. In social systems, individuals gather within communities that represent the fundamental level of a society organization. Many other systems of interest from various origins are found to naturally divide into communities. Many community detection algorithms have been proposed in recent years [START_REF] Fortunato | Community Detection in Graphs[END_REF]. Their analysis demonstrates that the objective assessment of the algorithms' quality is a complex issue. Until now, there is no satisfactory answer to the question of choosing the most appropriate algorithm in a particular context. It also appears that extrapolating the behaviour of algorithms from artificial data to real data is not easy. It sometimes leads to contradictory situations, highlighting the structural difference between artificial and real-world networks. Uncovering the community structure of a network, therefore, cannot rely on a single algorithm. A comparative analysis of the outputs of a set of community detection algorithms is more reliable for assessing the structural properties of the network. In order to elucidate this issue in our context, we selected a set of seven community detection methods, based on different principles, among those who received the most attention from the scientific community. We restricted our attention to non-overlapping detection methods because they are more mature. Among the algorithms that perform well on artificial data, we retain Louvain [START_REF] Blondel | Fast Unfolding of Communities in Large Networks[END_REF]) which appears to be much more efficient than Fast Greedy in [START_REF] Orman | Qualitative Comparison of Community Detection Algorithms[END_REF]. EdgeBetweeness [START_REF] Girvan | Community Structure in Social and Biological Networks[END_REF] behaves relatively well on artificial data when the community size distribution is heterogeneous [START_REF] Pons | Détection de Communautés Dans Les Grands Graphes de Terrain[END_REF]. Louvain is also less sensitive than Fast Greedy to the variations of the data properties (Navarro and Cazabet, 2010). Walktrap [START_REF] Pons | Computing Communities in Large Networks Using Random Walks[END_REF] and Infomap [START_REF] Rosvall | Maps of Random Walks on Complex Networks Reveal Community Structure[END_REF] generally perform well. It is shown that Walktrap behaves relatively well on artificial data in [START_REF] Pons | Détection de Communautés Dans Les Grands Graphes de Terrain[END_REF], although it performs poorly with small real-world networks [START_REF] Steinhaeuser | Identifying and Evaluating Community Structure in Complex Networks[END_REF]. Walktrap and Infomap prove to perform best in the comparisons conducted in [START_REF] Navarro | Détection de Communautés, Étude Comparative Sur Graphes Réels[END_REF] and [START_REF] Orman | Qualitative Comparison of Community Detection Algorithms[END_REF]) on artificial networks. Finally, we use Eigenvector (Newman 2006a), Spinglass [START_REF] Reichardt | Statistical Mechanics of Community Detection[END_REF] and LabelPropagation [START_REF] Raghavan | Near Linear Time Algorithm to Detect Community Structures in Large-scale Networks[END_REF].

Algorithms evaluation

We investigate the community structure of the exact operation network and the parameter network by comparing the partitions discovered by the seven algorithms. We first look at the number of detected communities, and then we compare the discovered community content. Table 10-8 gives the number of communities detected for each algorithm and for each network. The mean value and the standard deviation of the number of communities detected by the seven algorithms are also reported. The main result of this study is that all the algorithms agree on the fact that there is a community structure in the web services networks. None of them reveal no community structure. For the parameter network, the mean number of communities is around 13 with a standard deviation around 3, which is quite consensual. We observe a greater variability of the results for the exact operation network. In this case, the number of detected communities ranges from 5 to 43. If one focuses on comparing the behaviour of the different algorithms, one can notice that in the parameter network, EdgeBetweeness, Louvain, Spinglass, and LabelPropagation seem very close in terms of the number of detected communities. For the operation network, the variability is much greater. One can identify four groups. In ascending order, we find Eigenvector and Louvain, Spinglass and LabelPropagation, Walktrap and Infomap, and finally EdgeBetweeness, which finds eight times more communities than the first group. To go further, we compare the similarities between the communities generated by the different algorithms. Several metrics can be used for this purpose. A lot of these measures are strongly correlated [START_REF] Labatut | Evaluation of Performance Measures for Classifiers Comparison[END_REF]) [START_REF] Wu | Adapting the Right Measures for Kmeans Clustering[END_REF]. We choose the normalized mutual information (NMI), as it is the most commonly-used metric in the literature. Its interpretation is straightforward. If the community structures are identical, its value is 1. If both partitions are independent, the value is 0. Results are presented in Table 10-9 and 10-10 under the form of a symmetric matrix.

Table 10-9. NMI between partitioning in exact parameter network. Each box gives the NMI between two partitioning (algorithm name is abbreviated).

Parameter network Algo SPI WAL INF LOU LAB EIG EDG SPI

1,00 0,85 0,86 0,87 0,82 0,73 0,88 WAL 0,85 1,00 0,85 0,83 0,83 0,75 0,85 INF 0,86 0,85 1,00 0,80 0,74 0,78 0,88 LOU 0,87 0,83 0,80 1,00 0,77 0,69 0,81 LAB 0,82 0,83 0,74 0,77 1,00 0,70 0,80 EIGE 0,73 0,75 0,78 0,69 0,70 1,00 0,74 EDG 0,88 0,85 0,88 0,81 0,80 0,74 1,00

Each element of this matrix represents the degree of coherence measured by the NMI between the partitions detected by the corresponding two algorithms. Globally, the NMI values are rather high. Therefore, we can conclude that, although the number and size of the partitions are generally quite different, the algorithms agree on the contents of these partitions.

Table 10-10. NMI between partitioning in exact operation network.

Operation network Algo SPI WAL INF LOU LAB EIG EDG SPI

1,00 0,84 0,91 0,93 0,80 0,58 0,83 WAL 0,84 1,00 0,89 0,80 0,79 0,47 0,82 INF 0,91 0,89 1,00 0,89 0,82 0,60 0,88 LOU 0,93 0,80 0,89 1,00 0,78 0,58 0,78 LAB 0,80 0,79 0,82 0,78 1,00 0,52 0,80 EIGE 0,58 0,47 0,60 0,58 0,52 1,00 0,59 EDG 0,83 0,82 0,88 0,78 0,80 0,59 1,00

Eigenvector is the one that stands out most from the others, regardless of network type. LabelPropagation also tends to differ from the others in the operation network. The most consensual algorithms are Spinglass and Louvain with Edgebetweeness in the parameter network. Very close results are also obtained between Spinglass and Louvain, Infomap, and Walktrap. In the operation network, Spinglass, Infomap, and Louvain are the most consensual algorithms.

Figure 10-8 shows the community structure detected by these three algorithms. We effectively can observe the agreement on the community content. 

Topological properties

The modularity is a global measure of the cohesiveness of the communities [START_REF] Newman | Finding and Evaluating Community Structure in Networks[END_REF]. It compares the actual proportion of community internal edges to the expected edges proportion if links are randomly distributed. Its value ranges from -1 to 1. For networks exhibiting no community structure, or when communities are no better than a random partition, the modularity value is negative or equal to 0. In the case of a community structure, the modularity value is between 0 and 1. For practical purposes, a value between 0.3 and 0.7 is considered to be high (Newman 2006b). The modularity is very often used as a reference measure to evaluate the quality of a network partitioning. As we can see in Table 10-11, the modularity value of the Web services networks falls in the range of [0.3, 0.7]. These results, therefore, confirm the community structure of the networks. Note that the communities are more cohesive in the parameter network than in the operation network. One can notice that Spinglass always has the highest modularity. In the parameter network, EdgeBetweeness, Louvain, and Spinglass present very close modularity scores. Walktrap, Eigenvector and Infomap are a notch below. In the operation network, Louvain, Spinglass, and Infomap have the highest modularity values. The community size distribution is an important feature of a community structure. The studies conducted so far on real-world networks tend to show that the community size distribution follows a power law [START_REF] Newman | Finding and Evaluating Community Structure in Networks[END_REF][START_REF] Guimerà | Self-similar Community Structure in a Network of Human Interactions[END_REF]) with an exponent between 1 and 2.

In other words, size of communities is heterogeneous, with the presence of a few large communities and many small ones. Figure 10-9 represents the size of the top ten "big" communities discovered by each algorithm in the two networks. Except for the two biggest communities of the parameter network, the sizes of the communities are quite convergent. Infomap and Eigenvector lead to a more uniform distribution, while LabelPropagation formed the largest community. In the operation network, the community size distributions of the various algorithms are more convergent, except for Eigenvector, which finds a very big community. The average distance of a community can also assess its cohesion. In real-world networks, communities smaller than 10 are supposed to have the small-world property. The average distance should increase logarithmically with the size of the community [START_REF] Lancichinetti | Characterizing the Community Structure of Complex Networks[END_REF]. For larger communities, the average distance increases, but more slowly, or it stabilizes for certain categories of networks, such as communication networks. A small average distance can be explained by a high density in social networks, the presence of hubs in communication networks and the Internet, or both in biological or information networks. Globally, we observe quite comparable values of the average distance, regardless of the algorithm used. Thus, the average distance of the communities in the parameter network ranges from 1 to 2.8. Its mean value is 1.87. It is much smaller than the value observed for the overall network (2.75).

The density of a community is defined as the ratio of the number of links it actually contains to the number of links it could contain if all its nodes were connected. The scaled density is a variant obtained by multiplying the density by the community size. When compared to the overall network density, the scaled density allows assessment of the community's cohesion. A community is supposed to be denser than the network it belongs to. If the community is a tree, the scaled density value is 2. If it is a clique, then it is equal to the community size. Some realworld networks, such as the Internet or communication networks, exhibit tree-like communities. On the contrary, for other classes, like social and information networks, the scaled density increases with the community size. Biological networks exhibit hybrid behaviour, their small communities being tree-like, whereas the large ones are denser and close to cliques [START_REF] Lancichinetti | Characterizing the Community Structure of Complex Networks[END_REF]. The scaled density for the Web services networks range from 3 to 5. From these results, we can conclude that small communities tend to be tree-like, while bigger communities are sparse. Note that, for this property, we observe more variability between the algorithms.

The hub dominance reveals the presence of highly connected nodes in a community. It corresponds to the ratio of the maximal internal degree found in a community to the maximal degree theoretically possible, given the community size. The hub dominance therefore reaches 1 when at least one node is connected to all others in the community. It can be 0 only if no nodes are connected, which is unlikely for a community. In real-world networks, we observe different behaviours. For communication networks, the value is high in most communities, independently of their size. This reflects the presence of hubs in all the communities. Considering that their structure is sparse and tree-like, we can deduce that communities have, rather, a star structure. This phenomenon is less marked for other types of large real-world networks. One can even notice that the hub dominance decreases while community size increases [START_REF] Lancichinetti | Characterizing the Community Structure of Complex Networks[END_REF]. Globally, the hub dominance value is high in the Web services networks. It ranges from 0.5 to 0.9. These values suggest the presence of hubs in most communities.

We conducted a subjective analysis of the communities identified in the networks by the different algorithms, in order to check how the communities relate to the original classification of the Web service in different domains (economy, education, travel, communication, food, medical, weapon). For the operation network, we observe that globally, communities and domains do not overlap. Thus, if we focus on the three largest communities, we note that in all the partitioning, they contain a large portion of operations coming from the economy domain, with operations of travel and education domains. In medium-sized communities, the domain repartition is more homogeneous. These communities are built with Web services originating from all the domains in comparable proportions. In the parameter network, the community structure is somewhat different. Communities are more domain-centred. Our explanation is that this network is organized around a common vocabulary (the parameters), which is specific to each domain.

Composition, Classification and Security

Composition and interaction networks

These results on the topological structure of Web services networks provide a new insight into the problem of the composition discovery. The presence of a large component reflects the ability of a great number of interactions between the operations of the collection and, therefore, some useful compositions. For an operation network, the average distance corresponds to the average minimal number of operations needed in order to perform a composition. Roughly speaking, any composition can be obtained with an average of three operations in the plugin, exact, and subsume networks, and four operations in the fitin network. The diameter informs us about the number of operations required in large compositions. Thus, in the plugin network, all the compositions can be performed using at least 4 operations. 5 operations are needed in the exact and subsume networks and 7 in the fitin network. The meaning of these parameters for the parameter network is less obvious. The average distance value suggests that many shortcuts exist to efficiently join the different areas of the network. One can produce some parameters of interest using a relatively small number of operations. Nevertheless, these results should be treated with caution. Generally, operations do not possess a single input and a single output. It is therefore difficult to extrapolate a statistic on the number of operations involved in composition from the average distance.

From the composition process perspective, a low clustering coefficient accounts for the fact that there are very few situations other than a basic composition involving two operations that can be performed using one more operation. In this situation, there is very little redundancy, which results in a lower robustness against failures. Indeed, if a link is cut in a triangular structure, information can pass through the two other nodes of the triangle.

Knowledge of the statistical features of the Web services networks structure can be exploited to improve the efficiency of composition discovery algorithms. For this purpose, different strategies can be implemented, based either on the quality of the composition or on the search cost, or even on mixed strategies taking both criteria into account [START_REF] Zeshan | Semantic Web Service Composition Approaches: Overview and Limitations[END_REF]. When the quality of composition predominates, the composition search can start in the exact network, followed by the fitin, then the plugin, which is the least dense network, and finally the subsume network, if goals have not been reached. This is the order of relevance for solutions to the compositions' queries. If cost is the main constraint, the search can go from the sparser network to the denser one. In this case, the search process could start in the plugin network, followed by the exact one, if necessary. As fitin and subsume networks have the same density, it is preferable to search in the fitin network because the quality of the composition is higher, with the same computational cost. The smaller size and the smaller number of links of a parameter network, compared to an operation network, can be considered as advantageous for the composition process. Searching for compositions in a smaller network is easier. However, links do not have the same meaning in both networks. In an operation network, a link accounts for the fact that an operation provides all the required parameters to invoke another one, while in a parameter network, a link just relates that there is an input/output relationship between two parameters. At least two links are needed to represent a composition in a parameter network. Furthermore, one needs to maintain the information about the operations that are represented by the links.

Rather than navigating in the network at random in order to locate web services, the search process can focus on a particular fraction of the network, chosen because the nodes are likely to rapidly satisfy a goal. In this line, one can take advantage of the presence of highly connected nodes. Indeed, their neighbours account for a significant fraction of all the nodes in the network. This gives opportunities to numerous interactions, and as many possibilities to rapidly satisfy a goal. For example, in backward chaining strategies, the authorities can be used as a starting point in the search process, while in forward chaining, one will use hubs.

Classification and interaction networks

Classification is about organizing Web services within registries to improve publication and discovery [START_REF] Boujarwah | A New Unsupervised Web Services Classification Based on Conceptual Graphs[END_REF] as well as substitution [START_REF] Cherifi | On Topological Structure of Web Services Networks for Composition[END_REF]. Classically, the classification process is based on the notion of the domain. Web services with similar functionalities are grouped together. Communities of interacting Web services can be efficiently substituted for this classical definition during the composition process. Rather than grouping Web services belonging to the same domain, or having the same functionality, these communities are made of Web services that preferentially interact. Note that a similar approach has been proposed in [START_REF] Dekar | A Graph b-Coloring Based Method for Composition-Oriented Web Services Classification[END_REF].

Our investigation showed that, globally, those two ways of classifying operations are fairly independent, as they do not overlap. The three largest communities of the exact operation network contain operations from economy, travel, and education domains. For medium-sized communities, the mixing is more homogeneous. Communities in the parameter network are more domain-centred. Indeed, the network is organized around a common vocabulary, i.e., the parameters, which is specific to each domain. The notion of community for classification is far more interesting than the notion of domain, regarding the composition problem. A community groups operations that can be composed, while the classification by domains does not induce either an interaction relationship between the operations of a domain or between operations of different domains.

Composition discovery algorithms can take advantage of the community structure. Search performed at the community level first can drastically reduce the search space. The smallest number of communities and the higher modularity favours the parameter network. Indeed, the space to be explored is smaller and better defined. Important nodes within communities, due to their central positions, can be the starting points of a composition search because they share numerous relations with intracommunity nodes. Peripheral nodes can play a "smuggler" role at the interface of two communities. The composition search can also be guided by the relation between the semantic content of the communities and the semantic content of the requests.

Security and interaction networks

Web services networks are dominated by trees rather than by triangles, and some strongly connected nodes stand aside numerous lightly connected ones. The phenomenon is visible in Figure 10-10, where low degree nodes are at the periphery, high degree nodes are concentrated in few spots, and median degree nodes are located in between. This heterogeneous structure plays a fundamental role in the propagation phenomena of real-world networks. For example, information or epidemics in social networks and viruses in technological networks like the Internet can easily and quickly spread out through highly connected nodes. This heterogeneous structure also has a great impact in case of disturbance or failure. Complex networks are highly resistant to failures (nodes randomly removed) and, at the same time, extremely fragile to targeted attacks that concentrate on highly connected nodes. In the Internet, for example, shutdown or dysfunction of local servers can affect the global properties of communication. The same causes produce the same effects; hubs and authorities play a central role in the composition process and their failure may be critical.

In an operation network, the strongly connected nodes (hubs and authorities) represent operations that can participate in several compositions. Hubs correspond to operations, which can invoke many other operations. Authorities correspond to operations that can be invoked by many others. If an operation is a hub, many others need its output. If it becomes unavailable, all these operations cannot be composed anymore, unless other operations providing equivalent parameters exist. Therefore, failure of hub operations can be very damaging to a composition process. If an operation is an authority, it can be composed with many others. Failures concerning authorities damage all these compositions.

In a parameter network, strongly connected nodes reflect different situations. A hub is an input of an operation that produces several output parameters, or it is an input of several operations that produce one or several output parameters. In both cases, the production of many other parameters depends on its presence. If it becomes unavailable, all these parameters cannot be produced anymore. Hence, the failure of operations producing hub parameters can be very detrimental. An authority is an output of an operation taking several input parameters, or it is an output of several operations taking one or several input parameters. If a parameter is an authority, its production depends on many others, or there are many operations able to produce it. Hence, depending on the situation, failures of operations producing authorities can have less consequences. The knowledge of those important and sensitive parts of a network is of paramount importance. Their critical position must lead to targeted protection strategies. 

Conclusion

This chapter discusses topological properties of diverse Web services networks, based on a benchmark of real-world semantic Web services descriptions. Models of a parameter network, where nodes are input or output parameters of Web services, and operation networks, where nodes are Web services operations, are presented. Their topological properties are investigated and the Web services complex networks are integrated in the landscape of other well-known real-world complex networks. The impact of some remarkable properties on Web services composition, classification, and security matters is underlined.

A comparative study reveals that all the networks share the same global structure. A giant component stands along with some small components and a set of isolated nodes. The giant components of the networks share the characteristics of most real-world complex networks: the small-world property and an inhomogeneous degree distribution. They present a low clustering coefficient, as nodes are predominantly organized in a tree-like manner. They are also disassortatives, i.e., high degree nodes tend to connect to low degree nodes. Experiments with a set of community detection algorithms show that all the algorithms uncovered a community structure. They mainly agree on the content of the discovered communities. Nevertheless, some differences appear regarding the number of communities. Some algorithms seem to overestimate this number, while others underestimate it. Modularity values (0.48 to 0.63) confirm the community structure. All the algorithms give similar results for the community size distribution, except for the two biggest communities, where they can behave differently. The average distance in the communities is always lower than the average distance of the overall networks, reflecting the fact that communities are more densely connected. The scaled density suggests that small communities have a tree structure, while bigger communities are sparse. The presence of hubs in the communities is confirmed by the hub dominance, which ranges from 0.5 to 0.9.

The characteristics of interaction networks can be used advantageously to improve various aspects of composition lifecycle management. Different strategies can be implemented in order to reduce the search space in order to discover the Web services satisfying a composition query. One can take advantage of the density of the operation networks to guide the process when the computational cost is the main issue. If the quality of the composition predominates, one can use the organization of the networks in order to search for the solutions, according to their degree of relevance. Furthermore, the navigation in the networks can rely on the presence of highly connected nodes. Using these nodes as the starting point of a search process can help to reach a given goal rapidly because of their numerous neighbours. The community structure can also be a guide for the composition discovery process. Search can start at the community level. Such a strategy can drastically reduce the search space. Finally, knowledge of the network's structure is very informative in terms of security. It can help to develop specific security strategies for highly connected nodes that are very sensitive to attacks or failures.

The introduction of the paradigm of complex networks in the Web services area of research is fairly new. It is expected to attract more researchers. Indeed, the advantages of complex network models for Web services are various and numerous. For example, the social network aspect of Web services focuses on policies for privacy, trust, and traceability in collaboration, competition, and substitution networks. This social dimension can be easily integrated in order to enrich the communities of interacting Web services.
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 101 Fig. 10-1 Representation of a Web service α with two operations 1 and 2.I1={a,b}, O1={d}, I2={c}, O2={e,f}. 
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 10 Fig. 10.2. Interaction network of parameters with 9 nodes -a to i-and interaction network of operations with 4 nodes -1 to 4-(down) from four operations (up).
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 10 Fig. 10.4. Interaction network of parameters with 9 nodes -a to i-and interaction network of operations with 4 nodes -1 to 4-(down) from four operations (up).

  Note that in a semantic setting two parameters are identical if they are associated to the same ontological concept. Therefore, parameter values in figure10-4 designate ontological concepts rather than parameter names.

  Fig. 10-8. The three more consensual algorithms in the operation network: Louvain, Spinglass, and Infomap, with respectively 9, 12, and 20 communities. Each colour represents a community.
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 109 Fig. 10-9. Size of ten largest communities detected by the seven algorithms in exact parameter (top) and operation (down) networks.

  Fig. 10-10. Operations giant components: (a) plugin, (b) exact, (c) subsume, (d) fitin.
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 101 Proportion of nodes in the elements of the operation networks: isolated nodes, small components, giant component.

	Network Isolated nodes	Small	Giant component
			components	
	plugin	50.58%	2.42%	47.00%
	exact	48.79%	7.77%	43.44%
	subsume	45.99%	12.10%	41.91%
	fitin	42.00%	6.50%	51.50%

Characteristics of the largest components are reported in

Table 10-2.
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2. Structure of the giant components of the operation networks: number of nodes, number and proportion of links, density.

Network Number of nodes Number of links Proportion of links

  

					Density
	plugin	369	2446	99%	0.0180
	exact	341	3426	98%	0.0295
	subsume	329	3864	95%	0.0358
	fitin	404	5832	99%	0.0358
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 10 3. Distance, diameter, clustering and assortativity in the giant components of the four operation networks. Ratio between the distance and the clustering of the components and their counterpart Erdős-Rényi (X/XER).

	Network	Distance	Diameter	Clustering	Assortativity
		L	L/LER		C	C/CER
	plugin	1.31 0.44	3	0.018	0.48	-0.48
	exact	1.87 0.67	4	0.022	0.36	-0.43
	subsume 1.38 0.56	4	0.027	0.29	-0.51
	fitin	2.30 0.90	6	0.056	0.80	-0.30

Table 10 . 4 .

 104 Proportion of nodes in the elements of exact operation and parameter networks: isolated nodes, small components, giant component.

	Network Isolated nodes	Small	Giant
			components	component
	operation	48.79%	7.77%	43.44%
	parameter	4.20%	20.73%	75.07%

Table 10 -

 10 5. Structure of exact operation and parameter giant components: number of nodes, number and proportion of links, density.

	Network

Number of nodes Number of links Proportion of links

  

					Density
	operation	341	3426	98%	0.0295
	parameter	268	621	88%	0.0086
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 10 6. Distance, clustering, and assortativity in the exact operation and parameter giant components. Ratio between the distance and the clustering of the components and their counterpart Erdős-Réyni (X/XER).

	Network	Distance	Clustering	Assortativity
		L	L/LER	C	C/CER
	operation 1.87 0.67 0.022	0.36	-0.43
	parameter 1.97 0.31 0.031	1.55	-0.22
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 10 7. Basic topological properties of exact Web service networks and realworld networks.

	Network	Network	Average	Transitivity	Power law	Degree
		size	distance	coefficient	exp.	correlation
	AS2001	11174	3.62	0.24	2.38	<0
	Routers	228263	9.5	0.03	2.18	>0
	Gnutella	709	4.3	0.014	2.19	<0
	WWW	2x10 8	16	0.11	2.1/2.7	--
	Protein	2115	2.12	0 .07	2.4	<0
	Metabolic	778	7.40	0.7	2.2/2.1	<0
	Math1999	57516	8.46	0.15	2.47	>0
	Actors	225226	3.65	0.79	2.3	>0
	Parameter	268	1,97	0.031	2.99/3.45	<0
	Network					
	Operation	341	1.87	0.022	--	<0
	Network					

Table 10 -

 10 8. Community number in exact parameter and operation networks for a partitioning obtained with seven community detection algorithms.

	Algorithm	Parameter network Operation network
	EDGEBETWEENESS	14	43
	LOUVAIN	10	9
	SPINGLASS	12	12
	EIGENVECTOR	12	5
	WALKTRAP	16	20
	INFOMAP	18	20
	LABELPROPAGATION	13	13
	Mean	13,5	17,42
	Standard deviation	2,7	12,52
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 10 11. Community structure modularity on exact parameter and operation networks for seven community detection algorithms.

	Algorithm	Parameter network Operation network
	EDGEBETWEENESS	0,624	0,506
	LOUVAIN	0,619	0,53
	SPINGLASS	0,63	0,53
	EIGENVECTOR	0,596	0,479
	WALKTRAP	0,618	0,478
	INFOMAP	0,61	0,529
	LABELPROPAGATION	0,581	0,506
	Mean	0,611	0,508
	Standard deviation	0,017	0,022

http://projects.semwebcentral.org/projects/sawsdl-tc/