
HAL Id: hal-02444877
https://hal.science/hal-02444877

Submitted on 19 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MicroLET: A new SDNoC-based communication
protocol for chipLET-based systems

Soultana Ellinidou, Gaurav Sharma, Olivier Markowitch, Sotirios
Kontogiannis, Jean-Michel Dricot, Guy Gogniat

To cite this version:
Soultana Ellinidou, Gaurav Sharma, Olivier Markowitch, Sotirios Kontogiannis, Jean-Michel Dri-
cot, et al.. MicroLET: A new SDNoC-based communication protocol for chipLET-based sys-
tems. 22nd Euromicro Conference on Digital System Design (DSD), Aug 2019, Kallithea, Greece.
�10.1109/DSD.2019.00019�. �hal-02444877�

https://hal.science/hal-02444877
https://hal.archives-ouvertes.fr

MicroLET: A new SDNoC-based communication
protocol for chipLET-based systems

Soultana Ellinidou∗, Gaurav Sharma∗, Olivier Markowitch∗, Sotirios Kontogiannis †, Jean-Michel Dricot∗
and Guy Gogniat‡

∗Cybersecurity Research Center, Université Libre de Bruxelles, Brussels, Belgium
†Laboratory team of Distributed Microcomputer systems, Department of Mathematics, University of Ioannina,

Ioannina, Greece
†Lab-STICC, Université de Bretagne Sud, Lorient, France

Email:{soultana.ellinidou, gsharma, olivier.markowitch, jdricot}@ulb.ac.be, skontog@cc.uoi.gr, guy.gogniat@univ-ubs.fr

Abstract—Currently the industry moves to smaller process nodes
even if the cost for yielding large dies continues to increase,
moving to the 5nm and even 3nm nodes. Hence a chiplet-
based design has been initiated and quickly gain attention from
industry, academia and government agencies. This cutting edge
approach became advantageous to break down a large die into
smaller chiplets in order to improve yield and binning. In order to
exploit this new approach the interconnect fabric connecting the
nodes of the entire system should be of high importance to enable
the properly distribution of the data. Each individual chiplet may
contain its own local Network on Chip (NoC), which operates for
intra-chiplet traffic. However the communication over chiplet-
based systems is complicated enough, due to various routing
algorithms and NoC topologies and an alternative solution is
needed. In this paper we introduce an SDNoC(Software Define
Network on Chip)-based communication protocol for chiplet-
based systems, called MicroLET, which consists of a flexible and
modular SDNoC architecture and 3 main phases: Handshake,
Network Monitoring, Routing. An implementation of the SDNoC
architecture and an evaluation of the proposed routing algorithm
compared to the XY and the Odd-Even algorithms within
different traffic scenarios is presented. Through the evaluation
of the MicroLET protocol, it is proven that it could be a good
candidate for the future chiplet-based systems.
Index Terms—SDNoC, NoC, Chiplet Systems, Communication
Protocol

I. INTRODUCTION

Since fifty years, the number of transistors that was able to fit

into a single piece of silicon increased on a predictable way

known as Moore’s law [16]. This had as a result the digital

evolution of minicomputers to PCs, afterwards to smartphones

and to cloud, by placing more and more transistors into each

generation of their microchip and simultaneously making them

more powerful and able to support the dynamic nature of

today’s applications (for example in automotives and avionics).

However under the umbrella of Internet of Things (IoT) and

Internet of Everything (IoE) a big variety of applications pop

up, in order to satisfy the people’s needs in transportation,

health-care, manufacturing, and energy management with di-

verse requirements, which traditional SoCs are not always

capable to support due to the cost of semiconductor processing

and fabrication and the complexity in terms of the amount

of circuit elements for a large die. At the same time the

smallest features of transistors reached 7nm [25] and IMEC

Active Silicon Interposer

Package

Chiplets

Micro-Bumps

Metal Layers
TSVs

Figure 1: chiplet based system

manufactured first 3nm transistor [6]. Furthermore a huge

increase in Integrated Circuits (IC) cost is observed.

Hence the chipmakers start to look for alternate ways. The

current top-notch approach, which the industry is investigating

is the ”chiplets” on a substrate to reduce the cost of complex

semiconductor solutions, since the fabrication of large mono-

lithic dies will become more costly.

Chiplets came into the surface to break a conventional mono-

lithic SoC into smaller pieces. More precisely Chiplets refer to

the independent constituents which make up a large chip which

consists of multiple smaller dies. The need to go with multiple

chips comes from reticle limit which dictated the maximum

size of chip possible to be fabricated. Designs that exceeded

the reticle limit had to be split up into smaller dies. The

idea is that individual CPUs, memory, and other processing

elements will be able to be mounted onto a relatively large

slice of silicon, called an active interposer, which is thick

with interconnects and routing circuits. Recently the chiplet

approach has gain attention from academia [12, 13], industry

[23, 24] but also from government agency [21].

A chiplet-based system is depicted in Figure 1. It consists

of chiplets which are placed on the interposer, routing inter-

chiplet connections through metal layers in the interposer,

and placing Through Silicon Vias (TSV) in the interposer

to connect chiplet microbumps to package-level interconnect.

TSV in the bottom die provides external I/O access and power

delivery to the top die.

As far as the industry is concerned, AMD used chiplet

approach with a server processor [14], made with four chip-

61

2019 22nd Euromicro Conference on Digital System Design (DSD)

978-1-7281-2862-7/19/$31.00 ©2019 IEEE
DOI 10.1109/DSD.2019.00019

lets. Epyc is a brand of x86-64 microprocessors designed

and marketed by AMD based on the company’s Zen micro-

architecture specifically targeted for server and embedded

system markets. Intel emerged with a processor for mobile PCs

that combines an Intel CPU with a custom-designed graphics

module from AMD (AMD Radeon Graphics technology) by

using the chiplet aproach [9]. Marvell announced their first

products based on its MOdular CHIp (MoChi) architecture,

which is a chiplet-based approach [10].

However the design and validation of chiplets have already

been well explored, the interconnect fabric connecting the

nodes of the entire system must be equally explored in order to

enable the properly distribution of the data within the system.

Each individual chiplet may contain its own local Network

on Chip (NoC), which operates for intra-chiplet traffic and

different hierarchical layers of communication should be in-

troduced.

While current multi-chiplet architectures utilize passive integ-

ration technologies such as silicon interposers, in this research

we took into account the chiplet-based SoCs, which are based

on active silicon interposer (Figure 1). Despite the high interest

into the passive substrates [17], there is available research in

academia [13], industry and government [4] focused on active

interposers. The active interposer implements its own NoC in

order to interconnect the chiplets. While connecting several

NoCs together, they can introduce new resource cycles that

cause cyclic dependencies across the chiplets.

The classical NoC interconnect was introduced on 2002 by

Benini et al [2]. More precisely the authors present a uni-

fication of on-chip communication solutions, which consists

of an on-chip packet or circuit switched micro-network of

interconnects, called NoC. Processing Elements (PE) access

the network by means of proper interfaces, and have their

packets forwarded to destination through a multi-hop routing

path. The scalable and modular nature of NoCs and their

support for efficient on-chip communication potentially leads

to NoC-based multi-processor systems characterized by high

structural complexity and functional diversity.

However the complexity of the current NoCs motivates the

researches to explore some alternatives of it [8, 3]. One

NoC alternative that gains attention the last years is the

SDNoC (Software Define Network on Chip). SDN emerged

to support the dynamic nature of future network functions

and intelligent applications while lowering operating costs

through simplified hardware, software and management. The

approach proposed by the SDN paradigm is that the data

travels across multiple network entities (switches or routers)

and efficient and effective data transfer is supported by a

centralized controller. SoC architectures may adopt the SDN

paradigm due to its advantages: reduced hardware complexity,

high re-usability, and flexible management of communication

policies. However, the challenge to apply the SDN may be the

overhead for defining the paths in software against hardware-

based approaches. Also the controller can implement different

communication rules to define the paths, as Quality-of-Service

(QoS), fault-tolerance, and security.

The work of this paper is mainly oriented towards the design

and evaluation of a novel communication SDNoC Protocol

standard called MicroLET but also towards the SDNoC in-

tegration within chiplet-based systems. The main contribu-

tion covers the networking aspects of Network on Chip for

intra-chiplet communication which is inspired by large scale

networks and the proposal of a new routing approach. The

Microlet Protocol consist of 3 main phase: 1) Handshake Phase

2) Network Monitoring Phase 3) Routing Phase, which are

detailed explained afterwards.

II. RELATED WORK

To the best of our knowledge, there is no existing literature

for SDNoC-based Chiplet Systems, however there is limited

literature available in SDNoC-based MPSoC (Multi Processor

System on Chip) which includes SDN as a packet routing

approach. SDNoC is a NoC communication paradigm rather

than a specific design and implementation, presented first time

in 2014 by Cong et al. [8], where the authors propose the

SDNoC architecture where the control plane is deployed as

a distributed unity at each router, however this is contrary to

SDN philosophy because both planes are placed inside the

router. Afterwards, the authors in [18] applied SDN principles

in order to propose a SDNoC architecture. This architecture

is focused on abstraction layers and interfaces that permit its

deployment in a modular fashion and it has the potential to

overcome the NoC management problems in the Many-Core

era. Another interesting contribution of the same authors is

presented in [19], where they evaluate the SDNoC architecture

among the Processing Elements (PEs) in a Many-Core system

with System C simulator, focusing on the configuration time,

delay, and throughput of their architecture. Scionti et al. [20]

use the SDN architecture in order to explore dynamic changes

in the network topology, each PE has specific instructions to

control the network topology by software, including switch

off the links which are not used. In 2017, Berestizshevsky

et al. [3], presented a novel NoC architecture, called SDNoC,

based on a hybrid hardware-software approach. Their approach

implements a software-based centralized Network Manager

(NM), executed on a dedicated core. The NM allocates the

route and switches forward the packets without storing them.

Also, the switches do not maintain any routing table. Ellinidou

et al. [11] proposed an SDNoC framework for Cloud-of-

chip which consists of interconnected ICs and IC cores with

different communication speeds and hierarchy levels, by using

SDN they provide cloud-like flexibility within the system and

they proposed a security protocol for the registration and

authentication of every entity in the network. Later the same

authors [22] proposed a new protocol in order to secure the

communication and efficiently manage the routing within the

Cloud-of-Chip, called SSPSoC. The SSPSoC protocol includes

a private key derivation phase, a group key agreement (GKA)

phase, and a data exchange phase in order to ensure that

basic security primitives are preserved and provide secure

communication and manage the IC to IC communication.

62

PE

NI

PE

NI

PE

NI

PE

NI

PE

NI

PE

NI

PE

NI

CT : Controller
: Network Interface
: NoC

PE

NI

PE

NI

PE

NI

PE

NI

PE

NI

PE

NI

: Processing Element
: Router
: Chiplet

NI

PE

PE

NI

CT

NI

PE

NI

ACTIVE INTERPOSER

PE

NI

PE

NI

PE

NI

PE

NI

Figure 2: SDNoC architecture within a chiplet

III. SDNOC INTEGRATION WITHIN CHIPLET-BASED

SYSTEMS

The typical intra-chiplet data communication is managed by

Network-on-Chip (NoC), which supports regular interconnec-

ted topologies. However, in order to manage routing inside

a chiplet with multiple cores, the size of routing tables will

be large enough not to be accommodated on ordinary NoC

routers. The memory overhead for routing tables will grow by

n2 ∗ k units where n2 is the number of PEs on each chiplet

and k is the number of chiplet on each Package. Therefore, to

achieve secure inter-chiplet and intra-chiplet communication

on a package, we do believe that some techniques based on

SDN paradigm should be designed. The SDN concept came

into the micro-scale networks recently, as it is presented in

the previous section, and it is still limited under research. The

traditional routing mechanism employs NoC hardware routers

to manage the routes among chiplets. However, recent SDN

based strategy implements controller with global view, which

controls the routing in an adaptive manner. The proposed

SDNoC network for chiplet-based system is depicted in Figure

2. Since in this work the main focus is to cover the intra-

chiplet communication and leave the inter-chiplet for future

work, the controller will be placed inside a chiplet and attached

to one router, the rest of the routers within the network

will communicate in order to ask for a possible route for

the upcoming packets, with this way the SDN approach is

enabled. Regarding the inter-chiplet communication an extra

NoC is placed on the interposer and it is able to efficiently

interconnect them.

OpenFlow (OF) is a common communication protocol used

in SDN [15]. OF establishes a unicast communication channel

between each individual router and the controller. It allows the

controller to discover routers, create rules for the switching

hardware and also collects statistics. Since OF is layer 4

protocol, designed for large scale networks, it will not be

adaptable in micro-scale networks due to the vast number of

network messages and rules that it contains. Hence a new

communication protocol should be designed in order to fulfill

the needs of micro-scale networks.

IV. MICROLET ARCHITECTURE

The main entities of an SDNoC are: Network Interfaces (NI),

Physical Links (PL), Routers (R), Processing Elements (PE)

and the Controller (CT). The routers are linked to every

Processing Element which could be a memory, a core or a

processor and interconnect them through physical links. The

NI is the intermediate entity between PE and router. In order

to be more specific the packets are traveling between different

nodes of the network which are routers and the packet routing

is managed by a centralized controller, which is running as a

process in a given PE. (Figure 2).

The Network Entities are explained below:

• Routers: Figure 3 illustrates the architecture of a SDNoC

5-port router employing virtual channel flow control and

SDN based switching. The five ports correspond to the

four cardinal directions and the local direction which

connects the router with the PE through NI. The router

consists of four components: the Flow Tables, the Arbiter,

the buffers and the crossbar. It employs a pipelined design

with speculative path selection to improve performance.

The SDNoC router consists of a two-stage, pipelined

architecture. The first stage is responsible for routing,

where the router checks the flow tables and if there is

63

Crossbar switchr swr sw

Arbiter

Flow
Tables

CCrossbossbarbbarbarb

biter

Buffer
Buffer

Buffer

Buffer

Buffer

N

W

S E

L

NI

Figure 3: Router architecture

any flow rule it will send a request to controller to ask a

new route. The second stage is responsible for crossbar

traversal. In this work, the functionality of the router is

described with respect to a 2D mesh interconnect.

• Controller: The SDN controller consists of a series

of functions for sending packets for PE and router

configuration, stop and start computation in a per flow

basis. The SDN Controller can have partial network view.

Specifically it provides the following services: sends

configuration to a specific set of nodes in the network;

collects state and statistics’ data from a specific set of

nodes in the network and generate a global or partial

view (state) of the network. This software-based control

enables to reduce the hardware complexity, moving to the

software the decision to establish the network paths.

• Physical Links: The communication between controller

and routers is managed by dedicated links, which inter-

connects them. Through the physical links the controller

transfers control messages related to routing decisions to

the routers and monitors the data network state.

• The network Interface is composed by two FIFO

memories, one logic block to interface with the network,

called “Router Adapter”, and a logic block to interface

with the processing unit (or core), called “Core Adapter”.

The Router Adapter is a logic block that interacts with

the network dealing with the signals of physical channel

and integrates the data that come from the network, to be

delivered to the core. The Core Adapter also is a logic

block that is connected with the core, and prepares the

data that come from the core, to be written in the network,

concatenating the fields Control bit, Origin Address and

Destination Address to the Data field.

V. MICROLET PROTOCOL

A. Packet format

Processing cores exchange data amongst themselves by send-

ing packets across the NoC consequently through routers.

Furthermore a router sends packets to controller but also to

the other routers by using the data link layer. The packets

are divided into a sequence of fixed-length flits, which is

composed of a header flit, body flits, and a tail flit. The

packet format of the SDNoC is illustrated in (Figure 4), more

specifically it includes 8 fields:

• TYPE: indicates the type of the messages and the differ-

ent type fields are shown in Table I.

• SRC: consists of the source ID.

• DST: consists of the destination ID.

• NEXT_HOP: consists of the next hop ID.

• PRIO: contains the priority of the packet, which can be

high or low in order to be pipelined accordingly.

• PAYLOAD: contains the real data

• TS: is the timestamp and represents the send time

• CRC: represents the Cyclic Redundancy Check, which

is the error-detecting code field.

B. Routing Operations

1) Network Messages: The network messages are flowing

between the network entities through physical links. The

different types of messages, which are integrated in order

to fit in the packet format, are illustrated in Table I. The

communication protocol includes 8 types of messages with dif-

ferent content. The HELLO message is designed for the hand-

shake phase and the ROUTE_REQUEST, ROUTE_REPLY,
FLOW_UPDATE, NET_REQUEST, NET_REPLY are de-

signed for the network monitor and routing phase. Furthermore

it is important to be mentioned that every ROUTE_REPLY,
FLOW_UPDATE, NET_REPLY message should be acknow-

ledged by an ACK message, otherwise it should be retransmit-

ted.

2) Communication Protocol Phases: The MicroLET commu-

nication Protocol consists of 3 main phases:

1. Handshake Phase: During the Handshake Phase a

HELLO messages are exchanged between the

participants. Furthermore the controller is able to

be aware about how many routers are in the network

and also to be aware about there ID’s.

2. Network Monitoring Phase: In order to move to Network

Monitor phase, the Handshake phase should take place

beforehand. The controller requests to be informed about

network state by periodically sending a NET_REQ mes-

sage to the routers. The receiver router should reply with

a NET_REPLY message, which includes the current flits

passing by every port. Each router has a counter in the

buffer of every port and it is increasing according to the

flits that are coming from this port in a given period.

Therefore each routers monitors the flits that are inserted

through North, East, South, West, Local ports during an

interval time and forms the NET_REPLY message. As

64

SRC (10) DST(10)TYPE (2) PAYLOAD (N)PRIO(2) TS(2) CRC (2)

0x01 : Hello
0x02: ACK

0x03:
Route_Rep

.

.

.

#1 (0,0)
#2 (0,1)
#3 (0,2)
#4 (0,3)

.

.
0: Low
1: High

1020 cycles
… CRC-1

)

Header-Flit Body-Flit Tail-Flit

Next_Hop(10)

Figure 4: Packet format

soon as the controller receives a NET_REPLY, it should

send back to routers an acknowledge and it updates its

parameters that would be needed for the next phase. With

this process the controller is managing to have a network

state view, which is key element for the selection function

of the routing phase.

3. Routing Phase: When the controller receives a

ROUTE_REQ message from a source router, it extracts

the PACKET_ID and the SRC and DST addresses

from the upcoming flits which will be the input of the

routing algorithm function. Afterwards, based on source

and destination the routing algorithm outputs a set

of admissible routes. Therefore, the routing algorithm

has two main functionalities: the computation of the

admissible routes and the selection of a route among the

admissible routes. In order to compute the admissible

routes sets, the proposed routing algorithm relies on a

turn model routing algorithm. These algorithms have

the advantages to be lightweight and deadlock-free.

Among the existing turn model routing algorithms,

Odd-Even (OE) [7] is used since it tends to provide

better performance and higher adaptiveness than the

others. Finally, once the controller has computed a set

of admissible routes using the OE routing algorithm, it

applies the selection function on the set in order to get

the best possible route and forms the ROUTE_REPLY
message.

3) Odd-Even Routing: The OE routing separates the columns

of the mesh architecture as odd or even. The first column is

even, the second column is odd. The admissible routes have

to obey the two following rules:

Rule 1: In an even column, a turn from the east to the north

or the south is forbidden.

Rule 2: In an odd column, a turn to the west is forbidden.

These two rules ensure the deadlock-freedom of the Odd-Even

routing algorithm. In Figure 5, the blue lines indicate the valid

turns and the red lines indicate the non-valid turns.

4) Selection Function: The selection function has a set of

routes and the network state as inputs and outputs the optimal

route from the set. In order to determine which route is the

Figure 5: Odd-Even Routing

optimal one, the first step is to define metrics that assess the

routes. The proposed selection algorithm that is implemented

within the controller takes into account the link load and the

router load. The load of a link (li) corresponds to the number

of flits per second that flow through the link. The router load

(rij) is the number of flits per second arriving towards the

router. When the selection process takes place, the controller

is responsible to run an algorithm in order to select the best

route from an admissible set of routes. For this reason the two

aforementioned formulas were designed in order to avoid the

highly-loaded links and routers within the route.

Highly-loaded links are affecting the bandwidth and their

corresponding input buffers are likely to be full. Therefore,

sending packets towards highly-loaded links will imply a

considerable period of latency for the incoming packets since

they will have to wait for the release of the links and the

corresponding input buffers before accessing them. On the

other hand, the more a router is loaded, the more time it

will take to process incoming packets since it has first to

process the already present packets. By avoiding the highly-

loaded links and routers, the selection function (SLsum) aims to

balance the traffic as much as possible across the data network

and therefore, avoids the formation of congested network

areas. In order to determine the best route among an admissible

routes set, these metrics have to be used to evaluate the routes.

In that case, the controller computes a score (S) for each

route among the set using a combination of the aforementioned

metrics. With the proposed selection function, the route scores

are computed by summing the load on the links and the routers

along the routes. This score computation is shown in (1).

65

Table I: Designed Network messages

Type Type Value Description Contents

HELLO 0x01
Sent by router to controller

and vice vera or by router to
router for the handshake process

HELLO

ACK 0x02
Sent by router to controller or

by transmitter router to receiver
router in order to ack the request.

ACK

ROUTE_REQ 0x03
Sent by router to controller

which asks a route for a packet
Packet ID

ROUTE_REPLY 0x04
Sent by controller

as an answer to Route˙Req
Packet ID, Route

FLOW_UPDATE 0x05
Sent by controller to routers

in order to update the outport
of a packet.

Packet ID, Route

NET_REQ 0x06
Sent by controller to routers

which asks informations
for network.

NET˙REQ

NET_REPLY 0x07
Sent by routers as an

answer to Network˙State˙Req.

N= #,
S=#,
E=#,
W=#,
L=#

DATA 0x8 Contains the data PAYLOAD

SLsum =

Lf∑

i=0

li +

Sf∑

i=0

Sf∑

j=0

rij . (1)

Where Lf is the number of the sets of the link load values

along the route and Sf the number of the sets of the router

load values along the route. The controller is aware of the

load of the links from the network monitoring process, and

the load of a router is inferred from the load on the links

arriving towards the routers as shown in (2).

rij =
∑

i=1

li
L
. (2)

Where rij is computed as the average load on the links arriving

towards the router so that the router load and the link load stay

in the same order of magnitude and L is the number of the

router links. Thereby, the route score is equally affected by

the load on the links and on the routers.

At the end, the controller computes the S for each route within

the set according to the SLsum and chooses the route with the

lowest score. In the case of multiple routes having the same

S, a random choice is made.

VI. EVALUATION

In order to evaluate the performance of the MicroLET pro-

tocol, simulations were performed with the Garnet2.0 [1],

which is an NoC model implementation within the gem5

simulator [5]. The traffic generated by the processing cores

according to the traffic injection rate (tir) is used, which is

the average number of packets injected by the cores into the

network per clock cycle (0 < tir ≤ 1). Each core generates

packets following a Bernoulli distribution with mean tir. In

other words, each processing core will indeed generate a

packet each 1/tir clock cycles on average, but the actual time

at which the packets are transmitted is random.

Concerning the network monitoring phase, the

NET_REQUEST and NET_REPLY messages were modeled

as 1-flit packets. Nonetheless, they do not contain the content

discussed before, because Garnet2.0 does not support the

modulation of real payload within the exchanged packets.

Moreover, to measure the link load, each router has a counter

for each of its input channel. Each time a flit reaches an input

channel, the corresponding counter is incremented. When the

controller receives a NET_REPLY message from a router, it

reads the value of the counters, divides it by to get the link

load and stores it within the corresponding N ×N matrix.

By assuming that the first phase is already available, the

second and the third phase of the MicroLET Protocol, within

a 5X5 SDNoC topology, are evaluated. The proposed routing

algorithm is compared to the XY and the classic OE by using

different traffic scenarios, the results are presented on Figure

6, Figure 7 and Figure 8.

Under uniform traffic, the classic OE and the OE with a

selection function have lower performance than XY routing.

This is due to unreliability of the Network Monitoring Phase.

On the other hand, under the transpose and bit-reverse traffic,

the proposed routing algorithm outperforms the XY and OE

routing algorithms. Indeed, under such traffic scenarios, the

controller relies on an accurate view of the network state abd

it is able to balance the traffic across the network by avoiding

the form of congested network areas. Conversely, under these

scenarios, XY pushes the traffic towards the same links and

switches. Therefore, the corresponding network areas become

congested, which leads to a network performance decrease.

The proposed routing algorithm relies on the OE algorithm,

which is partially adaptive and therefore, restricts the num-

ber of admissible routes. Secondly, the controller responds

to the arriving ROUTE_REQUEST messages by allocating

routes without being aware of future routes. Thereby, when

the controller searches to allocate a route for a source-

destination pair, it is possible that all the admissible routes

being occupied, while there are still possible routes (but

not admissible) flowing through unoccupied resources. This

scenario can happen during some simulations according to the

66

Figure 6: Performance of the proposed routing algorithm (OE+SLsum) as compared to the turn model based routing algorithms

with uniform traffic.

Figure 7: Performance of the proposed routing algorithm (OE+SLsum) as compared to the turn model based routing algorithms

with transpose traffic.

traffic. If the controller will be aware beforehand about the

future ROUTE_REQUEST, it could adapt the allocation of the

routes accordingly in order to avoid this scenario. Moreover,

the lack of knowledge concerning the future requests is less

critical if the controller uses a fully adaptive routing. Despite

the higher standard deviations, the proposed routing approach

still outperforms the XY routing algorithm under transpose

and bit-reverse traffic and hence we believe that it could be a

possible solution for chiplet-based systems.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a new SDNoC communication

protocol for inter chiplet-based systems called MicroLET.

The protocol is designed in order to provide a new routing

approach based on SDN technology and a new message stack

specifically designed for micro-scale networks. Furthermore

through the evaluation of the MicroLET protocol, we proved

that it could be a good candidate for the future chiplet-based

systems. With the help of the flexibility which rises through

the SDN-based approach, it is possible to accommodate any

kind of routing techniques within the software based controller

placed in the chiplet. Also, within the chiplet-based controller

some machine learning algorithms can be implemented and

tested during the run time in order to efficiently choose

the appropriate routing algorithm respected to application

requirements.

The MicroLET Protocol is designed and evaluated in order to

cover the intra-chiplet communication. Since this paper refers

to different hierarchy levels of communications, a different

communication protocol should be designed in order to cover

the communication between the NoC that is placed in the

interposer and the NoC which is placed within the chiplets.

A very nice routing composable, topology agnostic, deadlock-

free routing methodology is presented on [26] that covers the

whole chiplet-based system. We do believe that the integration

of SDNoC approach in combination with the work proposed

in [26] could be a strong contribution for future chiplet-based

systems.

67

Figure 8: Performance of the proposed routing algorithm (OE+SLsum) as compared to the turn model based routing algorithms

with BitReverse traffic.

REFERENCES

[1] Niket Agarwal, Tushar Krishna, Li-Shiuan Peh, and Niraj K Jha. Garnet:
A detailed on-chip network model inside a full-system simulator. In 2009
IEEE international symposium on performance analysis of systems and
software, pages 33–42. IEEE, 2009.

[2] Luca Benini and Giovanni De Micheli. Networks on chips: A new
soc paradigm. Computer-IEEE Computer Society-, 35(EPFL-ARTICLE-
165542):70–78, 2002.

[3] Konstantin Berestizshevsky, Guy Even, Yaniv Fais, and Jonatan Ostro-
metzky. SDNoC: Software defined network on a chip. Microprocessors
and Microsystems, 50:138–153, 2017.

[4] E Beyne and AL Manna. High-bandwidth chip-to-chip interfaces: 3d
stacking, interposers and optical i/o. In IMEC technology forum, Taiwan,
2013.

[5] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar
Krishna, Somayeh Sardashti, et al. The gem5 simulator. ACM SIGARCH
Computer Architecture News, 39(2):1–7, 2011.

[6] Cadence. Imec and Cadence Tape Out Industry’s First 3nm Test Chip,
Press Release. https://www.cadence.com/content/cadence-www/
global/en US/home/company/newsroom/press-releases/pr/2018/
imec-and-cadence-tape-out-industry-s-first-3nm-test-chip.html.
Accessed: April 2019.

[7] Ge-Ming Chiu. The odd-even turn model for adaptive routing. IEEE
Transactions on parallel and distributed systems, 11(7):729–738, 2000.

[8] Liu Cong, Wang Wen, and Wang Zhiying. A configurable, program-
mable and software-defined network on chip. In Advanced Research and
Technology in Industry Applications (WARTIA), 2014 IEEE Workshop
on, pages 813–816. IEEE, 2014.

[9] Intel Corporation. “New Intel Core Processor Combines Highperform-
ance CPU with Custom Discrete Graphics From AMD to Enable Sleeker,
Thinner Devices,”. http://newsroom.intel.com.

[10] Marvell Corporation. Marvell ARMADA 8040 Quad-Core
CA72 Processor with Marvell MoChi and FLC Architecture,
Tech. Rep. http://www.marvell.com/embedded-processors/assets/
Armada8040PB-Jan2016.pdf.

[11] Soultana Ellinidou, Gaurav Sharma, Jean-Michel Dricot, and Olivier
Markowitch. A SDN solution for system-on-chip world. In Software
Defined Systems (SDS), 2018 Fifth International Conference on, pages
14–19. IEEE, 2018.

[12] Subramanian S Iyer. Heterogeneous integration for performance and
scaling. IEEE Transactions on Components, Packaging and Manufac-
turing Technology, 6(7):973–982, 2016.

[13] Ajaykumar Kannan, Natalie Enright Jerger, and Gabriel H Loh. En-
abling interposer-based disintegration of multi-core processors. In 2015
48th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 546–558. IEEE, 2015.

[14] KEVIN Lepak, GERRY Talbot, SEAN White, NOAH Beck, S Naffziger,
SENIOR FELLOW, et al. The next generation amd enterprise server
product architecture. In Proc. Hot Chips, pages 1–22, 2017.

[15] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
OpenFlow: enabling innovation in campus networks. ACM SIGCOMM
Computer Communication Review, 38(2):69–74, 2008.

[16] Gordon E Moore et al. Cramming more components onto integrated
circuits, 1965.

[17] Tesla NVIDIA. P100 white paper. NVIDIA Corporation, 2016.
[18] R Sandoval-Arechiga, JL Vazquez-Avila, R Parra-Michel, J Flores-

Troncoso, and S Ibarra-Delgado. Shifting the network-on-chip paradigm
towards a software defined network architecture. In Computational
Science and Computational Intelligence (CSCI), 2015 International
Conference on, pages 869–870. IEEE, 2015.

[19] Remberto Sandoval-Arechiga, Ramón Parra-Michel, JL Vazquez-Avila,
Jorge Flores-Troncoso, and Salvador Ibarra-Delgado. Software defined
networks-on-chip for multi/many-core systems: A performance evalu-
ation. In Proceedings of the 2016 Symposium on Architectures for
Networking and Communications Systems, pages 129–130. ACM, 2016.

[20] Alberto Scionti, Somnath Mazumdar, and Antoni Portero. Software
defined network-on-chip for scalable cmps. In High Performance
Computing & Simulation (HPCS), 2016 International Conference on,
pages 112–115. IEEE, 2016.

[21] Daniel P Seemuth, Azadeh Davoodi, and Katherine Morrow. Automatic
die placement and flexible i/o assignment in 2.5 d ic design. In Sixteenth
International Symposium on Quality Electronic Design, pages 524–527.
IEEE, 2015.

[22] Théo Rigas Tristan Vanspouwen Olivier Markowitch Soultana Ellinidou,
Gaurav Sharma and Jean-Michel Dricot. “sspsoc: A secure sdn-based
protocol over mpsoc.”. volume 2019, 2019.

[23] Sehat Sutardja. 1.2 the future of ic design innovation. In 2015
IEEE International Solid-State Circuits Conference-(ISSCC) Digest of
Technical Papers, pages 1–6. IEEE, 2015.

[24] Thiruvengadam Vijayaraghavan, Yasuko Eckert, Gabriel H Loh, Mi-
chael J Schulte, Mike Ignatowski, Bradford M Beckmann, William C
Brantley, Joseph L Greathouse, Wei Huang, Arun Karunanithi, et al.
Design and analysis of an apu for exascale computing. In 2017 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), pages 85–96. IEEE, 2017.

[25] Shien-Yang Wu, CY Lin, MC Chiang, JJ Liaw, JY Cheng, SH Yang,
CH Tsai, PN Chen, T Miyashita, CH Chang, et al. A 7nm cmos platform
technology featuring 4 th generation finfet transistors with a 0.027 um
2 high density 6-t sram cell for mobile soc applications. In 2016 IEEE
International Electron Devices Meeting (IEDM), pages 2–6. IEEE, 2016.

[26] Jieming Yin, Zhifeng Lin, Onur Kayiran, Matthew Poremba, Muhammad
Shoaib Bin Altaf, Natalie Enright Jerger, and Gabriel H Loh. Modular
routing design for chiplet-based systems. In Proceedings of the 45th
Annual International Symposium on Computer Architecture, pages 726–
738. IEEE Press, 2018.

68

