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THE p-RANK ε-CONJECTURE ON CLASS GROUPS

IS TRUE FOR p-EXTENSIONS

GEORGES GRAS

Abstract. We prove the p-rank ε-conjecture on the class groups CℓF for the
p-extensions F/κ of degree pe and, more generally, for a tower of degree p cyclic

fields: #(CℓF ⊗Fp) ≪κ,pe,ε (
√
|DF | )ε, where DF is the discriminant and κ any

base field (Theorem 3.5). This Note generalizes the case e = 1 and κ = Q
(Genus theory and ε-conjectures on p-class groups, J. Number Theory 207

(2020), 423–459), whose techniques appear to be “universal” for all relative
p-cyclic-extensions. We prove the p-rank ε-conjecture for the F/κ and the
cohomology groups H2(GF ,Zp) of Galois p-ramification theory (Theorem 4.3).

1. Introduction

For any prime number p and any number field F , we denote by CℓF the p-class
group of F in the restricted sense; to avoid any ambiguity, we shall write CℓF ⊗Fp

for the “p-torsion group”, also denoted CℓF [p] in the literature, giving the p-rank
rkp(CℓF ) := dimFp

(CℓF/CℓpF ) of CℓF .
We refer to our paper [3] for an introduction with some history about the notion
of ε-conjecture, initiated by Ellenberg–Venkatesh [2], the related density results
of Koymans–Pagano [9], and also for the large bibliography that we shall not
reproduce in this Note. We prove, unconditionally:

Main results. Let CℓF denotes the p-class group of a number field F and DF

its discriminant. The general p-rank ε-conjecture is true for the family of p-
extensions F/κ of degree pe over a fixed number field κ: for all ε > 0, there
exists a constant Cκ,pe,ε, such that #(CℓF ⊗ Fp) ≤ Cκ,pe,ε · (

√
DF )ε, for all such

p-extensions of κ. The result is true for any (non-necessary Galois) p-tower
F/κ, κ = F0 ⊂ · · ·Fi−1 ⊂ Fi · · · ⊂ Fe = F for which Fi/Fi−1 is Galois for
all i ∈ [1, e], which is equivalent to consider towers (called “p-cyclic-towers”) of
successive degree p cyclic extensions. In Section 4 we obtain a similar statement
for the cohomology groups H2(GF ,Zp) of Galois p-ramification theory.

Note. After the writing of this article, we have been informed of papers by
Wang [13] and Klüners–Wang [10] containing similar results on class groups with
other information (e.g., Cornell paper [1] using genus theory in elementary p-
extensions with some restriction on the ramification, then generalized in [10]).
We thank Jiuya Wang for these communications. It is interesting to see that the
two methods in [3, 10] use classical analytical results on prime numbers and refer
to [12]. Our result is unconditional contrary to [10] where the “ε-inequality” is
valid for DF ≫ 0.
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2. Principle of the method

We will perform an induction in the successive degree p cyclic extensions, the
general method for such p-cyclic steps having been given in [3]. The method
involves using genus theory and minimal relative discriminants. This is of course
the trivial part of the proof of the general ε-conjecture in degree d number fields,
but p | d may give large p-class groups as explained in [3, § 2].
2.1. Tower of degree p cyclic fields. Let κ be any fixed number field and let:

F0 = κ ⊂ F1 · · · ⊂ Fe = F , e ≥ 1,

be a p-cyclic-tower of fields with Gal(Fi/Fi−1) ≃ Z/pZ, for 1 ≤ i ≤ e (by abuse,
we use the word of tower even if the fields Fi are not necessarily Galois over κ).
Put k = Fi−1, K = Fi, G = Gal(K/k) =: 〈σ〉. We shall use the obvious general
exact sequence:

1 → Cℓ∗K −→ CℓK ν−→Cℓ νK ,
where ν is the algebraic norm 1 + · · ·+ σp−1 and Cℓ∗K = Ker(ν).

Recall that ν = J ◦ N, where N is the arithmetic norm (or the restriction
Gal(HK/K) → Gal(Hk/k) of automorphisms in the corresponding Hilbert’s class
fields HK , Hk), which yields N(CℓK) ⊆ Cℓk and where J : Cℓk → CℓK comes
from the extension of ideals of k to K (or is the transfer map Gal(Hk/k) →
Gal(HK/K)); so Cℓ νK ≃ Cℓk if and only if N is surjective (equivalent toHk∩K = k)
and J injective (no capitulation).

Whence the obvious inequalities for the p-ranks:

(1) rkp(CℓK) ≤ rkp(Cℓk) + rkp(Cℓ∗K).
So, the main problem is to estimate rkp(Cℓ∗K) by giving an explicit upper bound
only depending on Cℓk, p and the number of ramified prime numbers.

2.2. Zp[G]-modules annihilated by ν [6]. Let G = 〈σ〉 ≃ Z/pZ. We consider
a finite Zp[G]-module M∗ annihilated by ν = 1+ · · ·+σp−1 (which will be later of
the form Cℓ∗Fi

) for which we define the following filtration, for h ≥ 0 and M∗
0 = 1:

M∗
h+1/M

∗
h := (M∗/M∗

h)
G.

For all h ≥ 0, M∗
h = {x ∈ M∗, x(1−σ)h = 1} 1, the p-groups M∗

h+1/M
∗
h are elemen-

tary and the maps M∗
h+1/M

∗
h

1−σ
−−→ M∗

h/M
∗
h−1 are injective, giving a decreasing

sequence for the orders #(M∗
h+1/M

∗
h) as h grows; whence:

#(M∗
h+1/M

∗
h) ≤ #M∗

1 , for all h.

Since M∗ is a Zp[G]/(ν)-module and since Zp[G]/(ν) ≃ Zp[ζ ], where ζ is a prim-
itive pth root of unity, we may write for p = (1− ζ)Zp[ζ ] and s ≥ 0:

M∗ ≃
s⊕

j=1
Zp[ζ ]/p

nj , n1 ≤ n2 ≤ · · · ≤ ns,

and the sub-modules M∗
h are, in this Zp[ζ ]-structure, the following ones:

M∗
h ≃

⊕
j, nj≤h

Zp[ζ ]/p
nj , for all h ≥ 1.

1Note that if M is a Zp[G]-module and M∗ = Ker(ν), we have, in an obvious meaning,
(M∗)h = (Mh)

∗, whence the writing M∗

h .
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Proposition 2.1. Under the condition M∗ν = 1, the p-rank of M∗ fulfills the
inequality rkp(M

∗) ≤ (p− 1) · rkp(M∗
1 ).

Proof. Let M∗[p] := {x ∈ M∗, xp = 1}; since pZp[ζ ] = pp−1, we obtain that

M∗[p] = M∗
p−1; then #M∗

p−1 =
∏p−2

h=0
#(M∗

h+1/M
∗
h) ≤ (#M∗

1 )
p−1. Since M∗

p−1 and
M∗

1 are elementary p-groups, the inequality on the p-ranks follows. �

Corollary 2.2. Let K/k be a degree p cyclic extension of number fields and let
G = Gal(K/k). Then rkp(Cℓ∗K) ≤ (p− 1) rkp(CℓG∗

K ) = (p− 1) rkp(CℓGK).
2.3. Majoration of the rkp(CℓGFi

). As above, put k = Fi−1, K = Fi, 1 ≤ i ≤ e,
and G = Gal(K/k) =: 〈σ〉. Consider M = CℓK . Then Corollary 2.2 gives
rkp(Cℓ∗K) ≤ (p− 1) rkp(CℓGK) and we obtain the following upper bound:

Proposition 2.3. We have rkp(CℓGK) ≤ rkp(Cℓk) + tk + rkp(Ek/E
p
k), where tk is

the number of prime ideals of k ramified in K/k and Ek the group of (totally
positive) units of k.

Proof. We have the classical exact sequence:

1 → cℓK(I
G
K) −→ CℓGK

θ−→Ek ∩NK/k(K
×)/NK/k(EK) → 1,

where IK is the Z[G]-module of ideals of K and where θ associates with cℓK(A),
such that A1−σ = (α), α ∈ K×, the class of the unit NK/k(α) of k, modulo
NK/k(EK). The surjectivity and the kernel are immediate.

The Z[G]-module IGK is generated by the extension in K of the ideals of k and
by the tk prime ideals of K ramified in K/k. Thus, using the obvious inequality
rkp(Ek ∩ NK/k(K

×)/NK/k(EK)) ≤ rkp(Ek/E
p
k), we obtain:

rkp(CℓGK) ≤ rkp(cℓK(I
G
K)) + rkp(Ek/E

p
k) ≤ rkp(Cℓk) + tk + rkp(Ek/E

p
k),

which proves the claim. �

Denote by {ℓ1, . . . , ℓN}, N ≥ 0, the set of tame primes ramified in K/k (for such
an ℓ, there exist prime ideals lu | ℓ in k, u ∈ [1, tk,ℓ], tk,ℓ ≥ 1, ramified in K/k).

Thus, tk = tk,p+
N∑
j=1

tk,ℓj . We shall replace rkp(Ek/E
p
k) then tk,p, tk,ℓj by the rough

upper bound dk := [k : Q], which gives, using inequality (1), Corollary 2.2 and
Proposition 2.3:

Corollary 2.4. Put dk = [k : Q]; then we have the inequalities:

rkp(Cℓ∗K) ≤ (p− 1) ·
[
rkp(Cℓk) + (N + 2) dk

]
,

rkp(CℓK) ≤ p · rkp(Cℓk) + (p− 1) (N + 2) dk.

3. About the discriminants in the tower (Fi)1≤i≤e

Now, the purpose is to give lower bounds for discriminants, contrariwise for the
previous case of p-ranks. Give some essential explanations:

Remark 3.1. We have given, in the previous section, an upper bound for the
difference of p-ranks in K/k, where the number of ramified primes is crucial
because of genus theory, so that any real p-ranks at the step K/k (whatever the
p-cyclic tower F/κ having the same parameter N) will be smaller.
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In the present section, we shall give a definition of the “minimal tame relative
discriminant D∗

N ∈ N” with N tame primes ℓj , possibly ramified in K/k (so
that any real relative discriminant DK/k ∈ N (whatever F/κ), eventually with a
non-trivial p-part, will be larger). Then we shall apply: DK = Dp

kDK/k ≥ Dp
kD

∗
N .

Thus, under this facts, if an “ε-inequality” does exist between such fictitious
p-ranks and discriminants, a fortiori, any real situation will fulfill the p-rank
ε-inequality at this step.

3.1. The tame relative discriminant. As above, let k = Fi−1, K = Fi, for

1 ≤ i ≤ e, and let D̃k and D̃K be the absolute values of the tame parts of the

discriminants of k and K, respectively; then let D̃K/k ∈ N be the tame part of
the relative discriminant of K/k. If N is the number of tame prime numbers ℓ
ramified in K/k, let l1, . . . , ltk,ℓ be the prime ideals of k above ℓ, ramified in K/k.

Taking the norm of the different ofK/k, the tame part of the relative discriminant

is D̃K/k =
N∏
j=1

tk,ℓj∏
u=1

l
p−1
j,u , and, taking its norm, the “tame discriminant formula” [11,

Ch. IV, Prop. 4, Ch. III, Prop. 8] is (fk,lj,u is the residue degree of lj,u in k/Q):

(2) D̃K = D̃p
k · Nk/Q(D̃K/k) = D̃p

k ·
N∏
j=1

tk,ℓj∏
u=1

ℓ
(p−1) fk,lj,u
j .

We put D̃K/k :=
N∏
j=1

tk,ℓj∏
u=1

ℓ
(p−1) fk,lj,u
j =

N∏
j=1

ℓ
(p−1)·

∑tk,ℓj
u=1 fk,lj,u

j and call it the tame

relative discriminant.

3.2. Minimal tame relative discriminant. We fix N ≥ 0 and intend to de-
termine an absolute lower bound D∗

N of D̃K/k, only depending on N , so that for
every concrete ramification in K/k, with N tame primes ℓj and possibly that of

p, the effective relative discriminant DK/k ≥ D̃K/k will be necessarily larger than
D∗

N as explained in Remark 3.1. So we can state:

Lemma 3.2. An universal lower bound of the tame relative discriminant D̃K/k

is obtained when tk,ℓj = fk,lj = 1 for all j = 1, . . . , N ; thus the “fictive” minimum

of D̃K/k is then D∗
N :=

∏N
j=1 ℓ

p−1
j , taking the N successive prime numbers 6= p.

By abuse, we call D∗
N =

∏N
j=1 ℓ

p−1
j the minimal tame relative discriminant (for

p = 2, D∗
N = 3 ·5 ·7 ·11 · · · ℓN ); whence, an analogous framework as for the case of

degree p cyclic number fields K/Q given in [3], which allows an induction process
in the p-cyclic-tower F/κ. Note that, when κ 6= Q the primes ℓ ramified in K/k
are not necessarily ≡ 1 (mod p); this shall not modify the nature of the results.

3.3. Induction. The case i = 0 (k = κ) is obvious since to get prkp(Cℓκ) ≤
Cκ,p,ε · (

√
Dκ )

ε it suffices to take Cκ,p,ε = prkp(Cℓκ)
√
Dκ

, a constant independent of ε,

subject to state the ε-conjecture with 0 < ε < 1 which is natural.

By induction, we assume (for k := Fi−1) that for all ε > 0 there exists a constant
Ck,p,ε such that prkp(Cℓk) ≤ Ck,p,ε · (

√
Dk )

ε independently of the number Ni of tame
ramified primes ℓj in Fi/Fi−1; then we shall prove the property at the level i.
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From Corollary 2.4 we obtain the following inequality (k = Fi−1, K = Fi, N = Ni,
dk := [k : Q]):

(3) prkp(CℓK) ≤ pp · rkp(Cℓk)+(p−1) (N+2) dk ≤ Cp
k,p,ε·

(√
Dp

k

)ε

· p(p−1) (N+2) dk .

Then, as explained in Remark 3.1, we will compare p(p−1)·(N+2) dk and
(√

D∗
N

)ε
,

where (Lemma 3.2) D∗
N =

N∏
j=1

ℓ p−1
j , the ℓj being the N consecutive primes 6= p.

But we have the required computations in [3, § 2.3, Formulas (4, 5), p. 10] that
we give again with some obvious modifications.

Lemma 3.3. There exists ck,p,ε such that p(p−1)(N+2) dk ≤ ck,p,ε ·
(√

D∗
N

)ε
.

Proof. For N = 0, D∗
N = 1, so that the result (independent of ε) is true since

the constant ck,p,ε will be much larger than p2 (p−1) dk ; we assume N > 0 in what
follows. The existence of ck,p,ε is equivalent to the fact that, a fortiori:

p(p−1)(N+2) dk · (
√
D∗

N )−ε

is bounded over N , whence (p− 1)(N + 2) dk log(p)− ε · p−1
2

N∑
j=1

log(ℓj) < ∞. We

have, replacing the consecutive primes ℓj 6= p by the lower bounds:

ℓ′j =
1
2
j log

( ℓj
2

)
, j ≥ 2, ℓ′1 = 2,

(cf. [12, Notes on Chapitre I, x 4.6]), to verify that:

X(N) := (p− 1)(N + 2) dk log(p)

−ε · p−1
2

(
− log(p) + log2 +

N∑
j=2

[
log

(
1
2
· j
)
+ log2

( ℓj
2

)])
< ∞.

We check that log(2)+
∑N

j=2 log(
1
2
)+ log2

( ℓj
2

)
can be neglected subject to adding

−1 to the global sum, and we consider, instead:

X(N) = (p− 1)(N + 2) dk log(p)− ε · p−1
2

(
− 1− log(p) +

N∑
j=2

log(j)
)
.

We have, for N ≥ 1, log(N !) = N log(N)−N + 1
2
log(N) +O(1), giving:

X(N) = (p− 1)(N + 2) dk log(p)− ε · p−1
2

[
N log(N)−N + 1

2
log(N) + O(1)

]
,

whence:

X(N) = −ε p−1
2

N log(N) +N
[
(p− 1) dk log(p)− εO(1) + o(1)

]
.

The dominant term (for ε fixed):

−ε p−1
2

N log(N)

ensures the existence of a bound ck,p,ε and completes the proof. �

Remark 3.4. It is easy to verify that X(N), as function of N ≥ 0, admits, for an

N0(ε) ≫ 0, a maximum, roughly speaking of the form eO(1) · ε−1
, giving enormous

constants ck,p,ε. This is due in part to the method using certain extreme bounds
which are not achieved in practice; for example the use of the systematic upper
bounds dk = [k : Q] at each step of the tower. It would perhaps be interesting to
give heuristics for more reasonable constants.
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Finally, we may write in the degree p cyclic extension K/k (Formula (3) and
Lemma 3.3 giving p(p−1)(N+2) dk ≤ ck,p,ε · (

√
D∗

N )ε ≤ ck,p,ε · (
√

DK/k )
ε):

prkp(CℓK) ≤ Cp
k,p,ε

(√
Dp

k

)ε · p(p−1)(N+2) dk

≤ Cp
k,p,ε

(√
Dp

k

)ε · ck,p,ε
(√

DK/k

)ε ≤ Cp
k,p,ε · ck,p,ε

(√
Dp

k ·DK/k

)ε

≤ CK,p,ε · (
√
DK )ε,

with CK,p,ε := Cp
k,p,ε · ck,p,ε. The degree [F : κ] being fixed, the above induction

leads to (denoting CF,p,ε =: Cκ,pe,ε):

Theorem 3.5. Let p ≥ 2 be prime. The p-rank ε-conjecture for p-cyclic-towers
F/κ of given degree pe, on the existence, for all ε > 0, of a constant Cκ,pe,ε such
that #(CℓF ⊗ Fp) ≤ Cκ,pe,ε · (

√
DF )ε, is fulfilled unconditionally.

Remark 3.6. If F/κ, of degree pe, is inside the p-Hilbert tower of a number field
κ, we have DF = Dpe

κ , whence #(CℓF ⊗ Fp) ≤ Cκ,pe,ε · (
√
Dκ )

ε pe ; renormalizing ε
since pe is a constant, this may be written: for all ε > 0, there exists a constant
C ′

κ,pe,ε such that, for all such unramified p-towers:

#(CℓF ⊗ Fp) ≤ C ′
κ,pe,ε · (

√
Dκ )

ε;

this kind of results (with huge constants) is probably necessary because of some
results giving large ranks as the degree grows, as it is done by Hajir–Maire in [8].

4. The p-rank ε-conjecture in p-ramification theory

More precisely, we shall replace, in the p-cyclic-towers F/κ of given degree pe,
the p-class group CℓF by the pro-p-group AF which is the Galois group of the
maximal p-ramified abelian pro-p-extension Hab

F of F . As we know, this pro-p-
group is related to the p-class group CℓF , the normalized p-adic regulator RF and
its Zp-rank depends on Leopoldt’s conjecture (see, e.g., [4, IV,§§1,2,3], [7] and
the almost exhaustive bibliography of [5] for the story of abelian p-ramification
theory, especially the items [3,16,17,18,19,26,40,50,57,58,59,63,65,67,70,72]).

4.1. Recalls about AF . We assume the Leopoldt conjecture for p in all the fields
considered. Let GF be the Galois group of the maximal pro-p-extension HF of F ,
p-ramified in the ordinary sense (i.e., unramified outside p and non-complexified
(= totally split) at the real infinite places of F when p = 2). We know that
AF = Gal(Hab

F /F ) is a Zp-module of finite type for which TF := torZp
(AF ) is

isomorphic to the dual of the cohomology group H2(GF ,Zp). Under Leopoldt’s
conjecture, we have

(4) AF ≃ Zr2(F )+1
p

⊕
TF ,

where [F : Q] =: r1(F ) + 2 r2(F ) and where TF fixes the compositum F̃ of the
Zp-extensions of F . Let UF :=

⊕
p|p Up, be the product of the principal local

units of the completions Fp of F , let EF be the closure of the image of EF in UF

and let WF = torZp
(UF )

/
µp(F ). Then UF/EF fixes the p-Hilbert class field HF

and WF fixes the Bertrandias–Payan field Hbp
F :



THE p-RANK ε-CONJECTURE FOR p-EXTENSIONS 7

≃WF

TF ≃ H2(GF ,Zp)
∗

≃CℓF

≃UF /EF

Hab
FF̃HF Hbp

F≃RF

F̃

HFF̃∩HF

F

AF

4.2. Fixed point formula. Let K/k be any finite Galois extension of Galois
group G; then from [4, Theorem IV.2.1] the transfer J : Ak −→ AK is always
injective under Leopoldt’s conjecture. This will be applied to the degree p cyclic
sub-extensions of a tower F/κ. Then the analogue of the exact sequence for class
groups, used in the proof of Proposition 2.3, is given by the following result:

Theorem 4.1. We have the exact sequence [4, Proposition IV.3.2.1]:

1 −→ J(Ak) −−−→ AG
K −−−→

⊕
lk∤ p

Zp/elkZp −→ 1,

where elk is the ramification index of the tame prime ideals of k ramified in K/k.

Corollary 4.2. We have rkp(AG
K) ≤ rkp(Ak)+t′k, where t

′
k is the number of tame

prime ideals of k ramified in K/k.

4.3. Induction process in a p-cyclic tower F/κ. We consider the framework
of the previous sections with degree p cyclic extensions K/k. Let A∗

K = Ker(ν);
we get rkp(AK) ≤ rkp(Ak) + rkp(A∗

K). Then considering Proposition 2.1 (valid
for the Zp-modules of finite type M = AK since the M∗

h+1/M
∗
h are elementary

finite p-groups), one obtains from Corollary 4.2 in K/k:

rkp(A∗
K) ≤ (p− 1) rkp(AG∗

K ) = (p− 1) rkp(AG
K) ≤ (p− 1) (rkp(Ak) + t′k),

whence rkp(AK) ≤ p rkp(Ak) + (p − 1) t′k. Let N be the number of tame prime
numbers ℓj ramified in K/k; using the same upper bound dk := [k : Q], we obtain:

(5) rkp(AK) ≤ p rkp(Ak) + (p− 1)N dk.

Assume for instance that the real infinite places of k split in K/k (which is the
case for p 6= 2), we get easily from relations (4) and (5):

rkp(TK) ≤ p rkp(Tk) + (p− 1) (1 +N dk).

Seeing that, whatever p and F/κ, the inequalities are similar to that obtained
for the p-ranks of usual class groups, we can state about the Galois cohomology
groups H2(GF ,Zp), since rkp(H

2(GF ,Zp)) = rkp(TF ):

Theorem 4.3. Let p ≥ 2 be prime. The p-rank ε-conjecture for p-cyclic-towers
F/κ of given degree pe, on the existence, for all ε > 0, of a constant C ′

κ,pe,ε such

that #(H2(GF ,Zp)⊗ Fp) ≤ C ′
κ,pe,ε · (

√
DF )ε, is fulfilled unconditionally.
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