Chantal Cherifi
email: chantal.bonnercherifi@univ-lyon2.fr

ENHANCING WEB SERVICES CLASSIFICATION USING SIMILARITY NETWORKS

Keywords: semantic Web services, functionnal similarity, classification, discovery, substitution, networks

The diversity of users' needs and the ever growing number of Web services makes the discovering of the appropriate ones a challenging issue. In order to enhance the composition life cycle, an efficient organization of the Web services landscape must be integrated within discovery and substitution mechanisms. Classically, Web services are organized into non overlapping categories based on a similarity metric. The main drawback of this approach is that it lacks the precise information that is needed toward Web service selection within a category. In this paper, we propose a finer organization based on networks. The nodes of the networks are the operations of the Web services while the links join similar operations. Four similarity measures based on the comparison of input and output parameters values of Web services operations are presented. A comparative evaluation of the topological structure of the corresponding networks is performed on a benchmark of semantically annotated Web services. Results show that, with this approach, we get a deeper and more subtle vision of the functional similarities between Web services.

INTRODUCTION

Web services are web-based software applications designed to be published, discovered and invoked for remote use. Those modular applications can be programmatically loosely coupled through the Web to form more complex ones. Two of the most popular problems in Web services technology are discovery and composition. Discovery consist in locating the providers that advertise Web services that can satisfy a service request. Composition arises when several Web services are needed to fulfill a request. The basic architecture of WSDL, SOAP and UDDI is insufficient to realize truly automatic Web services discovery and composition. To overcome this drawback, semantic Web service descriptions such as WSDL-S, SAWSDL, OWL-S and WSMO have been proposed.

Despite all these efforts, Web services discovery and composition are still highly complex tasks. The complexity, in general, comes from different sources. The scale effect is one of them. It is related to the proliferation of Web services. Their volatile aspect is another source of complexity. Indeed, providers may change, relocate, or even remove them. This results in a Web services space that is an evolving structure of a great number of atomic Web services. Additionally, we observe functional redundancy among Web services that can be differentiated by their Quality of Service (QoS). This leads to multiple potential solutions for composition synthesis.

Knowledge of the similarity between Web services appeared of paramount importance. It is a key for optimizing discovery and composition processes.

A great deal of work on service architecture and semantic Web has been devoted to address the problem of Web service discovery. Discovery deals with finding a set of services that corresponds to a predetermined user request. Once the composite Web service is synthetized, it is deployed. During the deployment, one or more constituents of the composite service may become unavailable. Hence, there arises a need to replace such components with other components while maintaining the overall functionality of the composite service.

To render discovery and substitution more efficient, Web services can be classified. Classification aims at organizing the Web services space according to different criteria. Classification is an advanced task within the composition life cycle. This topic has already triggered a large amount of research. In [START_REF] Medjahed | A Dynamic Foundational Architecture for Semantic Web Services[END_REF] and [START_REF] Arpinar | Ontology-driven web services composition platform[END_REF], Web services are grouped when they belong to the same application domain. In [START_REF] Benatallah | Facilitating the Rapid Development and Scalable Orchestration of Composite Web Services[END_REF], [START_REF] Taher | Towards an Approach for Web Services Substitution[END_REF], [START_REF] Konduri | Clustering of Web Services Based on WordNet Semantic Similarity[END_REF], [START_REF] Nayak | Web Service Discovery with additional Semantics and Clustering[END_REF] and [START_REF] Azmeh | WSPAB: A Tool for Automatic Classification & Selection of Web Services Using Formal Concept Analysis[END_REF], Web services are classified according to their functional similarity. During discovery or substitution, the choice between Web services of the same domain, or between similar ones is then delegated to humans or to machines.

The similarity notion can be addressed from different point of views ranging from basic functional properties to higher level issues such as the quality of service. In this paper, we concentrate on the functional properties of Web services. In order to state that a Web service is similar to another one, the Web services descriptions must be analyzed. Information on functional properties can be found in the textual description or in the service name. But the most probative and direct information is nested within the interfaces that contain operations name, and parameters name and type. In [START_REF] Taher | Towards an Approach for Web Services Substitution[END_REF], Web services are organized into communities of substitutable services. Each community is associated with a specific functionality represented by an ontological concept. Functionality is materialized by a set of operations. Hence, Web services within a community meet the same need and are defined as functionally similar. In [START_REF] Konduri | Clustering of Web Services Based on WordNet Semantic Similarity[END_REF], similar Web services are grouped into clusters. Parameters and operations names are associated to an ontological concept, which is processed by a lexical similarity measure. In [START_REF] Azmeh | WSPAB: A Tool for Automatic Classification & Selection of Web Services Using Formal Concept Analysis[END_REF], two degrees of interface similarity called equivalent and replacing are defined. Equivalent Web services have the same number of operations and parameters, and parameters are of the same type. A replacing Web service has an additional functionality.

In order to improve the results of the discovery and substitution processes, it is important to increase the number of similar Web services by offering a large range of possibilities. Furthermore, classification may be improved by a more structured organization of the Web services within the communities. Our work follows this line. We propose a network model to represent sets of similar Web services operations. Operations are the nodes and a link account for a similarity relationship between two operations. The main contribution of this work is on the definition and analysis of similarity measures for the functional comparison among Web services. The proposed network model allows the automated identification of substitutable Web services. It differentiates with majority of works that are efficient in the domain-based discovery context, but not well suited for the substitution process.

The rest of the paper is organized as follows. The similarity network model is described in section 2 along with a presentation of the similarity functions. The similarity functions are used in order to cover different situations occurring while searching for similar Web services. Section 3 is devoted to the experimental results. We present the Web services collection used to build the similarity Web services networks. Then we provide an analysis of the networks topology and of the components structure. Conclusion and future work are presented in section 4.

NETWORK MODEL

In this paper, we focus on the functional aspect of semantic Web services. We restrict the definition of a Web service to a set of operations with their input and output parameters. We use the following notations. A Web service is represented by a Greek letter. Each operation labeled by a digit contains a set of input parameters noted I, and a set of output parameters noted O. Each parameter is associated to an ontological concept represented by a letter. Fig. 1 represents a Web service α with two operations 1 and 2, input parameter ontological concepts I1 = {a, b}, I2 = {c}, and output parameter ontological concepts O1 = {d}, O2 = {e, f}. In the following, we use for short the word "parameter" rather than "parameter ontological concept" to describe the semantics associated to a parameter. The similarity network model is based on the similarity between operations. We consider operations rather than Web services as atomic entities for two reasons. First, operations are the entities that are ultimately invoked. Second, it allows getting a more detailed analysis of the similarities. We define a similarity network as a graph whose nodes correspond to operations and links indicate a certain level of similarity between these operations. The nature of the similarity relationship is extremely important. It can be defined in several ways. We propose four operators that reflect different levels of functional similarity. These operators use a semantic matching function to compare the sets of input and output parameters. Thereafter, we describe the four similarity functions that we use to build the networks and we give their interpretation.

Similarity functions

The four similarity functions are inspired by the work of [START_REF] Keller | Automatic Location of Web Services[END_REF] and [START_REF] Küster | Evaluating semantic web service matchmaking effec tiveness based on graded relevance[END_REF] for service discovery. Several operators are presented and used to compare sets of ontological concepts in semantic descriptions. The definition of these operators is made on the key assumption that a user specifies his needs in terms of what he wants to achieve by using a service. In other words, the user knows the goals that he wants to get, but the way to reach them is not a major concern. To meet the needs, the request answer can be provided by an individual service or by a set of interacting services. The cornerstones elements are the goals pursued by the user, and they are represented by the output parameters of the Web service.

We selected four of these operators that reflect different matching situations between user's goals and the outputs provided by the services. We adapted these operator definitions to our goal, which is to determine a similarity value between two sets of parameters. The basic idea is that two Web services are substitutable if they allow to reach the same goal eventually using composite services.

FullSim is defined by analogy with the operator Match. It reflects the fact that all the user needs are met. PartialSim inspired by Partial match corresponds to the situation where only part of the goals is satisfied. Therefore, additional services will be needed to satisfy the request. The two other operators that we selected were introduced in [START_REF] Küster | Evaluating semantic web service matchmaking effec tiveness based on graded relevance[END_REF] to take into account two situations ignored thus far. ExcessSim based on Excess match which expresses the case where the published service fully meets the goals of the user and provides more information. RelationSim is inspired from Relation match which has been introduced for situations where a service can meet the goals but the user cannot provide the inputs to invoke the service. To use such services, additional ones are required.

The similarity functions (FullSim, PartialSim, ExcessSim and RelationSim) are defined in terms of set relations. Suppose we want to compare two operations i and j. Ii and Ij are respectively the sets of input parameters of i and j. Oi and Oj are respectively the sets of output parameters of i and j. We hence must compare Ii with Ij and Oi with Oj. FullSim means "full similarity". Two operations i and j are fully similar if they offer exactly the same set of output parameters (Oi = Oj) and if they have overlapping inputs (Ii ⋂ Ij ≠ ∅). PartialSim means "partial similarity". Operation j is partially similar to operation i if some output parameters are missing in j (Oi ⊃ Oj) and if the two sets of input parameters overlap (Ii ⋂ Ij ≠ ∅). ExcessSim means "excess similarity". An operation j is similar with excess to an operation i if j provides all the outputs of i plus additional ones (Oi ⊂ Oj) and if j has at most the inputs of (Ii ⊇ Ij). RelationSim means "relational similarity". Two operations i and j have a relational similarity if they have exactly the same outputs (Oi = Oj) and if they do not share any common input (Ii ⋂ Ij = ∅). FullSim and RelationSim are symmetric functions, while ExcessSim and PartialSim are asymmetrics.

To achieve the comparison between individual parameters, we take as a basis the classical exact and fail subsumption relationships introduced in [START_REF] Paolucci | Semantic Matching of Web Services Capabilities[END_REF]. Let two parameters to be compared. In an exact matching, two parameters are similar if they are described by the same ontological concept. The fail matching means that there is no subsumption relation between the concepts associated to the parameters.

Each similarity function allows building a specific network. In the following, we use the operators name to refer to the networks obtained with the different similarity functions. FullSim and RelationSim networks, due to the symmetrical nature of the similarity functions, are non-oriented networks. PartialSim and ExcessSim, which are derived from asymmetric functions, are oriented networks.

Interpretation of the functions

To illustrate the different situations, we show through an example how the similarity functions can be interpreted. Let consider the six operations in Table 1.

Input parameters 1 I1={ZIP} 2 I2 ={ZIP, GEOGRAPHICALREGION} 3 I3={ZIP} 4 I4={ZIP} 5 I5 ={CITY-NAME} 6 I6 = {CITY-NAME} Output parameters 1 O1={CITY-NAME} 2 O2 ={CITY-NAME} 3 O3={CITY-NAME, LONGITUDE, LATITUDE} 4 O4={WEATHERREPORT} 5 O5={WEATHERREPORT} 6 O6 = {WEATHERREPORT, WEATHERREPORTSUBSCR}
Table 1: Six operations labeled from 1 to 6 with their input and output parameters sets.

As stated previously, the user goal is the most important aspect to be considered. For example, suppose a user who wants to get the weather report of his city by providing the name and zip code of this city. Searching for operations that satisfy both the inputs and outputs can be too restrictive. Hence, we did not consider this case when designing the similarity functions.

FullSim similarity can be considered as the second best solution, since it includes the expected outputs and some inputs of the request. Operations 4 and 5 are, in this case, two potential candidates.

If no operation meets these criteria, the user can relax the constraints on the goal. Suppose that operations 4 and 5 are unavailable, operation 6 which is similar with excess (ExcessSim) to the request, may be the second possibility. It provides a subscription in addition to the weather report. The user may not be interested by this result if he is looking for a free service and if the subscription is a paying service. In another cases, he might be interested in additional outputs such as a list of weather reports for nearby cities, for example.

Suppose now that the user is always searching for a weather report, but he can only provide a zip code. When operation 4 is unavailable, then no operation can be found using FullSim, PartialSim or ExcessSim similarities. In this case, operation 5 can satisfy the need. It has a relational similarity (RelationSim) with the request because its outputs are identical to the goal, but inputs have nothing in common. This operation cannot be used alone, but it can lead to the goal if it is composed with other operations. In this case, operation 1 can first be invoked and its output parameter, a city name, is used to invoke operation 5.

It is important to highlight that the proposed similarity functions have been designed to be complementary. FullSim function is the best solution. Then, PartialSim, ExcessSim and RelationalSim functions can give satisfaction to specific situations that are directly related to the context, as we have seen in the example above.

STRUCTURE OF THE SIMILARITY NETWORKS

In this section, we present the Web services benchmark used in our experiment. Four similarity networks corresponding to the four similarity functions are built from these data. Then, we provide a global view of the networks and we make a comparison between the similarity networks components and the notion of domain used in Web service classification. Finally, concentrating on the components, we take a local point of view by studying and comparing the structure of the components from the different networks.

Data

The similarity networks are extracted from SAWSDL-TC [START_REF] Semwebcentral | [END_REF]. This SAWSDL test collection comes from SemWebCentral, an open source development Web site for the semantic Web. SAWSDL-TC is a service retrieval collection to support the evaluation of the performance of SAWSDL semantic Web service matchmaking algorithms. Although it has not been designed to test Web services substitution models, it best suits our requirements. It is partially composed of real-world Web services that are semantically described. The sets of Web services with similar functionalities are large enough to form reasonable communities. It contains 894 single operation descriptions and 654 are classified into 7 domains. Among them, economy, education and travel, contain more than 80% of the descriptions. Communication, food, medical and weapon contain the remaining 20% and their content is relatively uniform. Economy, education, travel and communication are respectively organized into 10, 5, 6 and 2 sub-domains.

Global structure

Whatever the similarity function used, the networks exhibit the same structure. A set of small components stand along with isolated nodes. Table 2 presents the number of components and proportion of isolated nodes of the networks. Isolated nodes are quite numerous in all the networks. According to these results, we can distinguish two types of networks. The first one includes the FullSim, PartialSim and ExcessSim networks while RelationSim is on the second group. Indeed, in the former the networks exhibit similar basic properties. PartialSim presents the lowest proportion of isolated nodes followed by ExcessSim then Fullsim. This behavior is in accordance with the restrictions imposed by the similarity definitions. In other words, there is more Web services that share common output and common inputs than Web services with exactly the same outputs. The differences observed between PartialSim and ExcessSim is probably due to a tougher constraint on the inputs in the later. Similarly, the number of components is quite comparable. Compared to the networks in the first group, RelationSim is quite different. It has at least two times less isolated nodes and the number of components is two times higher. This result suggests that there is a lot of operations that can be used in a substitution process through a composition. It implies to provide other operations to make the connection between the inputs of the desired operation and the inputs of the one extracted from the RelationSim Network. Note that the distribution of the operations does not reflect the organization of the collection into domains. This structure rather reflects the decomposition of the collection into a reasonable number of sets of similar operations. This is an interesting property. This observation reveals that the notion of domain is therefore not relevant for substitution. Note that if networks had been composed only of isolated nodes or if we had observed the presence of a giant component, those situations will have led to an inefficient distribution of the operations.

Local structure

In order to have a more detailed idea on the influence of the different similarity functions on the networks topology, we investigate and compare the structure of the components. Results show that we can distinguish two types of networks according to the local structure as shown in Fig. 2a

Clique as a basic pattern

The clique basic pattern in the FullSim and RelationSim networks give rise to different situations. To illustrate this feature, we present three components of the FullSim network.

The first one is shown on Fig. 3. It contains the get_BOOK and getEBook operations which form a 4-clique. They all produce a single parameter, Book, and they share at least one input parameter. The getEbook operations signatures are identical while getBook and getEbook have one common input parameter (Title). This component includes operations that are all similar according to the FullSim definition. They are all substitutable. If one wants to choose one of them for substitution, they can be distinguishable by their QoS features. In the FullSim network, two components aggregate get_PRICE operations. Some get_PRICE operations also appear among the isolated nodes. get_PRICE operations are numerous in the collection. They belong to the economy domain where Web services are divided into different sub-categories (book, food, car, electronic device). The distribution of the operations among components seems to reflect these categories.

Distribution of similar operations within components allows classifying them according to their functionality. A component is a set of operations that have identical outputs. Operations with at least one common input are grouped within cliques in this component. A component is not a monolithic block of similar operations. It can be decomposed into a set of communities characterized by a clique. The clique pattern in the components allows a finer characterization of the notion of community of operations.

Note that in the RelationSim network, the clique organization is more pronounced than in the FullSim network and some big components form a complete graph.

3.3.2

Star as a basic pattern The structure of the components in PartialSim and ExcessSim networks clearly differs from the previous ones. Whereas FullSim and RelationSim components are clique-like, PartialSim and ExcessSim components are rather organized as stars. We consider the PartialSim network in order to illustrate the most typical situations observed in these cases. operations. In this case, these six operations share a unique parameter (Title). The peripheral operations have a unique and same potential substitute. This substitute, which is pointed by the others, can replace them being aware that it provides less output that may be desired.

Output parameters 1 Film 2 Film, MaxPrice, Quality 3 Film, TaxedFreePrice, Qualit 4 Film, Price, Quality 5 Film, RecommendedPrice, Quality 6 Film, TaxedPrice, Quality In the example of Fig. 7, all the operations belong to the same classification domain. In this case, this is the travel domain. This is not always the case. They may also belong to different domains. The component made up with get_FUNDING operations on Fig. 8 illustrates this case.

CONCLUSION

In this work, we have proposed a model to represent the functional similarity between Web services. The model is a network based approach in which similarity relationships between Web services operations functionalities are computed on their input and output parameters sets. We defined a set of four functions that represent different degrees of similarity between operations.

To evaluate this model, we have extracted four This comparative study shows that the networks share the same global structure. They are characterized by a large number of isolated nodes. It evolves from 30% to 75% depending on the more or less restrictive definition of similarity function. The remaining nodes are organized into a number of small components of similar operations. From the components analysis, we identified two classes of networks. The first class encompasses the FullSim and RelationSim networks in which the organizational basic pattern is the clique. In the second class, PartialSim and ExcessSim networks are organized around a star pattern.

In clique structured networks, a component is a clique or a set of cliques. In a FullSim component, all the operations of a clique have identical output parameters and their input parameters overlap. Two operations that do not belong to the same clique have disjoint input parameters. In some cases, the way operations are distributed among components seems to reflect the categories of the collection. We observed that in the RelationSim network, components are strongly connected and can be complete graphs.

In the star structured networks, a component is a star or a set of stars. In a PartialSim component, operations that are pointed by a link have less output parameters than the operations pointing toward them. Two linked operations have overlapping input parameters. Two operations that do not belong to the same star have disjoint input parameters. In an ExcessSim component, links are oppositely directed compared to the same component in the PartialSim network. Additionally, some links disappear because of the restriction on the input parameters sets. Components made of sets of stars reveal the presence of operations originating from different domains.

This proposed classification reveals two levels of similarity. The first one is the component and the second one is the component basic pattern (clique or star). A basic pattern within a component is a community that groups a set of similar and substitutable operations.

This representation allows to better understand the functional similarity relationships that occur between Web services' operations. We plan to conduct thorough experiments to study the effectiveness of the proposed similarity networks to discover and substitute Web services during the composition process.

Figure 1 :

 1 Figure 1: Schematic representation of a Web service α with two operations 1 and 2 and their parameters.

Figure 2a :Figure 2b :

 2a2b Figure 2a: FullSim and RelationSim similarity networks where isolated nodes have been discarded. In FullSim and RelationSim networks, components are organized into cliques, as shown in Fig. 2a. They are dominated by stars in PartialSim and ExcessSim networks, as we can see in Fig. 2b. The four networks are presented without their set of isolated nodes.

Figure 3 :

 3 Figure 3: A 4-clique component of the FullSim network and its operations' signature. The second component on Fig. 4 contains six operations named get_LENDING. They are organized as follow: two 3-cliques and one 2-clique. The six operations have a single and same output parameter (Lending). On the right side of the figure, the links between the six operations are labeled by the concept of the input parameters shared by two adjacent operations. Unlike in the previous case, operations in this component are not all similar according to the Fullsim definition. Only operations that are within a clique follow this definition. This component includes three sets of similar operations which are organized into cliques. Two operations that are not in the same clique are similar according to the RelationSim definition. They have common outputs but their inputs do not overlap. Hence, when searching for substitutable operations in a FullSim component, all the cliques must be considered independently.

Figure 4 :

 4 Figure 4: A component of the FullSim network with 3 cliques (on the right side, the links' labels are the common inputs of two adjacent operations). The third component shown in Fig. 5 contains thirteen operations named get_PRICE. They are organized in five cliques (one 6-clique, one 4-clique, one 3-clique, two 2-cliques). Sets of operations provide prices with overlapping inputs in each set.

Figure 5 :

 5 Figure 5: A FullSim network component with 5 cliques (1 6-clique, 1 4-clique, 1 3-clique and 2 2cliques).

Fig. 6

 6 shows a star component of the PartialSim network. The get_FILM central operation produces less output parameters compared to the peripheral operations. It produces only the parameter Film while the five others produce additional ones. It also has common input parameters with the peripheral5

Figure 6 :

 6 Figure 6: A 6-nodes star-like component of the PartialSim network and the output parameters of its operations.

Fig. 7

 7 Fig.7shows a component with 15 nodes made up with nested stars. Four operations may be replaced by others: get_DESTINATION_HOTEL, get_ACTIVITY_HOTEL, and two get_SPORTS_HOTEL operations. Unlike in the previous example, this component contains several substitutes. Some may replace only one operation; the get_HOTEL at the left end side is only a substitute for get_ACTIVITY_HOTEL. Others may replace several operations; all the get_HOTEL operations of the right end side can be substitutes for get_DESTINATION_HOTEL and the two get_SPORTS_HOTEL operations. Similarly than for the clique pattern encountered previously, the concept of similarity can be refined within a component. It occurs when the component does not simply contain a simple basic pattern, but a more complex structure built from this pattern.

Figure 7 :

 7 Figure 7: A 15-nodes component of the PartialSim network with nested stars.

Figure 8 :

 8 Figure 8: A 24 nodes component of the PartialSim network. Operations do not all belong to the same domain. In this 24 nodes component, operations in columns labeled 'a' and 'b' come from the weapon domain. Those in the column labeled 'd' are from the education domain. Finally, those in the column labeled 'c' are from the education domain and they have a common input parameter with two of the get_FUNDING_RANGE operations and with one of the get_FUNDING_DURATION operations. Hence, within a same component, subsets can be based on different domains. In other words, the concept of similarity can be refined within the component. However, the criterion on which domains are made can be different. This will lead to different classifications of Web services. Indeed, the weapon domain and the education-governmentdegree_scholarship_service subdomain of education domain, from which the operations contained in this component come, may be grouped in a single domain. Both relate to government organizations funding, and this is what brings them together in the same component. Let's now compare the PartialSim and ExcessSim networks throughout the examples of Fig. 5 and Fig. 7. When observing the same components in the ExcessSim network, they differ in two points. The links are oppositely oriented and some of them disappear if one operation has more input parameters than the one to which it is compared.

 SAWSDL-TC1. Each network is based on one of the four similarity function. We analyzed and compared the structure of the networks.

Table 2 :

 2 Basic properties of the similarity networks.

		FullSim PartialSim
	% isolated nodes	75%	57%
	Nb of components	42	59
		ExcessSim RelationSim
	% isolated nodes	62%	31%
	Nb of components	66	121