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ON IDENTITIES FOR ZETA VALUES IN TATE ALGEBRAS

HUY HUNG LE AND TUAN NGO DAC

Abstract. Zeta values in Tate algebras were introduced by Pellarin in 2012.

They are generalizations of Carlitz zeta values and play an increasingly impor-
tant role in function field arithmetic. In this paper we prove a conjecture of

Pellarin on identities for these zeta values. The proof is based on arithmetic

properties of Carlitz zeta values and an explicit formula for Bernoulli-type
polynomials attached to zeta values in Tate algebras.
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1. Introduction

1.1. Background.

A classical topic in number theory is the study of the Riemann zeta function ζ(.)
and its special values ζ(n) for n ∈ N and n ≥ 2. Here N (resp. N∗) denotes the
set of non-negative integers (resp. the set of positive integers). By a well-known
analogy between the arithmetic of number fields and global function fields, Carlitz
suggested to transport the classical results to the function field setting in positive
characteristic. In [10] he considered the rational function field equipped with the
infinity place and introduced the Carlitz zeta values ζA(n) which are considered as
the analogues of ζ(n). Let Fq be a finite field having q elements, q being a power of a
prime number p, and θ an indeterminate over Fq. Let A = Fq[θ], and let K = Fq(θ)
equipped with the rational place ∞. Let K∞ = Fq(( 1

θ )) be the completion of K
at ∞, and let C∞ be the completion of a fixed algebraic closure of K∞ at ∞. For
d ∈ N, A+,d denotes the set of monic elements in A of degree d. For n ∈ Z, the
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value at n of the Carlitz-Goss zeta function is given by

ζA(n) :=
∑
d≥0

∑
a∈A+,d

1

an
∈ K∞.

One can show that ζA(n) ∈ A if n ≤ 0 and even ζA(n) = 0 if n < 0 and n ≡ 0
(mod q − 1) (see [19, Chapter 8]).

We now move to the context of Tate algebras. Let s ≥ 1 be an integer, and let
t1, . . . , ts be s variables overK and we write ts for the family of variables {t1, . . . , ts}.
Let Ts be the Tate algebra in the variables ts with coefficients in C∞ (see Section
2.1). In 2012 Pellarin [25] introduced the following element in T×s called the zeta
value in the variables ts

ζA(1, ts) :=
∑
d≥0

∑
a∈A+,d

a(t1) · · · a(ts)

a
∈ T×s .

For s = 1, he proved the remarkable identity (see [25, Theorem 1])

ζA(1, t1)ω(t1)

π̃
=

1

θ − t1
where π̃ is the Carlitz fundamental period (see [19, 31]), and ω(t1) is the special
function introduced by Anderson and Thakur in [1] and given by

ω(t1) = (−θ)
1
q−1

∏
j≥0

(
1− t1

θqj

)−1

for a fixed choice of the (q − 1)th root of (−θ) in C∞.

Since their introduction various works have revealed the importance of these
zeta values for both their proper interest and their applications to values of the
Goss L-functions, characteristic p multiple zeta values, Anderson’s log-algebraicity
identities, Taelman’s units, and Drinfeld modular forms in Tate algebras (see for
example [4, 6, 7, 8, 9, 11, 12, 14, 15, 27, 28, 32]). We should mention that gener-
alizations of these zeta values to various settings have been also conducted (see for
example [2, 3, 22, 23, 24]).

1.2. Conjectures of Pellarin and statement of the main result.

From now on we will always suppose that s ≡ 1 (mod q − 1) and set

(1.1) Σ := {1, . . . , s},

and

(1.2) m :=
s− 1

q − 1
∈ N.

In a recent work [26] Pellarin revisited the theory of Drinfeld modular forms which
were initially developed by Goss in [16, 17, 18] and Gekeler in [13]. In his inves-
tigation he proposed several conjectures for the zeta value ζA(1, ts) which would
lead to new identities for Eisenstein series. We refer the reader to [26, Section 9]
for more details.

Conjecture 1.1 ([26], Conjecture 9.1). We have

ζA(1, ts) ∈ Fp
[
τk(ζA(1, ti)) : 1 ≤ i ≤ s, k ∈ Z

]
.
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As Pellarin mentioned in his paper (see the discussion just before [26, Conjecture
9.1]), the central point of this conjecture is that negative twists are allowed, and
that the coefficients belong to Fp. Further, Pellarin suggested an explicit formula
for ζA(1, ts) when q is large enough. More precisely, letting k ∈ Z and U be a subset
of Σ, we set

(1.3) L(k)
U := τk

(∏
i∈U

ζA(1, ti)

)
.

Conjecture 1.2 ([26], Conjecture 9.4). Let Σ and m be defined as in (1.1) and
(1.2), respectively. Suppose that q is large enough, depending on m. Then we have
the following formula:

ζA(1, ts) =
∑
L(−1)
U1
· · · L(−d)

Ud

where the sum runs through the set of ordered set partitions U = (U1 | · · · | Ud) of
Σ (see Definition 2.1) satisfying

|U1|
q

+ · · ·+ |Ud|
qd

= 1.

The aim of the present paper is to give an affirmative answer to this conjecture
with an explicit bound for q.

Theorem 1.3. Conjecture 1.2 holds for q > m.

A proof of Theorem 1.3 will be given in Section 4. Let us outline the main ideas
of the proof.

(1) First, using the link between zeta values in Tate algebras and Taelman’s
class formula due to Anglès, Pellarin and Tavares Ribeiro in [5, 7], we state
an equivalent statement of Conjecture 1.2 (see Conjecture 2.5). Instead of
identities on zeta values, it gives conjectural expressions on a certain several
variable Bernoulli-type polynomial Bs ∈ Fq[ts, θ].

(2) Next, using the polynomial Bs we give an expression of the zeta value
ζA(1, ts) in terms of products of twists of zeta values ζA(1, ti) for i ∈ Σ
with coefficients in C∞ (see Proposition 2.8). Using some specialization
arguments we are able to compute explicitly some coefficients of this ex-
pression (see Lemma 2.9). Furthermore, we introduce a notion of weight for
polynomials in Definition 2.7 and show that if the weight of Bs is bounded
below by 1, then the other coefficients vanish which implies Conjecture 1.2
(see Theorem 2.10).

(3) Finally, we succeed in proving the previous bound for q large enough (see
Section 3). In order to do so we express Bs as a linear combination of
symmetric polynomials in ts. For q large enough we then compute explicitly
this expression of Bs (see Theorem 3.1), which implies immediately the
desired estimation of its weight (see Section 4). We mention that the proof
of Theorem 3.1 is of combinatorial nature and that combinatorial properties
of Bs have already had important applications in function field arithmetic
(see [4, 20, 27] for more details).
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1.3. Organization of the paper.

Our paper is organized as follows. In Section 2 we study the several variable
Bernoulli-type polynomial Bs. We introduce a notion of weight for polynomials
and explain how to deduce Pellarin’s conjectures from a lower bound on the weight
of Bs (see Theorem 2.10). Section 3 is devoted to prove a key result, Theorem
3.1, which gives an explicit expression of Bs in terms of symmetric polynomials.
Putting all together, we prove Theorem 1.3 in Section 4. At the end we discuss
some interesting questions in Section 5, which we will investigate in a future project.

1.4. Acknowledgments.

The authors would like to thank Bruno Anglès, Federico Pellarin and Floric
Tavares Ribeiro for many helpful discussions and suggestions and for encouragement
throughout this project. The authors also thank the anonymous referee for carefully
reading our paper and for giving valuable comments which helped improving its
exposition.

The second author (T. ND.) was partially supported by ANR Grant COLOSS
ANR-19-CE40-0015-02. Both authors (HH. L. and T. ND.) were partially supported
by CNRS IEA ”Arithmetic and Galois extensions of function fields” and the Labex
MILYON ANR-10-LABX-0070.

2. The several variable Bernoulli-type polynomial

In this section we study the several variable Bernoulli-type polynomial Bs. In
Section 2.2 we recall its definition, basic properties, and connection with zeta values
in Tate algebras. In Section 2.3 we use this polynomial to formulate a conjecture
equivalent to Conjecture 1.2 (see Conjecture 2.5). Section 2.4 is devoted to express
the zeta value ζA(1, ts) in terms of products of twists of zeta values in one variable
ζA(1, ti) for i ∈ Σ (see Proposition 2.8). The key result states that under some mild
condition on Bs, Conjecture 1.2 holds (see Theorem 2.10).

2.1. Preliminaries.

In this paper we will work with the set of all (finite) sequences of integers `.
When we consider a sequence ` = (`1, . . . , `d) of integers, the reader should keep in
mind that d depends on the sequence `, and that `i may be 0.

Definition 2.1. An ordered set partition of Σ defined as in (1.1) is a set partition
U1 t . . . t Ud of Σ equipped with a total order on its blocks U1 ≺ · · · ≺ Ud. Here
we require that Ud 6= ∅ but the other blocks may be empty.

We will denote this ordered set partition of Σ by

U = (U1 | U2 | . . . | Ud).

Recall that {t1, t2, . . . , ts} denotes a family of s variables, and we will also denote
this family by ts. For any ring R we set R[ts] := R[t1, . . . , ts].

Let L be an extension of K∞ in C∞ such that L is complete with respect to
v∞. Then the polynomial ring L[ts] = L[t1, . . . , ts] is equipped with the Gauss
valuation: For a polynomial f ∈ L[ts], if we write

f =
∑

i1,...,is∈N
ai1,...,ist

i1
1 . . . tiss , ai1,...,is ∈ L,
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then the Gauss valuation of f is defined by

v∞(f) := inf{v∞(ai1,...,is), i1, . . . , is ∈ N}.

We define the Tate algebra Ts(L) in the variables ts with coefficients in L as the
completion of L[ts] with respect to the Gauss valuation. Explicitly, Ts(L) is the
set of formal series

f =
∑

i1,...,is∈N
ai1,...,ist

i1
1 . . . tiss , ai1,...,is ∈ L,

such that
lim

i1+...+is→+∞
v∞(ai1,...,is) = +∞.

When L = C∞, we will write Ts instead of Ts(C∞). Let τ : Ts → Ts be the
continuous homomorphism of Fq[ts]-algebras such that for a formal series f ∈ Ts,
if we write

f =
∑

i1,...,is∈N
ai1,...,ist

i1
1 . . . tiss , ai1,...,is ∈ C∞,

then
τ(f) =

∑
i1,...,is∈N

aqi1,...,ist
i1
1 . . . tiss .

With this action of τ on Ts, we have the non-commutative rings Ts{τ} and Ts{{τ}}.
The latter set consists of the formal series

∑
i≥0 fiτ

i with fi ∈ Ts for all i, and
the elements of the former are the polynomials in τ with coefficients in Ts. The
commutation rule defining the product is given by τf = τ(f)τ for f ∈ Ts.

2.2. The several variable polynomial Bs.
We briefly recall the deep connection between the zeta value ζA(1, ts) and the

several variable Bernoulli-type polynomial Bs as explained in [5, 7].

Recall that for s = 1, Pellarin proved the following identity (see [25, Theorem
1]):

(2.1)
ζA(1, t1)ω(t1)

π̃
=

1

θ − t1
.

For s ≥ 2 and s ≡ 1 (mod q − 1), we define

(2.2) Bs := (−1)m
ζA(1, ts)ω(t1) . . . ω(ts)

π̃
∈ Ts

where m is given by (1.2). Then by [7, Lemma 7.6] (see also [6, Corollary 21]), we
have

Proposition 2.2. The element Bs is a polynomial in Fq[ts, θ]. Moreover, it is a
monic polynomial in the variable θ of degree m− 1 and a symmetric polynomial in
the variables ts.

Inspired by Taelman’s theory in [29, 30], Anglès, Pellarin, and Tavares Ribeiro
showed that the polynomial Bs is closely connected to the class module Hφ of a
certain Drinfeld A[ts]-module φ of rank one as follows (see [7, Section 7] for more
details). Let φ : A[ts] → Ts{τ} be the Drinfeld A[ts]-module over Ts given by a
homomorphism of Fq[ts]-algebras such that

φθ = θ + (t1 − θ) · · · (ts − θ)τ.
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There exists a unique formal series expφ ∈ Ts{{τ}} called the exponential series
attached to φ such that

expφ ≡ 1 (mod τ),

and

φa expφ = expφ a, a ∈ A[ts].

One can show that the exponential series induces a natural Fq[ts]-linear map

expφ : Ts → Ts.

Following Taelman [29, 30], we define the class module Hφ by

Hφ :=
φ(Ts(K∞))

expφ(Ts(K∞)) + φ(A[ts])

where φ(A[ts]) is the Fq[ts]-module A[ts] equipped with the A[ts]-module structure
induced by φ. By [7, Proposition 7.2] the class module Hφ is a finitely generated
Fq[ts]-module of rank m− 1. The importance of the polynomials Bs is explained in
the following theorem.

Theorem 2.3 ([7], Theorem 7.7). We denote by FittA[ts]
(Hφ) the Fitting ideal of

the torsion A[ts]-module Hφ of finite type. Then

FittA[ts]
(Hφ) = BsA[ts].

In particular,

Bs = det
Fq [ts][Z]

(
Z · Id− φθ |Hφ⊗Fq [ts]Fq [ts][Z]

)
|Z=θ.

A few explicit examples of the polynomials Bs are given in [4, 7] (see also [27]).
We need to introduce some more notation.

Definition 2.4. For any sequence ` = (`1, . . . , `d) ∈ Nd, we set

`0 := s− (`1 + · · ·+ `d) ∈ Z,

and define

σs(`) := σs(`1, . . . , `d) =
∑ d∏

k=1

∏
i∈Uk+1

tki ,

where the sum runs through the set of ordered set partitions U = (U1 | · · · | Ud+1)
of Σ such that |Uk+1| = `k for 0 ≤ k ≤ d. Here by convention, empty products are
one and empty sums are equal to zero.

In particular, σs(`) = 0 if `1 + · · ·+ `d > s, which is equivalent to the condition
`0 < 0. The reader should keep in mind that `i may be 0. For example,

σs(0, 0, 1) =

s∑
i=1

t3i .
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Here are some more explicit examples that will appear in the explicit formulas of
Bs for small values of s:

σ2q−1(q) =
∑

1≤i1<···<iq≤2q−1

ti1 · · · tiq ,

σ3q−2(q) =
∑

1≤i1<···<iq≤3q−2

q∏
j=1

tij ,

σ3q−2(2q − 1) =
∑

1≤i1<···<i2q−1≤3q−2

2q−1∏
j=1

tij ,

σ3q−2(2q) =
∑

1≤i1<···<i2q≤3q−2

2q∏
j=1

tij ,

σ3q−2(q − 1, q) =
∑

1≤i1<···<iq−1≤3q−2

∑
1≤k1<···<kq≤3q−2

k` 6=ij

q−1∏
j=1

tij

q∏
`=1

t2k` .

By [4, Lemma 3.4] we have

Bq = 1,(2.3)

B2q−1 = θ − σ2q−1(q),(2.4)

B3q−2 = θ2 − θ[σ3q−2(q) + σ3q−2(2q − 1)] + [σ3q−2(q − 1, q) + σ3q−2(2q)].(2.5)

2.3. A conjecture equivalent to Conjecture 1.2.

In this section we use the several variable polynomial Bs to formulate a conjecture
equivalent to Conjecture 1.2 (see Conjecture 2.5).

Let k ∈ N∗. Since τω(t1) = (t1 − θ)ω(t1), we get

τ−k
(

1

(t1 − θ)ω(t1)

)
=

(t1 − θ
1

qk−1 ) · · · (t1 − θ
1
q )

ω(t1)
.

By Equation (2.1), we know that

ζA(1, t1) =
π̃

(θ − t1)ω(t1)
= − π̃

(t1 − θ)ω(t1)
.

It follows that

τ−k(ζA(1, t1)) = τ−k
(
− π̃

(t1 − θ)ω(t1)

)
= − π̃

1

qk (t1 − θ
1

qk−1 ) · · · (t1 − θ
1
q )

ω(t1)

since (−1)q
k

= −1.

Similarly, for 1 ≤ i ≤ s, we obtain

(2.6) τ−k(ζA(1, ti)) = − π̃
1

qk (ti − θ
1

qk−1 ) · · · (ti − θ
1
q )

ω(ti)
= − π̃

1

qk b∗k(ti)

ω(ti)

where we set

(2.7) b∗k(ti) := (ti − θ
1

qk−1 ) · · · (ti − θ
1
q ).

Note that b∗1(ti) = 1.
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For a subset U of Σ, we define

B∗k(tU ) :=
∏
i∈U

b∗k(ti).

By the previous discussion we deduce that Conjecture 1.2 is equivalent to the
following conjecture.

Conjecture 2.5 ([26], Conjecture 9.7). Suppose that q is large enough, depending
on m. Then the following formula holds

(2.8) Bs = (−1)m−1
∑

B∗1(tU1
) · · ·B∗d(tUd)

where the sum runs through the set of ordered set partitions U = (U1 | · · · | Ud) of
Σ (see Definition 2.1) satisfying

|U1|
q

+ · · ·+ |Ud|
qd

= 1.

We now present the cases m = 1 and m = 2 to illustrate combinatorial compu-
tations which we may encounter. We follow the presentation of Pellarin given in
[26, Section 9.1.1] and see that by direct calculations Conjecture 2.5 holds in these
cases.

(1) For m = 1, Conjecture 2.5 holds since both sides of (2.8) are equal to 1
(see (2.3) for the left-hand side).

(2) For m = 2, by (2.4) the left-hand side of (2.8) equals

B2q−1 = θ − σ2q−1(q).

Since |Σ| = s = 2q−1, we see that the only ordered set partitions appearing
on the right-hand side of (2.8) are (U1 | U2) with |U1| = q−1 and |U2| = q.
It follows that the right-hand side of (2.8) is equal to

−
∑

U2⊂Σ, |U2|=q

∏
i∈U2

(
ti − θ1/q

)
.

We claim that this expression is equal to θ − σ2q−1(q), which confirms
Conjecture 2.5 for m = 2. In fact, it is easy to see that all the terms
defined over Fq[θ1/q] but not over Fq[θ] cancel. Further, the terms over
Fq[θ] give exactly the polynomial θ − σ2q−1(q) as desired.

(3) More generally, our strategy follows that given in the case m = 2. On
the one hand, we show that on the right-hand side of (2.13) all the terms
not defined over Fq[θ] cancel, which is exactly explained in the rest of this
Section. On the other hand, we compute the terms over Fq[θ] and prove
that they give exactly Bs, which will be done in Section 3.

Remark 2.6. Let U = (U1 | · · · | Ud) be an ordered set partition of Σ satisfying

|U1|
q

+ · · ·+ |Ud|
qd

= 1.

We set `j = |Uj | for 1 ≤ j ≤ d. Then the sequence ` = (`1, . . . , `d) ∈ Nd with
`d ≥ 1 is a solution of the system{

`1 + . . .+ `d = s
`1
q + · · ·+ `d

qd
= 1.

(2.9)
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We assume further that m < q where m is defined as in (1.2). Then one can
show easily that if ` = (`1, . . . , `d) ∈ Nd with `d ≥ 1 is a solution of the above
system, then we can write `1 = q − s1, `2 = s1q − s2, . . . , `d = sd−1q for a sequence
(s1, . . . , sd−1) ∈ (N∗)d−1 with s1 + . . .+ sd−1 = m− 1. In fact, the map

(`1, . . . , `d) 7→ (s1, . . . , sd−1)

gives rise to a bijection between the set Um of solutions ` = (`1, . . . , `d) ∈ Nd with
`d ≥ 1 of the system (2.9) and that of sequences (s1, . . . , sd−1) ∈ (N∗)d−1 with
s1 + . . .+ sd−1 = m− 1. In particular, for m ≥ 2, the cardinal of the set Um equals
2m−2.

We will give, for m = 1, 2, 3, 4 and m < q, the explicit list of the elements of Um.

• m = 1: U1 = {(q)};
• m = 2: U2 = {(q − 1, q)};
• m = 3: U3 = {(q − 1, q − 1, q), (q − 2, 2q)};
• m = 4: U4 = {(q − 1, q − 1, q − 1, q), (q − 1, q − 2, 2q), (q − 2, 2q − 1, q), (q −

3, 3q)}.

2.4. Twists of zeta values in one variable.

In this section we will first give an expression for the zeta value ζA(1, ts) in
terms of products of twists of zeta values in one variable ζA(1, ti) for i ∈ Σ with
coefficients in C∞ (see Proposition 2.8). Next, using specialization properties we
determine some coefficients of this expression (see Lemma 2.9). Finally, under some
mild condition on Bs, we deduce Conjecture 1.2 (and its equivalent form, Conjecture
2.5) from the previous calculations (see Theorem 2.10).

We start introducing a notion of weight for polynomials.

Definition 2.7. 1) Let ` = (`1, . . . , `s) ∈ Ns be an s-tuple of integers. We consider

the monomial t
`
s :=

∏s
i=1 t

`i
i and define its weight by

w(t`s) :=

s∑
i=1

1

q`i+1
.

2) Let P (ts) ∈ C∞[ts] be a non-zero polynomial. If we express

P (ts) =
∑
`

a` t
`
s, a` ∈ C∞,

where the sum runs through the set of s-tuples ` = (`1, . . . , `s) ∈ Ns, then we define
its weight by

w(P ) := min{w(t`s) : a` 6= 0}.

Proposition 2.8. With the notation as above, we can express

(2.10) ζA(1, ts) = (−1)m−1
∑

`∈(N∗)s

π̃
1−
∑s
i=1

1

q`i γ`

s∏
i=1

τ−`i (ζA(1, ti)) , γ` ∈ C∞,

where the sum runs through a finite set of s-tuples ` = (`1, . . . , `s) ∈ (N∗)s such
that if γ` 6= 0, then

w(Bs) ≤
s∑
i=1

1

q`i
.
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Proof. The proof is divided into several steps.

Step 1. First, we will express the polynomial Bs ∈ Fq[ts, θ] as a sum of products
of b∗k(ti) defined as in (2.7).

Recall that for k ∈ N∗ and for 1 ≤ i ≤ s, we have set in (2.7)

b∗k(ti) = (ti − θ
1

qk−1 ) · · · (ti − θ
1
q ) ∈ C∞[ti]

which is a polynomial in the variable ti of degree k − 1. It follows that for n ∈ N,
we can write

(2.11) tni =

n+1∑
k=1

ak,nb
∗
k(ti), ak,n ∈ C∞.

We note that the coefficients ak,n do not depend on i ∈ Σ.

For the polynomial Bs ∈ Fq[ts, θ], we write

Bs =
∑
j

βj t
j
s =

∑
j

βj t
j1
1 . . . tjss , with βj ∈ Fq[θ],

where the sum runs through a finite set of s-tuples j = (j1, . . . , js) ∈ Ns.
For any s-tuple of positive integers ` = (`1, . . . , `s) ∈ (N∗)s, we set

(2.12) γ` :=
∑
j

βj

s∏
i=1

a`i,ji ∈ C∞,

where the coefficients a`i,ji are defined as in (2.11), and the sum runs through the
set of s-tuples j = (j1, . . . , js) ∈ Ns such that ji + 1 ≥ `i for 1 ≤ i ≤ s.

By (2.11), we get

Bs =
∑
j

βj t
j1
1 . . . tjss(2.13)

=
∑
j

βj

s∏
i=1

ji+1∑
`i=1

a`i,jib
∗
`i(ti)

=
∑
`

γ`b
∗
`1(t1) · · · b∗`s(ts).

Here

• the first and second sum run through a finite set of s-tuples j = (j1, . . . , js) ∈
Ns.
• the third sum runs through a finite set of s-tuples ` = (`1, . . . , `s) ∈ (N∗)s.

Step 2. Next, letting ` = (`1, . . . , `s) ∈ (N∗)s be an s-tuple of positive integers, we
claim that if γ` 6= 0, then

w(Bs) ≤
s∑
i=1

1

q`i
.
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In fact, if γ` 6= 0, then by (2.12), there exists an s-tuple j = (j1, . . . , js) ∈ Ns
such that `i ≤ ji + 1 for 1 ≤ i ≤ s and

βj

s∏
i=1

a`i,ji 6= 0.

It implies that βj 6= 0. Thus we obtain

w(Bs) ≤ w(tj11 . . . tjss ) =

s∑
i=1

1

qji+1
≤

s∑
i=1

1

q`i
.

Here the first inequality and the second equality follow from the fact that βj 6= 0 and

Definition 2.7, respectively. The last inequality comes from the fact that `i ≤ ji+1
for all 1 ≤ i ≤ s.

Step 3. We now switch to zeta values in Tate algebras. We have

ζA(1, ts) =
(−1)mπ̃Bs

ω(t1) . . . ω(ts)
by (2.2)

=
(−1)mπ̃

∑
`∈(N∗)s γ`b

∗
`1

(t1) · · · b∗`s(ts)
ω(t1) . . . ω(ts)

by (2.13)

= (−1)mπ̃
∑

`∈(N∗)s

γ`

s∏
i=1

(−1)τ−`i(ζA(1, ti))

π̃
1

q`i

by (2.6)

= (−1)m−1
∑

`∈(N∗)s

π̃
1−
∑s
i=1

1

q`i γ`

s∏
i=1

τ−`i (ζA(1, ti)) (since (−1)s = −1)

where the sum runs through a finite set of s-tuples of positive integers ` ∈ (N∗)s.
The proof of Proposition 2.8 is finished. �

We now calculate some coefficients of the expression (2.10) using specialization
arguments. Let k = (k1, . . . , ks) ∈ Ns be an s-tuple of non-negative integers. We
study the following specialization of (t1, . . . , ts):

ti = θq
−ki

= θ
1

qki , i = 1, . . . , s.

Let i ∈ Σ. For an s-tuple ` = (`1, . . . , `s) ∈ (N∗)s, we have

τ−`i (ζA(1, ti))∣∣ti=θq−ki =

∑
d≥0

∑
a∈A+,d

a(ti)

aq
−`i

∣∣ti=θq−ki
=
∑
d≥0

∑
a∈A+,d

a(θq
−ki

)

aq
−`i

=
∑
d≥0

∑
a∈A+,d

aq
−ki

aq
−`i

=
∑
d≥0

∑
a∈A+,d

1

a

(
1

q`i
− 1

qki

) .
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Recall that ζA(n) = 0 if n < 0 and n ≡ 0 (mod q − 1), ζA(0) = 1 and ζA(n) 6= 0
if n > 0 (see for example [19, Chapter 8]). It follows that

τ−`i (ζA(1, ti))∣∣ti=θq−ki =


0 if `i > ki,

1 if `i = ki,

6= 0 otherwise.

(2.14)

We now analyze the term ζA(1, ts)
∣∣ti=θq−ki . We write

ζA(1, ts)
∣∣ti=θq−ki =

∑
d≥0

∑
a∈A+,d

a(t1) . . . a(ts)

a

∣∣ti=θq−ki
=
∑
d≥0

∑
a∈A+,d

a(θq
−k1

) . . . a(θq
−ks

)

a

=
∑
d≥0

∑
a∈A+,d

1

a

(
1−
∑s
i=1

1

qki

) .
Since s ≡ 1 (mod q − 1), we can write

1−
s∑
i=1

1

qki
=

u

qk

with u ≡ 0 (mod q − 1) and k ∈ N∗. Again, since ζA(n) = 0 if n < 0 and n ≡ 0
(mod q − 1), ζA(0) = 1 and ζA(n) 6= 0 if n > 0, we deduce

ζA(1, ts)
∣∣ti=θq−ki =


0 if

∑s
i=1

1
qki

> 1,

1 if
∑s
i=1

1
qki

= 1,

6= 0 otherwise.

(2.15)

Lemma 2.9. We continue with the notation of Proposition 2.8. Then for any
s-tuple k = (k1, . . . , ks) ∈ (N∗)s, we have

γk =

{
0 if

∑s
i=1

1
qki

> 1,

(−1)m−1 if
∑s
i=1

1
qki

= 1.

Proof. We divide the proof into two steps.

Step 1. Recall that the coefficients γ` are defined as in Proposition 2.8. We
consider the set B of s-tuples ` = (`1, . . . , `s) ∈ (N∗)s such that γ` 6= 0. We choose

one s-tuple k = (k1, . . . , ks) ∈ B such that the sum
∑s
i=1

1
qki

is maximal. Thus

γk 6= 0.

We claim that
∑s
i=1

1
qki
≤ 1. In fact, suppose that

∑s
i=1

1
qki

> 1. We consider

(2.10) and study the specialization of (t1, . . . , ts) given as above:

ti = θq
−ki

= θ
1

qki , i = 1, . . . , s.

Since
∑s
i=1

1
qki

> 1, Equation (2.15) implies

(2.16) ζA(1, ts)
∣∣ti=θq−ki = 0.

Thus the specialization value of the left-hand side of (2.10) equals 0.
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We now analyze the right-hand side of (2.10). First, we consider the term cor-
responding to the s-tuple k = (k1, . . . , ks) ∈ (N∗)s. By Equation (2.14), we get

(−1)m−1

(
π̃

1−
∑s
i=1

1

qki γk

s∏
i=1

τ−ki(ζA(1, ti))

)
∣∣ti=θq−ki = (−1)m−1π̃

1−
∑s
i=1

1

qki γk.

Next, for other s-tuple ` ∈ B, that means γ` 6= 0, we claim that there exists
1 ≤ i ≤ s such that `i > ki. Suppose that `i ≤ ki for 1 ≤ i ≤ s and `j < kj for
some 1 ≤ j ≤ s. Thus we get

∑s
i=1

1
qki

<
∑s
i=1

1
q`i

, which contradicts with the fact

that
∑s
i=1

1
qki

is maximal.

Since `i > ki for some 1 ≤ i ≤ s, by (2.14) we have

τ−`i (ζA(1, ti))∣∣ti=θq−ki = 0.

Thus we obtain

(−1)m−1

(
π̃

1−
∑s
i=1

1

q`i γ`

s∏
i=1

τ−`i(ζA(1, ti))

)
∣∣ti=θq−ki = 0.

Putting all together, the specialization value of the right-hand side of (2.10) equals

(2.17) (−1)m−1π̃
1−
∑s
i=1

1

qki γk.

By (2.16) and (2.17) we conclude that (−1)m−1π̃
1−
∑s
i=1

1

qki γk = 0. Thus γk = 0,
which is a contradiction.

To summarize we have proved that for any s-tuple ` = (`1, . . . , `s) ∈ (N∗)s, if∑s
i=1

1
q`i

> 1, then γ` = 0.

Step 2. We consider an s-tuple k = (k1, . . . , ks) ∈ (N∗)s such that the sum∑s
i=1

1
qki

= 1.

We claim that γk = (−1)m−1. As before, we consider (2.10) and study the
specialization of (t1, . . . , ts) given as above:

ti = θq
−ki

= θ
1

qki , i = 1, . . . , s.

Since
∑s
i=1

1
qki

= 1, Equation (2.15) implies that

(2.18) ζA(1, ts)
∣∣ti=θq−ki = 1.

Thus the specialization value of the left-hand side of (2.10) equals 1.

We now analyze the right-hand side of (2.10). For any s-tuple ` ∈ (N∗)s such
that γ` 6= 0, we know that

s∑
i=1

1

q`i
≤ 1 =

s∑
i=1

1

qki
.

Thus the arguments given in Step 1 can be applied so that the specialization value
of the right-hand side of (2.10) equals

(2.19) (−1)m−1π̃
1−
∑s
i=1

1

qki γk = (−1)m−1γk.

Here the equality comes from the fact that
∑s
i=1

1
qki

= 1.
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By (2.18) and (2.19) we get (−1)m−1γk = 1. Thus γk = (−1)m−1 as required.

The proof of Lemma 2.9 is complete. �

As a consequence of Proposition 2.8 and Lemma 2.9, we prove the key result of
this section.

Theorem 2.10. Suppose that w(Bs) ≥ 1. Then

1) We have w(Bs) = 1.

2) Conjecture 1.2 holds, that means we have

ζA(1, ts) =
∑
L(−1)
U1
· · · L(−d)

Ud

where the sum runs through the set of ordered set partitions U = (U1 | · · · | Ud) of
Σ such that

|U1|
q

+ · · ·+ |Ud|
qd

= 1.

Proof. Proposition 2.8 states that we can write

ζA(1, ts) = (−1)m−1
∑

`∈(N∗)s

π̃
1−
∑s
i=1

1

q`i γ`

s∏
i=1

τ−`i (ζA(1, ti)) , γ` ∈ C∞,

where the sum runs through a finite set of s-tuples ` = (`1, . . . , `s) ∈ (N∗)s such
that if γ` 6= 0, then

w(Bs) ≤
s∑
i=1

1

q`i
.

Thus the hypothesis w(Bs) ≥ 1 implies that if γ` 6= 0, then
∑s
i=1

1
q`i
≥ w(Bs) ≥ 1.

Combining this property with Lemma 2.9, we conclude that w(Bs) = 1, and that

ζA(1, ts) =
∑

`∈(N∗)s

s∏
i=1

τ−`i (ζA(1, ti))

where the sum runs through the set of s-tuples ` = (`1, . . . , `s) ∈ (N∗)s satisfying
s∑
i=1

1

q`i
= 1.

We wish to re-index the above sum by ordered set partitions of Σ. For an s-tuple
` = (`1, . . . , `s) ∈ (N∗)s, we can associate an ordered set partition U = (U1 | . . . |
Ud) of Σ as follows. We put d = max{`i : i ∈ Σ} and for 1 ≤ j ≤ d,

Uj = {i ∈ Σ : `i = j}.
In fact, we see that this association gives rise to a bijection between the set of
s-tuple ` ∈ (N∗)s and the set of ordered set partitions of Σ. Furthermore, it is clear
that

d∑
j=1

|Uj |
qj

=

s∑
i=1

1

q`i
.

Using this bijection we conclude that

ζA(1, ts) =
∑
L(−1)
U1
· · · L(−d)

Ud
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where L(k)
U are defined as in (1.3), and the sum runs through the set of ordered set

partitions U = (U1 | · · · | Ud) of Σ satisfying

|U1|
q

+ · · ·+ |Ud|
qd

= 1.

The proof is complete. �

3. Coefficients of the Bernoulli-type polynomial

In this (long) section we study the expression of Bs as a linear combination of
symmetric polynomials in ts. We will give explicit formulas for some coefficients of
this expression (see Theorem 3.1). To do so we need to write down similar expres-
sions of zeta values (see Propositions 3.10 and 3.12) and Anderson-Thakur’s special
functions. We then deduce such an expression for Bs (see Sections 3.3 and 3.4). For
the desired coefficients we are able to compute them by using combinatorial tools
(see Section 3.4).

3.1. The key result.

We recall that for any sequence ` = (`1, . . . , `d) ∈ Nd, we have defined the
symmetric polynomial σs(`) as in Definition 2.4.

In what follows, we define

A+ := {a = (a0, . . . , ad) ∈ (N∗)d+1 :

d∑
j=0

aj = m},(3.1)

A := {a = (a0, . . . , ad) ∈ (N∗)d × N :

d∑
j=0

aj = m},

N+
` := {n = (n1, . . . , nd) ∈ (N∗)d : n1 ≤ . . . ≤ nd,

d∑
j=1

nj = `}, ` ∈ N∗,

N` := {n = (n1, . . . , nd) ∈ (N∗)d :

d∑
j=1

nj = `}, ` ∈ N∗.

It is clear that A+ ⊂ A and N+
` ⊂ N` for all ` ∈ N∗.

We now state the main result of this section whose proof will be given in Section
3.4.

Theorem 3.1. Recall that (see Proposition 2.2)

Bs = θm−1 +B1θ
m−2 + . . .+Bm−1, B` ∈ Fq[ts].

Let ` ∈ N∗ such that 1 ≤ ` ≤ q− 2, and let N` and A+ be defined as in (3.1). Then
we have

B` =
∑
n∈N`

∑
a∈A+

B(n, a)σs(a1(q−1)+n1−n2, . . . , ad−1(q−1)+nd−1−nd, ad(q−1)+nd)

where

• the first sum runs through the set of sequences n = (n1, . . . , nd) ∈ (N∗)d

satisfying
∑d
j=1 nj = `, that means n ∈ N`,
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• the second sum runs through the set of sequences a = (a0, . . . , ad) ∈ (N∗)d+1

satisfying
∑d
j=0 aj = m, that means a ∈ A+,

• the coefficient B(n, a) ∈ Fp is given by

B(n, a) = (−1)`
d∏
j=1

(
aj − 1

nj − 1

)
.

Remark 3.2. 1) We note that if the coefficient B(n, a) 6= 0, then aj ≥ nj for
1 ≤ j ≤ d.

2) The reader may compare the above expression with formulas given in (2.3),
(2.4) and (2.5). We leave the reader to write down explicitly the polynomial B4q−3

for q > 4.

Remark 3.3. We now present a heuristic explanation for the formulas given in
Theorem 3.1. We assume that m < q (see the discussion after Conjecture 2.5 for
m = 1, 2). By Conjecture 2.5 we write

Bs = (−1)m−1
∑

B∗1(tU1
) · · ·B∗d(tUd)

where the sum runs through the set of ordered set partitions U = (U1 | · · · | Ud) of
Σ satisfying

|U1|
q

+ · · ·+ |Ud|
qd

= 1.

By Remark 2.6 we have an explicit description of the set of such partitions when
m < q. Using this description we can write down all the terms defined over Fq[θ]
of the right-hand side. By this way we obtain a nice formula for Bs as given in
Theorem 3.1.

3.2. Preparatory lemmas.

We first collect several combinatorial lemmas which will be necessary in the
sequel.

Lemma 3.4. Let n ∈ N∗ with n < q, and let a ∈ N∗. Then we have

(
a(q − 1) + n− 1

n− 1

)
= (−1)n−1

(
a− 1

n− 1

)
(mod p).

Proof. This lemma is an application of Lucas’s theorem (see for example [21]). We
write down completely the proof for the convenience of the reader.
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We always work in Fp. Since 1 ≤ n < q, by Lucas’s theorem we can assume that
1 ≤ a ≤ q. By Lucas’s theorem and the fact 1 ≤ n < q again, we get(

a(q − 1) + n− 1

n− 1

)
=

(
(a− 1)q + q − a+ n− 1

n− 1

)
=

(
q − a+ n− 1

n− 1

)
=

(q − a+ n− 1) . . . (q − a+ 1)

(n− 1)!

=
(−a+ n− 1) . . . (−a+ 1)

(n− 1)!

= (−1)n−1 (a− n+ 1) . . . (a− 1)

(n− 1)!

= (−1)n−1

(
a− 1

n− 1

)
as required. �

The next lemma follows from standard combinatorial arguments and the details
of the proof will be left to the reader.

Lemma 3.5. For any integer j ≥ 0 and any sequence (`1, . . . , `d) ∈ Nd, we have

σs(j)σs(`1, . . . , `d) =
∑

j=(j1,...,jd+1)∈Nd+1

(
`1 + j1 − j2

j1

)
. . .

(
`d + jd − jd+1

jd

)
×

× σs(`1 + j1 − j2, . . . , `d + jd − jd+1, jd+1)

where the sum runs through the set of sequences j = (j1, . . . , jd+1) ∈ Nd+1 such
that j1 + . . .+ jd+1 = j.

In what follows, we fix x to be an indeterminate over K. We recall that for any
k ∈ N, the binomial polynomial(

x

k

)
:=

x(x− 1) . . . (x− k + 1)

k!
∈ Q[x]

represents a polynomial in the variable x with rational coefficients. Note that its
value at ` ∈ N is equal to the binomial coefficient

(
`
k

)
.

Lemma 3.6. For M,N ∈ N, we have the following equality in Q[x]:

M∑
k=0

(−1)k
(
x+N − k
M − k

)(
x

k

)
=

(
N

M

)
.

Proof. For M,N ∈ N, we define

PM,N (x) :=

M∑
k=0

(−1)k
(
x+N − k
M − k

)(
x

k

)
∈ Q[x].

We claim that

PM,N (x) =

(
N

M

)
.
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The proof is by induction on M ∈ N. For M = 0, the assertion is clear. Suppose
that we have proved the claim for M − 1 with M ∈ N∗, i.e. for all N ∈ N,

PM−1,N (x) =

(
N

M − 1

)
.

We now show that the claim is true for M . In other words, we have to show that
for all N ∈ N, the following equality holds

PM,N (x) =

(
N

M

)
.

For N ∈ N, we have the following equality in Q[x]:

PM,N+1(x) = PM,N (x) + PM−1,N (x),

which implies

PM,N+1(x)−
(
N + 1

M

)
=

(
PM,N (x)−

(
N

M

))
+

(
PM−1,N (x)−

(
N

M − 1

))
.

By the induction hypothesis, we know that the second term in the above sum
vanishes. Thus

(3.2) PM,N+1(x)−
(
N + 1

M

)
= PM,N (x)−

(
N

M

)
.

Since (3.2) holds for all N ∈ N, we deduce

PM,N (x)−
(
N

M

)
= PM,N−1(x)−

(
N − 1

M

)
= . . . = PM,0(x).

To conclude, it suffices to prove that PM,0(x) = 0. In fact, we have

PM,0(x) =

M∑
k=0

(−1)k
(
x− k
M − k

)(
x

k

)
=

(
x

M

) M∑
k=0

(−1)k
(
M

k

)
= 0.

The proof is finished. �

Lemma 3.7. For M,N ∈ N with M ≤ N , we have the following equality in Q[x]:

M∑
k=0

(−1)k
(
x−N + k − 1

k

)(
x

M − k

)
=

(
N

M

)
.

Proof. We consider the polynomial in Q[x] defined by

P (x) :=

M∑
k=0

(−1)k
(
x−N + k − 1

k

)(
x

M − k

)
.

We write

P (x) =

M∑
k=0

(−1)k
(
x−N + k − 1

k

)(
x

M − k

)

=

M∑
k=0

(−1)k
(x−N) . . . (x−N + k − 1)

k!
× x . . . (x− (M − k) + 1)

(M − k)!

=

M∑
k=0

(N − x) . . . (N − x− k + 1)

k!
× x . . . (x− (M − k) + 1)

(M − k)!
.
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Since M ≤ N , we have degP ≤ M ≤ N . We know that for any integer ` with
0 ≤ ` ≤ N , we have the equality

P (x = `) =

M∑
k=0

(
N − `
k

)(
`

M − k

)
=

(
N

M

)
.

It follows that P (x) is the constant polynomial
(
N
M

)
. The proof is finished. �

3.3. An expression of the zeta value ζA(1, ts).

The main goal of this section is to express the zeta value ζA(1, ts) as a series
in θ−1 whose coefficients are symmetric polynomials in ts. We make use of the
notion of basic sums introduced in [4, Section 5.2] to obtain such an expression (see
Proposition 3.10).

Following [4, Section 5.2], we recall some facts of basic sums. For a sequence
k = (k0, . . . , kd−1) ∈ Nd, we set

w(k) := dk0 + (d− 1)k1 + . . .+ kd−1,

|k| := k0 + . . .+ kd−1,

Ck := (−1)|k|
|k|!

k0! . . . kd−1!
∈ Fp.

Letting a ∈ A+,d, we write a = a0 + a1θ + . . .+ ad−1θ
d−1 + θd. Thus we get

1

a
=

1

θd

∑
k=(k0,...,kd−1)∈Nd

Cka
k 1

θw(k)

where we put ak =
∏d−1
j=0 a

kj
j .

It follows that∑
a∈A+,d

a(t1) . . . a(ts)

a

=
1

θd

∑
k=(k0,...,kd−1)∈Nd

Ck
1

θw(k)

∑
a∈A+,d

aka(t1) . . . a(ts)

=
1

θd

∑
k=(k0,...,kd−1)∈Nd

Ck
1

θw(k)

∑
a∈A+,d

∑
`=(`0,...,`d)∈Nd+1,

|`|=s

aka`σs(`1, . . . , `d)

=
1

θd

∑
k=(k0,...,kd−1)∈Nd

Ck
1

θw(k)

∑
`=(`0,...,`d)∈Nd+1,

|`|=s

σs(`1, . . . , `d)
∑

a∈A+,d

ak+`.

Here we put a` =
∏d−1
j=0 a

`j
j and ak+` =

∏d−1
j=0 a

kj+`j
j .

Letting k = (k0, . . . , kd−1) ∈ Nd and ` = (`0, . . . , `d) ∈ Nd+1 two sequences of
integers, we say that ` is k-admissible if (k0 + `0, . . . , kd−1 + `d−1) ∈ ((q − 1)N∗)d.
We see that if ` is k-admissible, then the sum

∑
a∈A+,d

ak+` is equal to (−1)d.

Otherwise, this sum is equal to 0.
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Given a sequence k = (k0, . . . , kd−1) ∈ Nd as above, we define another sequence
n = (n1, . . . , nd) ∈ (N∗)d by

n1 := k0 + 1,

n2 := k0 + k1 + 1,

...

nd := k0 + . . .+ kd−1 + 1.

This sequence satisfies

i) n1 ≤ . . . ≤ nd,
ii)
∑d
j=1 nj = w(k) + d.

We observe that the sequence k is completely determined by the associated sequence
n. In fact, we have k0 = n1 − 1 and kj = nj+1 − nj for 1 ≤ j ≤ d− 1.

Let n = (n1, . . . , nd) ∈ (N∗)d satisfying n1 ≤ . . . ≤ nd as above, and let k =
(k0, . . . , kd−1) ∈ Nd be the associated sequence. We set

(3.3) Ln,s := {` = (`0, . . . , `d) ∈ Nd+1 : ` is k-admissible and |`| = s}.

Then ∑
a∈A+,d

a(t1) . . . a(ts)

a
=

(−1)d

θd

∑
k∈Nd

Ck
1

θw(k)

∑
`∈Ln,s

σs(`1, . . . , `d).

Let ` = (`0, . . . , `d) be a sequence in Ln,s defined as above. Then there exist
a0, . . . , ad−1 ∈ N∗ such that

`0 = a0(q − 1)− n1 + 1,

`1 = a1(q − 1) + n1 − n2,

...

`d−1 = ad−1(q − 1) + nd−1 − nd.
Thus we get

`d = s−
d−1∑
j=0

`j = ad(q − 1) + nd

where we put ad := m −
∑d−1
j=0 aj and recall that m is defined as in (1.2). Since

` ∈ Nd+1, we deduce the following lemma.

Lemma 3.8. The set Ln,s consists of the elements ` = (`0, . . . , `d) ∈ Nd+1 of the
form

`0 = a0(q − 1)− n1 + 1,

`1 = a1(q − 1) + n1 − n2,

...

`d−1 = ad−1(q − 1) + nd−1 − nd,
`d = ad(q − 1) + nd,

where a0, . . . , ad are integers such that
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• a0 > 0, . . . , ad−1 > 0,

•
∑d
j=0 aj = m.

Remark 3.9. We note that ad may be negative.

To summarize we have proved the following proposition.

Proposition 3.10. We have

ζA(1, ts) =
∑
`≥0

α`,sθ
−`

with

α`,s =
∑
n∈N+

`

C̃(n)
∑
`∈Ln,s

σs(`)

where

• the first sum runs through the set of sequences n = (n1, . . . , nd) ∈ N+
`

defined as in (3.1),
• the second sum runs through the set of sequences ` ∈ Ln,s defined as in

(3.3),

• the coefficient C̃(n) ∈ Fp equals

(−1)d+nd−1 (nd − 1)!

(n1 − 1)!(n2 − n1)! . . . (nd − nd−1)!
.

3.4. Proof of Theorem 3.1.

This section is devoted to prove Theorem 3.1 which compute the first q − 2
coefficients of the polynomial Bs. We start proving intermediate results and give a
proof of Theorem 3.1 at the end of this section.

We first need the following consequence of Lemma 3.8.

Lemma 3.11. Let ` be an integer with 1 ≤ ` ≤ q − 2, and let n = (n1, . . . , nd) ∈
(N∗)d satisfying n1 ≤ . . . ≤ nd and

∑d
j=1 nj = `. Then the set Ln,s defined as in

(3.3) consists of the sequences ` = (`0, . . . , `d) ∈ Nd+1 of the form

`0 = a0(q − 1)− n1 + 1,

`1 = a1(q − 1) + n1 − n2,

...

`d−1 = ad−1(q − 1) + nd−1 − nd,
`d = ad(q − 1) + nd,

where a0, . . . , ad are integers such that

• a0 > 0, . . . , ad−1 > 0 and ad ≥ 0,

•
∑d
j=0 aj = m.

Proof. We have to prove that ad ≥ 0. In fact, the fact that n = (n1, . . . , nd) ∈ (N∗)d

satisfies n1 ≤ . . . ≤ nd and
∑d
j=1 nj = ` implies nd < `. Thus nd < q − 2 since

` ≤ q − 2. It follows immediately that ad ≥ 0 since `d = ad(q − 1) + nd and
`d ∈ N. �
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As an immediate consequence of Lemma 3.11 we obtain

Proposition 3.12. Let ` be an integer with 1 ≤ ` ≤ q − 2, and let N+
` and A be

defined as in (3.1). Then we have

α`,s =
∑
n∈N+

`

∑
a∈A

C̃(n)σs(a1(q − 1) + n1 − n2, . . . , ad(q − 1) + nd)

where

• the first sum runs through the set of sequences n = (n1, . . . , nd) ∈ N+
` ,

• the second sum runs through the set of sequences a = (a0, . . . , ad) ∈ A,

• the coefficient C̃(n) ∈ Fp equals

C̃(n) = (−1)d+nd−1 (nd − 1)!

(n1 − 1)!(n2 − n1)! . . . (nd − nd−1)!
.

Remark 3.13. In the above formula, we could take the first sum over the bigger
set of sequences n = (n1, . . . , nd) ∈ N` defined as in (3.1) since for any sequence

n ∈ N` \N+
` , we have C̃(n) = 0.

We set B0 := 1 and write

Bs = θm−1(B0 +B1θ
−1 + . . .+Bm−1θ

−(m−1)), B` ∈ Fq[ts].

Recall that (see (2.2))

Bs := (−1)m
ζA(1, ts)ω(t1) . . . ω(ts)

π̃

Dividing this equality by θm−1 yields an equality between formal series of the form∑
j≥0 fiθ

−j with fj ∈ Fq[ts]. Thus to compute the first coefficients B1, . . . , Bq−2

of Bs, it suffices to look at both sides modulo θ−(q−1), i.e. by forgetting the terms
θ−j for j ≥ q − 1.

On the left-hand side, we obtain

B0 +B1θ
−1 + . . .+Bq−2θ

−(q−2) (mod θ−(q−1))

where we put Bk = 0 for k ≥ m.

On the right-hand side, for the zeta value ζA(1, ts), Proposition 3.10 gives

α0,s + α1,sθ
−1 + . . .+ αq−2,sθ

−(q−2) (mod θ−(q−1)).

For other factors, we write∏
j≥1

(
1− θ

θqj

)
≡ 1 (mod θ−(q−1)),

and
s∏
i=1

∏
j≥0

(
1− ti

θqj

)−1

≡
s∏
i=1

(
1− ti

θ

)−1

(mod θ−(q−1))

≡
(

1− σs(1)θ−1 + . . .+ (−1)q−2σs(q − 2)θ−(q−2)
)−1

(mod θ−(q−1)).
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Putting all together, we get(
B0 +B1θ

−1 + . . .+Bq−2θ
−(q−2)

)(
1− σs(1)θ−1 + . . .+ (−1)q−2σs(q − 2)θ−(q−2)

)
= α0,s + α1,sθ

−1 + . . .+ αq−2,sθ
−(q−2) (mod θ−(q−1)).

In other words, for all 1 ≤ ` ≤ q − 2, we have

B` − σs(1)B`−1 + . . .+ (−1)`σs(`)B0 = α`,s.(3.4)

Hence B` is completely determined by B0, . . . , B`−1.

We now prove one of the key results of this section.

Proposition 3.14. Let ` be an integer with 1 ≤ ` ≤ q − 2, and let N` and A+ be
defined as in (3.1). Then

(3.5) B` =
∑
n∈N`

∑
a∈A+

C(n, a)σs(a1(q − 1) + n1 − n2, . . . , ad(q − 1) + nd)

where

• the first sum runs through the set of sequences n = (n1, . . . , nd) ∈ N`,
• the second sum runs through the set of sequences a = (a0, . . . , ad) ∈ A+,
• the coefficient C(n, a) ∈ Fp is equal to

C(n, a) = (−1)d
d∏
j=1

(
aj(q − 1) + nj − 1

nj − 1

)
.

Proof. Let ` be an integer with 1 ≤ ` ≤ q − 2. It suffices to prove (3.4) where B`
is given by (3.5) and α`,s is given in Proposition 3.12.

If we set

S := B` − σs(1)B`−1 + . . .+ (−1)`σs(`)B0 =
∑̀
k=0

(−1)kσs(k)B`−k,

then we replace B`−k by (3.5) for 1 ≤ k ≤ ` ≤ q − 2 to get

S =
∑̀
k=0

(−1)kσs(k)
∑

`∈N`−k

∑
a∈A+

C(`, a) σs(a1(q − 1) + `1 − `2, . . . , ad(q − 1) + `d),

where the second sum (resp. the third sum) is over the set of sequences ` =
(`1, . . . , `d) ∈ N`−k (resp. a = (a0, . . . , ad) ∈ A+). By Lemma 3.5 we develop the
above expression to get

S =
∑̀
k=0

(−1)k
∑

`∈N`−k

∑
a∈A+

C(`, a) σs(a1(q − 1) + `1 − `2 + j1 − j2, . . . , ad(q − 1) + `d + jd − jd+1, jd+1)

×
∑

(j1,...,jd+1)∈Nd+1

j1+...+jd+1=k

(
a1(q − 1) + `1 − `2 + j1 − j2

j1

)
. . .

(
ad(q − 1) + `d + jd − jd+1

jd

)
.

For sequences ` = (`1, . . . , `d) ∈ N`−k and (j1, . . . , jd+1) ∈ Nd+1 with j1 + . . .+
jd+1 = k as appeared in the above sum, we put

n1 = `1 + j1, . . . , nd = `d + jd, nd+1 = jd+1.
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Then the sequence n = (n1, . . . , nd+1) belongs to (N∗)d×N and satisfies n1 + . . .+
nd+1 = `.

Using this notation and the formula for C(`, a) we can re-index the sums in S
to get

S =
∑
n

∑
a∈A+

σs(a1(q − 1) + n1 − n2, . . . , ad(q − 1) + nd, nd+1)

× (−1)d+nd+1

∑
`

d∏
j=1

(−1)nj−`j
(
aj(q − 1) + `j − 1

`j − 1

)(
aj(q − 1) + nj − nj+1

nj − `j

)
=
∑
n

∑
a∈A+

S(n, a)σs(a1(q − 1) + n1 − n2, . . . , ad(q − 1) + nd, nd+1)

where

• the first sum runs through the set of sequences n = (n1, . . . , nd+1) ∈ (N∗)d×
N such that n1 + . . .+ nd+1 = `,
• the second sum runs through the set of sequences a = (a0, . . . , ad) ∈ A+,
• the third sum of the first equality runs through the set of sequences ` =

(`1, . . . , `d) ∈ (N∗)d such that `j ≤ nj for all 1 ≤ j ≤ d,
• the coefficients S(n, a) are given by

(3.6)

S(n, a) = (−1)d+nd+1

∑
`

d∏
j=1

(−1)nj−`j
(
aj(q − 1) + `j − 1

`j − 1

)(
aj(q − 1) + nj − nj+1

nj − `j

)
.

where the sum runs through the set of sequences ` = (`1, . . . , `d) ∈ (N∗)d
such that `j ≤ nj for all 1 ≤ j ≤ d.

In Lemma 3.15 below we compute explicitly the coefficients S(n, a). Combining
it with Proposition 3.12, we deduce immediately Proposition 3.14. �

Lemma 3.15. Let ` be an integer with 1 ≤ ` ≤ q − 2. Let n = (n1, . . . , nd+1) ∈
(N∗)d × N be a sequence satisfying n1 + . . . + nd+1 = `, and let a = (a0, . . . , ad) ∈
(N∗)d+1 be a sequence of positive integers.

We recall that S(n, a) is defined as in (3.6). Then we have

(1) If nd+1 > 0, then

S(n, a) = C̃(n1, . . . , nd+1) = (−1)d+nd+1
(nd+1 − 1)!

(n1 − 1)!(n2 − n1)! . . . (nd+1 − nd)!
.

(2) If nd+1 = 0, then

S(n, a) = C̃(n1, . . . , nd) = (−1)d+nd−1 (nd − 1)!

(n1 − 1)!(n2 − n1)! . . . (nd − nd−1)!
.

Here recall that the coefficients C̃(n) are defined as in Proposition 3.12.

Proof. In fact, we write

S(n, a) = (−1)d+nd+1

d∏
j=1

∑
1≤`j≤nj

(−1)nj−`j
(
aj(q − 1) + `j − 1

`j − 1

)(
aj(q − 1) + nj − nj+1

nj − `j

)
.
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We consider separately each factor of the above product and distinguish three
cases.

Case 1: the jth factor for 1 ≤ j ≤ d− 1.

We apply Lemma 3.6 to x = aj(q−1)+nj−nj+1, M = nj−1 and N = nj+1−1
to obtain∑
1≤`j≤nj

(−1)nj−`j
(
aj(q − 1) + `j − 1

`j − 1

)(
aj(q − 1) + nj − nj+1

nj − `j

)

=

nj−1∑
k=0

(−1)k
(
aj(q − 1) + nj − 1− k

nj − 1− k

)(
aj(q − 1) + nj − nj+1

k

)
where k = nj − `j

=

(
nj+1 − 1

nj − 1

)
.

Case 2: the dth factor with nd+1 > 0.

We apply Lemma 3.6 to x = ad(q−1)+nd−nd+1, M = nd−1 and N = nd+1−1
to obtain∑
1≤`d≤nd

(−1)nd−`d
(
ad(q − 1) + `d − 1

`d − 1

)(
ad(q − 1) + nd − nd+1

nd − `d

)

=

nd−1∑
k=0

(−1)k
(
ad(q − 1) + nd − 1− k

nd − 1− k

)(
ad(q − 1) + nd − nd+1

k

)
where k = nd − `d

=

(
nd+1 − 1

nd − 1

)
.

Case 3: the dth factor with nd+1 = 0.

Note that nd ≥ 1. We apply Lemma 3.7 to x = ad(q−1)+nd andM = N = nd−1
to obtain∑

1≤`d≤nd

(−1)nd−`d
(
ad(q − 1) + `d − 1

`d − 1

)(
ad(q − 1) + nd − nd+1

nd − `d

)
∑

1≤`d≤nd

(−1)nd−`d
(
ad(q − 1) + `d − 1

`d − 1

)(
ad(q − 1) + nd

nd − `d

)

=

nd−1∑
k=0

(−1)nd−1+k

(
ad(q − 1) + k

k

)(
ad(q − 1) + nd
nd − 1− k

)
where k = `d − 1

= (−1)nd−1.

Putting all together, we obtain Lemma 3.15. The proof is finished. �

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. By Proposition 3.14, letting N` and A+ be defined as in
(3.1), for 1 ≤ ` ≤ q − 2, we have

B` =
∑
n

∑
a

C(n, a)σs(a1(q − 1) + n1 − n2, . . . , ad(q − 1) + nd)
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where

• the first sum runs through the set of sequences n = (n1, . . . , nd) ∈ (N∗)d

satisfying
∑d
j=1 nj = ` (e.g. n ∈ N`),

• the second sum runs through the set of sequences a = (a0, . . . , ad) ∈
(N∗)d+1 satisfying

∑d
j=0 aj = m (e.g. a ∈ A+),

• the coefficient C(n, a) ∈ Fp is equal to

C(n, a) = (−1)d
d∏
j=1

(
aj(q − 1) + nj − 1

nj − 1

)
.

To prove Theorem 3.1, it suffices to prove that for n = (n1, . . . , nd) ∈ N` and a =
(a0, . . . , ad) ∈ A+ as above, the coefficients C(n, a) and B(n, a) given in Theorem
3.1 are the same. In fact, by Lemma 3.4 we have

C(n, a) = (−1)d
d∏
j=1

(
aj(q − 1) + nj − 1

nj − 1

)

= (−1)d
d∏
j=1

(−1)nj−1

(
aj − 1

nj − 1

)

= (−1)n1+...+nd

d∏
j=1

(
aj − 1

nj − 1

)
.

Since
∑d
j=1 nj = `, it follows that

C(n, a) = (−1)`
d∏
j=1

(
aj − 1

nj − 1

)
= B(n, a)

as desired. The proof is finished. �

4. Proof of the main result

In this section we present a proof of Theorem 1.3. We have to show that if m < q
where m is defined as in (1.2), then the following formula holds

ζA(1, ts) =
∑
L(−1)
U1
· · · L(−d)

Ud

where the sum runs through the set of ordered set partitions U = (U1 | · · · | Ud) of
Σ satisfying

|U1|
q

+ · · ·+ |Ud|
qd

= 1.

We assume that m < q. Then the polynomial Bs is completely determined by
Theorem 3.1. We claim that w(Bs) ≥ 1. In fact, by Theorem 3.1 and Definition
2.7 it suffices to prove that

w(σs(a1(q − 1) + n1 − n2, . . . , ad(q − 1) + nd)) ≥ 1

where

• n = (n1, . . . , nd) ∈ (N∗)d,
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• a = (a0, . . . , ad) ∈ (N∗)d+1 such that
∑d
j=0 aj = m,

satisfying aj ≥ nj for 1 ≤ j ≤ d (see Remark 3.2).

We see that

w(σs(a1(q − 1) + n1 − n2, . . . , ad(q − 1) + nd))

=
a0q − n1

q
+
a1(q − 1) + n1 − n2

q2
+ . . .+

ad(q − 1) + nd
qd+1

.

Since aj ≥ nj for 1 ≤ j ≤ d and a0 ≥ 1, we get

w(σs(a1(q−1)+n1−n2, . . . , ad(q−1)+nd)) ≥
q − n1

q
+
n1q − n2

q2
+ . . .+

ndq

qd+1
= 1

as required.

Now we know that w(Bs) ≥ 1. Thus Theorem 1.3 follows immediately from
Theorem 2.10.

5. Final remarks

We end this paper with some remarks. In this paper we have succeeded in
proving Conjecture 1.2 and thus get a partial answer to Conjecture 1.1. We expect
that Conjecture 1.1 always holds. Thus it is tempting to ask whether Theorem 3.1
holds in full generality so that we can remove the restriction 1 ≤ ` ≤ q − 2.

Conjecture 5.1. Recall that (see Proposition 2.2)

Bs = θm−1 +B1θ
m−2 + . . .+Bm−1, B` ∈ Fq[ts].

Let ` ∈ N∗ such that 1 ≤ ` ≤ m− 1. Then we have

B` =
∑
n

∑
a

B(n, a)σs(a1(q − 1) + n1 − n2, . . . , ad(q − 1) + nd)

where

• the first sum runs through the set of sequences n = (n1, . . . , nd) ∈ (N∗)d

satisfying
∑d
j=1 nj = `,

• the second sum runs through the set of sequences a = (a0, . . . , ad) ∈ (N∗)d+1

satisfying
∑d
j=0 aj = m,

• the coefficients B(n, a) ∈ Fp are given by

B(n, a) = (−1)`
d∏
j=1

(
aj − 1

nj − 1

)
.

By similar arguments as before we prove the following result.

Proposition 5.2. Conjecture 5.1 implies Conjecture 1.1.

Proof. Suppose that Conjecture 5.1 holds. From the explicit formula for Bs, by
similar arguments as those given in Section 4, we see that w(Bs) ≥ 1. Combined
with Theorem 2.10, it implies immediately Conjecture 1.1. �
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Remark 5.3. 1) For m = 1, 2, 3, we have explicit formulas for Bs (see Section 2.2)
and see easily that Conjecture 5.1 holds for these small values. They provide the
first evidence to support our conjecture.

2) We should mention that the first author is currently investigating the above
conjecture in his PhD thesis.
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