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One of the undeniable steps in the safe design of systems is the problem of choosing the best system configuration
in the most effective way so as to maximize the overall system availability and to minimize the overall system
cost. The main objective of our paper is to propose a methodology of optimization of the availability of multi-
states systems with multi-states components in presence of both aleatory and uncertainties. The problem is
formulated as follows: let us consider several configurations of a system, each configuration consisting of
components with several states of working and imprecise failure and repair rates provided in form of intervals.
The objective is to find the best configuration regarding the system availabilities and costs. We first compute the
imprecise steady availability of each configuration by using an original method based on Markov approaches
combined with interval contraction techniques. We also compute the overall cost of each configuration. When
having the availability and the cost of all the configurations, the idea is to define an objective function in terms of
cost, lower and upper bounds of availability, and imprecision (length of availability interval). Then, this function
is computed so that we have the best configuration according to our criterion. To illustrate our proposed
methodology, we will propose a use-case describing a system formed of » components, and each component has
different degraded states from perfect functioning to total failure. Each configuration of the system will have a
different structure (parallel, series, series-parallel, complex,...), with different choices of component
characteristics (imprecise failure and repair rates). Then, according to different criteria as high availability, low
cost, or low availability imprecision, we will propose the best system configuration.

Keywords: Availability, multi-states system, imprecision, interval analysis, optimization, Markov approaches, the
technique of contractors.

1. Introduction

Nowadays, availability analysis is an important
part when we are dealing with some system, it is
concerned with the systems whose individual
components are apt to failure. Since, The
Availability A(t) is the ability of an item to be in
a state to perform as and when required, under
given conditions, assuming that the necessary
external resources are provided Levitin (2005).
Operating dependability means that must be
mastered when designing any system and
availability analysis is well needed in any

domain do determine the lifetime of the product
or the system. Availability analysis helps to
calculate the ability of system to provide a
required level of performance depending on the
level of degradation. Many methods exist to
calculate the availability of systems: Universal
Generator Function (UGF) Levitin (2005),
inclusion-exclusion ~ method Mihova and
Maksimova (2011), Monte Carlo simulations,
and Markovian models Troffaes et al.(2015).
However, systems became more complex; by the
number of components, the number of states for
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each component (perfect functioning, degraded
state, failure state), the case of multi-states
systems, the structure of the system. That's why
availability analysis is now more complex when
dealing with complex multi-states systems.
What's make it even worse, the presence of
uncertainties on the components data (failure rate
and repair rate), since the knowledge that we
have about the components data is generally
uncertain.

In this article, we explain a method that helps us
to calculate the imprecise availability of a
complex system. Later, we will detail our case of
study in the aim to optimize the availability
among different configurations of system. To
end up with the conclusion and some
perspectives where we can develop our case to
different cases.

2. Methodology of imprecise availability
analysis

When we study the dependability of a system,
we are confronted in many cases with the fact
that the system and its components may have
different states or modes of functioning with
different performance levels. Such systems are
called multi-states systems (MMS). In our work,
the data that we have are uncertain, this requires
methods that allow modeling and manipulation
of these uncertainties such as probability theory,
fuzzy set theory, belief functions theory. In this
work, we propose the use of imprecise Markov
models for the calculation of the availability of
an MMS. In a previous paper Akrouche al.
(2017), we have some preliminary work about
this subject.

2.1 Problem statement

The main issue in our work is to calculate the
availability of complex MSS in presence of
different types of uncertainties. Indeed, we are
interested in uncertainties about reliability data
(failure rate A and repair rate p of each
component), due to the difficulty to estimate
these data (new components, rare components
failures, expensive components) and the
transitions rates could be variable over time and
affected by several factors. The proposed way to
cope with these uncertainties is to use the theory
of 1imprecise probabilities, and particularly
interval probabilities. We consider our transition
rates as not being precise, but instead being
bounded by intervals. That’s why we propose to
treat the data that we have in the terms of
intervals and to apply interval analysis on
imprecise Markov approaches, so we could
calculate the imprecise availability of a system.

2.2 The proposed method

In our study, we consider a complex MSS where
the components and the system are multi-states
and the number of components is important. The
repair rates and the failure rates are represented
in terms of intervals. To calculate the imprecise
availability, we chose to use Markovian
approaches.

2.2.1 Imprecise Markovian approaches

Markovian models represent a class of stochastic
processes where system is “memoryless” El
Falou and Chatelet (2011), i.e., the future state
of the system is 1ndependent of the previous
states. The time in our case is continuous. The
transition rates g;; are in terms of failure rates
and repair rates. Q the transition matrix is the
matrix containing these elements. Note that the
sum of the elements of each line of Q is equal to
0. Since we focus on the imprecision of failure
and repair rates, we will take each element g;; as
an interval q;; = [q;;; q;;], where q;; and qij
represent respectwe’rjy the lower and upper
bounds of the interval the interval. Thus, the
transition matrix Q will be in the form of an

interval Q = [Q; Q].
2.2.2 Evaluation of the Availability

We can build the state equation of a system S
associated with the discrete space E in involving
instantaneous transition rates q;;, because they
exist as a system of differential equations of
Chapman-Kolmogorov. We thus consider for
each state e; € E (see Akrouche et al. (2017)):

P(S in the state e; at time t and during [t, + dt])+
EejEE_{ei) P(S in the state ej at t and in ei at (t + dt)

(M

From the system of equations of all the states, we
get the following formula

P() =P(1).Q @)

Where P(t) is the probability states vector of the
system at a time t. We are interested in the
stationary states probabilities that’s why we need
to compute the asymptotic availability. Using
Eq.(2), we obtain the following asymptotic
solution
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where I1 = [r;] is the steady probability vector
of the system to be in a state i; lim;_.,P;(t) =
m; and we always have the property Y\j-, m; = 1.
Eq. (3) is a system of equations that we need to
solve in order to find the intervals m; =
[m;; 7;]. Then, the asymptotic availability will
be computed as the sum of the probabilities ;
corresponding to the working states. Solving the
system of these equations isn’t simple, therefore
we introduce a method inspired from interval
analysis: the technique of contraction in Jaulin et
al. (2001).

2.2.3 The technique of contraction

The contraction technique in Jaulin et al.(2001),
was introduced for the first time in 1970 in the
artificial intelligence field. It is a method of
constraint satisfaction problem and was later
developed in interval analysis methods. This
technique makes it possible to contract an
interval [x] by operators named contractors in
order to obtain an interval [x'], such that
S c[x'] € [x] where S is the exact interval
(note that this technique is more detailed in the
appendix). We will use the contractor Forward-
Backward propagation for several reasons. It is
applicable for all kinds of equations, besides
calculations are much simpler than with other
contractors, the obtained intervals after the
contraction are guaranteed that they belong to
the initials intervals. The Forward-Backward
propagation technique consists of two steps, the
first is the "Forward»: it proposes to make an
arithmetic calculation of the intervals. The
second step is the "Backward": it proposes to
perform the same arithmetic calculation already
made but in the opposite order, which means
from the last operation made to the first one,
taking into account in each computation step to
take the intersections of [x'] and [x]. In our case
the intervals [x] are the [m;] that we need to
contract them to obtain the smallest intervals, so
we could calculate the availability of the system.

2.2.4 Methodology of the proposed method

To calculate the availability of a complex MSS
with multi-state components, we first need to
illustrate its Markov graph. So, we could present
all the transitions from one state to another, from
the total working state to the total failure state of
the system. We define the interval transition
matrix in terms of failure rates and repair rates of
dimension (nX n). To determine the interval
availability of the system, first we take the initial
vector IT as I1=[[0,1][0,1]...[0,1]] , and we
apply Eq. (3) where we obtain a system of n
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equations with the last equation representing the
fact that )], m; = 1. We apply the Forward-
Backward on the intervalsm; = [r;; m;], to
reduce IT as much as it is possible.” We keep
repeating the contraction on all the equations and
several times, until the vector IT converges.
When we obtain I1, we calculate the imprecise
availability of the system A (in form of interval
A =[A; A]) by computing the sum of m; over
all the working states. To verify if the results
obtained by the technique of contraction is
accurate, we will compare it to the availability
obtained by taking all the possible transition
matrix by doing a combination between the
lower bounds and upper bounds of the failure
rates interval and the repair rates interval, so for
each combination we obtain a transition matrix,
where we solve the system from Eq.(3) and find
the corresponding IT and the availability, after
that we compare all the obtained availabilities
from all combinations, so we can choose the
corresponding availability interval where its
bounds are the lowest availability (lower bound)
and the highest availability (upper bound). We
will call this method the “Exact method”. In
addition, we can verify the results, by taking the
center of each interval of our data, so we will get
one transition matrix formed from all the
midpoint values of the data, we solve Eq (3) to
get the precise vector I, where we could finally
calculate the precise availability, which it has to
belong to the interval obtained by the contraction
technique and to the interval obtained by the
exact method. We will call this method the
“Precise method”. To understand the method for
complex MSS, with all the details, an example is
presented in a previous paper Akrouche et
al.(2018).

3. Optimization

In the previous part, we explained a method to
calculate the availability of a multi-state system
with a given structure in the presence of
uncertainties. In this part, we will propose a
general methodology to solve the problem of
optimal design of multi-state systems. The
problem is to find the best architecture among »
configurations of which we have a better
availability with the best cost for that we seek to
minimize the overall cost of the multi-state
system. As soon as we get the optimal
availability and optimal cost we can build the
different optimal architectures corresponding to
the available and the cost obtained.

3.1 The methodology

We present the different steps of our

methodology for optimal design of MSS:
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e Define the different system structures that

we have:
a) The number of components in each
structure.
b) Failure rates and repair rates.
c¢) The working states of each
component for each structure.
d) The different costs for each

component in each structure.

e OQOur aim is to choose the components and
their connection that will achieve the
optimal MSS structure with minimal overall
cost.

e  Modelling the structure of each MSS by a
block diagram (or a Markov chain). We use
the method defined in the first part to find
the » availabilities for the » structures with

the n cost C, where C = 2.*, C; , k is the
number of components for a structure.

e To ensure the constraints imposed, we must
ensure that the availability Aopma of the
MSS remains above a minimum value 4,,,
and below a maximum value 4,,,. For this
purpose, we will study the influence of
imprecision use an availability correction,
and A,;, is determined. The parameter o
makes it possible to minimize the cost. Our
aim is to find the best system with the
components that gives the best availability
with a low cost. Therefore, we need to
reduce the cost and raise the availability
interval. We increase the availability interval
of a system, by increasing its lower bound
and reducing the width of the availability
interval. The objective function is in terms
of the sum of the total cost of the
components, the average of the availability
and the lower bound of the availability
interval, since it is important to define the
best availability with the lower cost. The
objective function is given by:
f=—a,C/10000 — (A — A) + azA (4)

With «; are constants defined by the user,
such that }}; a; = 1.

3.2 Numerical example
Let’s take an example of a system of 4 binary

components, where all the information (failure
rate  Ax 1073 per hour, repair rate uX

10~ 2per hour and the cost C in Euros) for each
component are represented in Table 1.

Table 1. Given data for each component

Component A n C

1 [3,4] [2.5,3.1] 1500
2 [4,4.8] [2,3] 1200
3 [3.5,4.1] [3,3.5] 1700
4 [2,2.8] [2,2.8] 2000

From the four components, we can find 26
possible architecture of systems, with the cost of
each system is the sum of the costs of
components (6400). Each system will have
different interval availability, that we will
calculate it by using the method described in the
previous section. Table 2 shows all the possible
architectures and the corresponding availability
for each system.

Table 2. The availability for each architecture of 4

components.

System Architecture A

1 Series [0.4481,0.9996]

2 Parallel [0.999,1]

3 Parallel
(2,3,4)- [0.8348,0.9999]
series(1)

4 Parallel
(3,4)- [0.622,0.9998]
series(1,2)

5 Parallel [0.6926,0.9998]
(2,4)-
series(1,3)

6 Parallel [0.6607,0.9999]
(2,4)-

series(1,3)

7 Parallel
(1.3.4)-
series(2)

[0.7568,0.9999]

8 Parallel

(1,4)-
series(2,3)

[0.6364,0.9998]

9 Parallel

(1,3)-
series(2,4)

[0.6645,0.9998]
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Parallel
(1,2)-
series(3,4)

Parallel

((1,2)-
(3,4))series

Parallel
((1,3)-
(2,4))series

Parallel
((1,4)-
(2,3))series

Series  ((1,2)-
(3,4))parallel

Series  ((1,3)-
(2,4))parallel

Series  ((1,4)-
(2,3))parallel

Series (1)~
-
(3,4))parallel

Series «(1)-
3-
(2,4))parallel

Series (1)-
-
(2,3))parallel

Series «(1)-
(2,3,4))parall
el

Series (2)-
(1,3,4))parall
el

Series ((3)-
(1,2,4))parall
el

Series (4)-
(1,2,3))parall
el

Series (2)-
3-
(1,4))parallel

[0.6751,0.9998]

[0.937,1]

[0.9343,1]

[0.9383,1]

[0.8922,0.9999]

[0.895,0.999]

[0.891,1]

[0.9885,1]

[0.9916,1]

[0.9897,1]

[0.9253,1]

[0.9015,1]

[0.9343,1]

[0.9162,1]

[0.9896,1]

5
25 Series ((2)- [0.9877,1]
4)-
(1,3))parallel
26 Series ((3)-  [0.9906,1]
4)-

(1,2))parallel

When we apply Eq.3 on all the architectures in
Table 2, we find that the best result is
,  where

, which means that the second architecture of
the parallel system is the optimal architecture.
We notice that even when we change the values
of  the parallel system (Figure 1) has always
the optimal function, while the ranking of the
best architectures change for the rest.

=
=
(3]

Figure 1. Parallel system of 4 components

4. Conclusion

With a simple example, where we have a small
number of binary components that make a
simple system, we can develop the methodology
of optimization of the availability described in
this article, to more complex MSS where we
have a large number of multi-states components.
In this way we can choose the best architecture
of any system, that survive the most with an
optimal cost of products.

Appendix A. Basics of the contraction
technique

Consider 4 variables ; R, =1,.., 4, linked
by relations (or constraints) Jaulin et al.(2001)
of the form: i( 1,.., nx) =0, 1,.., 1, it can be

written in vector notation as: f(x) = 0. Each
variable ; is known to belong to a domain ;.
For simplicity, these domains will be intervals12
denoted by [ ;]. Define the vector = ( 1,..,nx)
and the prior domain for isaboxas:[ ] =
[ 1] x...x[ ] Let be the function whose
coordinate functions are the j's. Equation f(x) =
0 corresponds to a constraint satisfaction
problem (CSP) H, which can be formulated as:
(H: f(x) =0, [ 1. The solution set of H is
defined as: = { [ I ( ) =0}. Contracting
H means replacing [ ] by a smaller domain [ ]
such that the solution set remains unchanged, i.e.
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S < [x'] c [x]. There exists an optimal
contraction of H, which corresponds to replacing
[x] by the smallest box that contains S. A
contractor for H is any operator that can be used
to contract it. A contractor C is defined as an
operator used to contract the initial domain of the
CSP, and thus to provide a new box. Several
contractors exist, each works in a different
manner and is efficient only for specific CSPs
and for certain cases in Jaulin et al.(2001). The
most popular contractor, which will be used in
our approach, is the “Forward-backward
propagation (FBP) contractor”. This technique is
known for its simplicity and easiness, it is also
more general than the others since it works on all
type of systems see Jaulin et al. (2001). It also
gives guaranteed results which means that during
the contraction we always get an interval
belonging to the initial interval. The Forward-
backward (FBP) contractor C|1, is a classical
algorithm in constraint programming for
contracting. This contractor makes it possible to
contract the domains of the CSP H by taking into
account each one of the n¢ constraints apart. The
algorithm works in two steps . The forward step
applies interval arithmetic to each operator of the
function y=f(x), from the variable's domain ([x])
up to the function's domain ([y]), this step
considers the direct forms of the equations. The
backward step sets the interval associated to the
new function's domain [y] to [0, 0] (imposes
constraint satisfaction, since we are solving
f(x)=0) and, then, applies backward arithmetic
from the function's domain to the variable's
domain, which means using the inverse of the
functions that appear in the equations f(x). The
following example explains the procedure of the
FBP technique.

Example: Consider the constraint y= —5x; + 2x,
= 0 and the initial box-domain [x] = [1, 4] x [-3,
7]. This constraint can be decomposed into three
primitive constraints (i.e. constraints associated
with  a  unique elementary  function:
multiplication or addition) by introducing two
intermediate variables a; and a, defined as: a; =
—5x; and a, = 2x,. Initial domains for these
variables are determined as follows:

a; =—5x;=-5x[1,4] =[-20,-5]

a, =2x,=2x[-3,7]=[-6,14]
y=a,+a,=[-20,5]1+[-6,14]=[-26,9] (A.l)
and this step is called the "forward propagation".
A method for contracting H with respect to the
constraint f(x) =5x; + 2x,= 0 is to contract each
of the primitive constraints in (A.1l) until the
contractors become inefficient. For this example:
Since f(x) = 0, the domain for y should be taken
equal to {0}, so we can add the step: [y]:= [y]

N{0}. If [y] as computed in (A.1) turns out to be
empty, then the CSP has no solution. Else, [y] is
replaced by 0, which is the case in this example.
After, a backward propagation is performed,
updating the domains associated with all the
variables to get:

[al] == ([y] — [a2]) N [al] =[~14, =5]
[a2] = ([y] —[al]) N [a2] = [5,14]
[x1]:= ([al])/-5)N [x1] = [1,14/5]

[x2] == ([a2]) /2) N [x2] = [5/2,7]  (A.2)

Thus, we obtain the new box:

[x](1) =[1, 14/15] % [5/2, 7], which is the result
of the first FBP contraction. Iterating this
procedure, the resulting sequence of boxes [x](k)
converges towards the smallest possible domain,
after which the domains no longer change
following another iteration of FBP.
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