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Asymptotic Unknown Input decoupling observer for
discrete-time LTI systems

Dalil Ichalal, Saı̈d Mammar

Abstract—This paper addresses a new observer structure and
its corresponding design for LTI discrete-time systems affected
by Unknown Inputs (UI). We show that the performances of
standard UIO can be enhanced, especially, in the presence of
stable invariant zeros with slow dynamics (detectable systems).
Under mild condition, the proposed UIO design avoids the
drawback of the invariant zeros, at least in a time interval, and
allows to arbitrary place the eigenvalues during that interval.
The main idea is to relax the exact UI decoupling condition for
an asymptotic decoupling condition. The convergence analysis
is analyzed using the Lyapunov theory and the asymptotic
convergence conditions of the state estimation error are expressed
in LMI formalism.

Index Terms—Unknown Input Observers, Asymptotic Un-
known Input Decoupling, Linear Time Invariant (LTI) systems.

I. INTRODUCTION

UNKNOWN Input Observers (UIO) have proved their
effectiveness in observation, control and diagnosis of

dynamical systems. Indeed, the decoupling property of the
UIO provides a way to estimate the state of a system in
the presence of Unknown Inputs (UI) representing faults,
disturbances and modeling uncertainties [3], [6], [5], [9] for
continuous-time systems and [2], [8] for discrete-time systems.
It also provides a way to generate residual signals for fault
isolation by decoupling a set of faults and rendering the
residual signals sensitive only to another set of faults. In
addition, this type of UIO allows to estimate the UI by system
inversion with the estimated states.

For Linear discrete Time Invariant (LTI) systems, the UIO
design has reached a certain maturity with necessary and
sufficient existence conditions for UI decoupling and stabiliza-
tion of the state estimation error. In addition, different design
approaches have been reported in sequential way by using
Linear Matrix Inequality (LMI) formalism. The decoupling
condition is related to the cancellation of the UI from the
state estimation error dynamics and generally expressed as a
rank condition (well-known as a matching condition) [3]. The
second condition ensuring the stability of the state estimation
error dynamics is related to the observability or at least the
detectability after decoupling [3]. An interesting extension has
been reported in [4] which relaxes the matching condition
(i.e. the rank condition is not satisfied). The result provides
state and unknown Input estimation, however, the estimation
is obtained after a finite delay with respect to the real states
and unknown inputs. Concerning the second condition (Ob-
servability of at least detectability after UI decoupling), a
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geometric approach is provided in [7] which allows to design
the UIO for all invariant zeros expect on the unit circle. This
idea relaxes the detectability condition but the provided state
and UI estimation is obtained after a certain delay.

After UI decoupling, if the system is observable, the dynam-
ics of the state estimation error is constructed by arbitrary pole
placement. If the observability condition is no longer satisfied
(presence of invariant zeros), the system generating the state
estimation error should have stable invariant zeros (detectable
systems). However, in this second case, the eigenvalues of
the dynamics of the state estimation error dynamics cannot
be placed arbitrarily which affects the convergence rate of
the state estimation error. Indeed, for detectable systems, the
dynamics of the state estimation includes the stable invariant
zeros which are not movable in the complex plan by output
error feedback which requires their stability.

It may happen that the invariant zeros exhibit slow dynamics
and then affect the convergence rate of the state estimation
error. The estimated states are then obtained after a large set-
tling time. In observer-based control systems, it is known that,
unfortunatly, the observer should have a greater convergence
rate than the controller in order to achieve better performances.
In the field of observer-based fault diagnosis and fault tolerant
control using UIO, the fault detection, isolation and estimation
should be obtained quickly when the fault occurs in order
to detect it and reconfigure the system if necessary. These
reasons motivate the result of the present paper which provides
a solution in order to enhance the performances of the UIO
for LTI systems by introducing the Asymptotic Unknown Input
Decoupling (AUID) notion instead of using the classical exact
UI decoupling. This note presents a modification of the LTI
UIO by introducing time-varying functions which enhance
the convergence rate of the observer in the case of slow
invariant zeros. The proposed UIO becomes then Linear Time
Varying (LTV) UIO. The asymptotic convergence of the state
estimation error to zero is analyzed using the Lyapunov theory
and the established conditions are expressed in terms of Linear
Matrix Inequalities that provide a way to design the observer
gains. This UIO aims to move the invariant zeros, compared
to the classical observer, in order to enhance the convergence
rate. The proposed result is applicable for bounded UI and
observable pair (C,A) of systems of the form (1). Notice that,
the proposed approach provides an undelayed asymptotic state
estimation.

The paper is organized as follows: Section II presents some
preliminaries, definitions and states the problem. Section III
provides the main result. Finally, section IV provides two
examples illustrating the proposed approach.
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II. PRELIMINARIES AND NOTATIONS

The systems under consideration are expressed in the fol-
lowing state space form

xk+1 = Axk +Buk + Edk, yk = Cxk (1)

where xk ∈ Rn is the state vector, dk ∈ Rnd is the unknown
input vector and yk ∈ Rny is the measured output vector. The
matrices A, B, E and C are real known constant matrices with
appropriate dimensions. We assume that ny ≥ nd. Without
loss of generality, it is assumed that C is full row rank and E
is full column rank.

Classically, a full order UIO has the form

zk+1 = Nzk +Guk + Lyk, x̂k = zk −Myk (2)

presented in [3] (and references therein) where zk ∈ Rn and
the matrices N , G, L and M are constant and designed in
order to ensure the asymptotic convergence of x̂ to x.

Lemma 1: [3] The observer (2) for the system 1 exists if
and only if the following conditions are satisfied
• rank(CE) = rank(E) = nd
• the invariant zeros of the triplet (C,A,E) are stable

The first condition is necessary for UI decoupling while the
second one is necessary for ensuring the stability of the matrix
N of the observer (2). However, if the state estimation error
dynamics contains invariant stable zeros, they cannot be moved
in the complex plane by the gains of the observer. Then, the
matrix N may have slow dynamics due to the slow invariant
zeros of the system (1). This causes slow convergence of
the state estimation error which affects the quality of state
estimation. A class of used time-varying functions are defined
in Definition 1.

Definition 1: (Time-Decreasing Sequence) A positive Time-
Decreasing Sequence (TDS) is a monotonic function fk : N→
R+ satisfying lim

k→+∞
fk = 0.

This work assumes that the pair (A,C) of the system (1)
is observable and the UI dk is bounded at each time by the
positive constant σ. Without loss of generality but for more
clarity and simplicity, the used function fk (Definition 1) is
set as fk = ραk where α ∈]0, 1[ and ρ is an arbitrary strictly
positive constant.

III. MAIN RESULT

The proposed observer has the following form

zk+1 = Nkzk +Gkuk + Lkyk, x̂k = zk −Hkyk (3)

The matrices Nk, Gk, Lk and Hk are time-dependent matrices
which will be defined later in order to ensure asymptotic
convergence of the state estimation error ek = xk − x̂k.

The matrix Hk is chosen in such a way that when k → +∞,
it converges to M and defined by

Hk = (1− fk)M =
(
1− ραk

)
M (4)

For simplicity we set ρ = 1, and the constant matrix M is
defined as follows

M = −E (CE)
†

+ Y
(
Iny
− (CE) (CE)

†
)

(5)

where Y is a free matrix, with appropriate dimensions, to be
selected and X† is the pseudo-inverse of the matrix X . Notice
that for fk = 0, the matrix M is the exact decoupling one
obtained in classical approach defined by (5).

The state estimation error is defined by the equation

ek = xk − x̂k (6)
= (I +HkC)︸ ︷︷ ︸

Pk

xk − zk (7)

its dynamics obeys to the following difference equation

ek+1 = (Pk+1A−NkPk − LkC)xk + (Pk+1B −Gk)uk

+ Pk+1Edk +Nkek (8)

Under the conditions
1) Pk = I +HkC
2) Pk+1A−NkPk − LkC = 0
3) Pk+1B −Gk = 0

are satisfied ∀k, the state estimation error dynamics is reduced
to

ek+1 = Nkek + Skdk (9)

where Sk = Pk+1E and Nk = Pk+1A − KkC and Kk =
Lk + NkHk. Notice that even if Nk and Sk depend on the
sample k + 1, the matrix Pk+1 can be expressed, in explicit
way, only using the current sample k thanks to the function
αk. It can be expressed as follows

Pk+1 = I +Hk+1C (10)
= I +MC − αk+1MC (11)

Notice also that, the construction of the matrices Hk and Pk+1

ensures that lim
k→+∞

Sk = 0. Of course, the matrix M defined

in equation (5) ensures that (I + MC)E = 0, then, since
0 < α < 1, the matrix Sk satisfies the convergence property

lim
k→+∞

Sk = lim
k→+∞

(I +MC)E − αk+1MCE (12)

= lim
k→+∞

(−αk+1MCE) = 0 (13)

Furthermore, if (13) holds and under the assumption that dk
is bounded, the term Skdk converges towards zero when k →
+∞ which ensures the asymptotic UI decoupling i.e:

lim
k→+∞

Skdk = 0 (14)

this comes from the known basic theorem which argues that
the product of bounded numerical sequence times a zero-
convergent sequence converges to zero when k goes to +∞.
On the other hand, the Euclidean norm of the matrix Sk can
be expressed as follows

‖Sk‖ = αk+1 ‖MCE‖ ≤ αk+1λ (15)

where ‖MCE‖ ≤ λ. Then, the norm of Sk converges also
towards zero when k → +∞ (0 < α < 1).

Knowing Kk = Lk + NkHk, and from the conditions 1)
and 2), Nk can be rewritten as

Nk = Pk+1A−KkC (16)
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Then, the matrix Nk becomes Nk = Āk−KkC, where Āk =
(I +MC − ααkMC)A.

In order to study the stability of the system generating the
state estimation error (9), the polytopic form of the system is
obtained since 0 < αk ≤ 1, which is expressed as follows

Āk =

2∑
i=1

hi(k)Ai, Sk =

2∑
i=1

hi(k)Si (17)

where h1k = αk and h2k = (1− αk), and

A1 = A+MCA− αMCA, A2 = A+MCA (18)

S1 = −αMCE, S2 = 0 (19)

The gain matrix Kk is expressed in the same form as follows

Kk =

2∑
i=1

hik(k)Ti (20)

and Ti are to be determined. Then, the state estimation error
can be expressed as follows

ek+1 =

2∑
i=1

hik((Ai − TiC)ek + Sidk) (21)

The following theorem provides LMI conditions that ensure
the asymptotic convergence of the state estimation error to-
wards zero and the design of the matrices T1 and T2 of the
gain matrix Kk.

Before introducing the main contribution of this paper, given
in theorem 1, let us introduce the following functions

ηk = η
(
1 + µαk

)
where 0 < η < 1

1+µ and µ > 0, satisfying

0 < ηk < 1, ∀k

This choice is considered for simplicity. However, a general
formulation using the functions fk introduced in Definition 1
can be considered i.e. ηk = η (1 + µfk). For the purpose of
obtaining LMI conditions, since ηk depends on fk = αk, the
polytopic form of ηk is expressed, with the same function hik,
by

ηk =

2∑
i=1

hi(k)τi (22)

where τ1 = η (1 + µ) and τ2 = η.
Theorem 1: Given positive scalars µ and η such that 0 <

η < 1
1+µ . For τ1 = η (1 + µ) and τ2 = η, if there exist

symmetric and positive definite matrices X ∈ Rn×n and Gi ∈
Rn×n, gains matrices T̄i ∈ Rn×ny and a positive scalar γ such
that the following LMIs hold (for i = 1, 2) (τi − 1)X ATi GTi − CT T̄Ti Γi

GiAi − T̄iC X − 2Gi 0
ΓTi 0 Ωi

 ≤ 0 (23)

Γi = (ATi GTi − CT T̄Ti )Si (24)
Ωi = 2STi GiSi − γSTi Si (25)

then the state estimation error converges asymptotically to-
wards zero. Then the equations Ti = G−1i T̄i, i = 1, 2 provide
the gains of the observer.

Proof 1: The first part of the proof is similar to that proposed
in [1]. Assume that the LMIs (23) are feasible, by multiplying
the left side of (23) by

T T =
[
eTk (Niek + Sidk)

T
dTk

]
(26)

and the right side by T , where Ni = Ai −KiC, one obtains

(τi − 1) eTkXek + (Niek + Sidk)
T
X (Niek + Sidk)

− γdTk S
T
i Sidk ≤ 0 (27)

Using the Schur complement, it follows (τi − 1) eTkXek (Niek + Sidk)
T
X dTk S

T
i

X (Niek + Sidk) −X 0
Sidk 0 1

γ

 ≤ 0

(28)
Multiplying by hiki, summing, and applying again the Schur
complement on (28), we obtain

(Nke+ vk)
T
X (Nke+ vk)− eTkXek ≤ −ηkeTkXek

+γdTk S
T
k Skdk

(29)

From the structure of the Lyapunov function given by V =
eTkXek, the inequality (29) is nothing else than

V (ek+1)− V (ek) ≤ −ηkV (ek) + γdTk S
T
k Skdk (30)

which can be bounded as follows (under the definition of Sk)

V (ek+1) ≤ (1− ηk)V (ek) + γλ2σ2α2k (31)

This inequality can be seen as a non-homogeneous linear time-
varying difference inequality with vanishing input. Its solution
is the sum of two terms: homogeneous and steady state
solutions. The homogeneous solution is given by the solution
of the homogeneous inequality Ṽ (ek+1) < (1 − ηk)Ṽ (ek),

which is given by Ṽk ≤
k−1∏
i=0

(
1− η

(
1 + µαi

))
Ṽ (e0). Under

the assumption that 0 < (1 − ηk) < 1,∀k, the right hand
side of the inequality converges to zero then Ṽk → 0, when
k → +∞. The global solution of the inequality is then given
by

V (ek) ≤ Φ(k− 1, 0)V (e0) + γλ2σ2
k−1∑
l=0

Φ(k, l + 1)α2l (32)

where Φ(k − 1, 0) =
k−1∏
i=0

(
1− η

(
1 + µαi

))
. It is easy to see

that under the fact that lim
k→+∞

Φ(k, 0) = 0, the right hand

side of the inequality converges to zero which ensures the
convergence of V (ek) towards zero and then ek → 0 when
k → +∞, which ends the proof.

In the classical UIO, the maximal convergence rate 1−η is
constrained by the maximal zeros zi of the system as follows

max
i=1,2

(|zi|) < 1− η < 1
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By comparison with the proposed approach, since 1−ηk < 1−
η, the convergence of the state estimation error is faster, at least
in the transient phase (i.e. in a time interval k ∈ [0, n]). This
convergence rate can be enhanced by increasing the parameter
µ in ηk = η(1 + µαk). This is ensured, in the interval k ∈
[0, n], thanks to the observability of the pair (A1, C). When
k → +∞, ηk → η, then some eigenvalues of the matrix Nk
convergence to the zeros of the system, but at this time the
state estimation error has already converged.

Remark 1: Notice that close to the time origin k = 0 i.e.
k ∈ [0, n], the unknown input is not decoupled but since it
is bounded, the minimization of γ aims to minimize its effect
and the maximization of τ1 allows to increase its convergence
rate and minimize the effect of UI. When, k → +∞, the
UI is asymptotically decoupled then τ2 can be small. From
this point of view, the LMIs of Theorem 1 can be solved by
minimizing γ for given values τ1 = η(1 + µ) and τ2 = η
where 1 > τ1 > τ2 > 0.

Remark 2: According to the weighting functions hik, at
k = 0 the pair (A1, C) should be observable in order to be
able to control, arbitrarily, the convergence rate of the state
estimation error. In addition, this fact ensures the possibility
to minimize the parameter γ in order to minimize the effect of
the UI in the transient phase where the UI is not yet decoupled.
When k becomes sufficiently large, the state estimation error
dynamics becomes ek+1 = (A2 − T2C)ek, which is nothing
else than the error dynamics obtained by the classical UIO and
given by ek+1 = ((I + MC)A −KC)ek. The value of η is
constrained by the unmovable eigenvalues of the pair (A2, C)
which correspond to the invariant zeros of (A,C,E).

According to remark 2 and the fact that the matrices
S1 = −αMCE and S2 = 0, Theorem 1 can be expressed,
equivalently, as in the following Theorem 2.

Theorem 2: Given positive scalars µ and η such that 0 <
η < 1

1+µ . For τ1 = η (1 + µ) and τ2 = η, if there exist
symmetric and positive definite matrices X ∈ Rn×n and Gi ∈
Rn×n, gains matrices T̄i ∈ Rn×ny , i = 1, 2 and a positive
scalar γ such that the following LMIs hold (τ1 − 1)X AT1GT1 − CT T̄T1 Γ1

G1A1 − T̄1C X − 2G1 0
ΓT1 0 Ω1

 < 0 (33)

[
(τ2 − 1)X AT2GT2 − CT T̄T2
G2A2 − T̄2C X − 2G2

]
< 0 (34)

Γ1 = (AT1GT1 − CT T̄T1 )S1 (35)
Ω1 = 2ST1 G1S1 − γST1 S1 (36)

then the state estimation error converges asymptotically to-
wards zero. Then the equations Ti = G−1i T̄i, i = 1, 2 provide
the gains of the observer.

Proof 2: The proof is similar to the proof of Theorem 1.
The LMI (34) is obtained from (23) for i = 2 by replacing
the matrix S2 = 0, then one obtains (τ2 − 1)X AT2GT2 − CT T̄T2 0

G2A2 − T̄2C X − 2G2 0
0 0 0

 ≤ 0 (37)

which corresponds to inequality (34) after removing the last
row and column.

As a conclusion, the design of the LTV observer (2) for the
LTI system (1) is summarized in the following procedure:

1) Check the rank condition: rank(CE) = rank(E) and
observability of (A,C). If satisfied go to step 2.

2) Compute the matrix M :

M = −E (CE)
†

+ Y
(
Iny
− (CE) (CE)

†
)

(38)

where Y is an arbitrary matrix with appropriate dimen-
sion.

3) Fix the function fk as in Definition 1. In this paper fk
is chosen by

fk = αk

where α ∈]0, 1[.
4) Define the matrix Hk as follows

Hk =
(
1− αk

)
M (39)

5) Construct the function ηk as follows

ηk = η
(
1 + µαk

)
where 0 < η < 1

1+µ and µ > 0, satisfying

0 < ηk < 1, ,∀k

6) Fix the parameters τ1 = η (1 + µ) and τ2 = η.
7) Compute the polytopic forms as in (17).
8) Solve Theorem 2 and obtain the gains T1 and T2 and

the gain matrix Kk given by Kk =
2∑
i=1

hikTi, where

h1k = αk and h2k = (1− αk).
9) Construct the time-varying matrices of the UIO (2) as

follows:

Hk =
(
1− αk

)
M (40)

Nk = Pk+1A−KkC (41)
= (I +MC − αk+1MC)A−KkC (42)

Lk = Kk −NkHk (43)
Gk = (I +MC − αk+1MC)B (44)

IV. SIMULATION EXAMPLES AND DISCUSSIONS

A. Example 1

Consider the linear LTI system (1) defined by the matrices

A =

[
0 1
−0.5 0.99

]
, B =

[
0
1

]
,

E =

[
0.2
0

]
, C =

[
1 0

]
For simulations, the parameters are fixed as follows: α = 0.9,
η = 0.01, µ = 90. These parameters ensure that 0 < ηk <
1, ∀k. After solving the LMIs of Theorem 1, the obtained
variables are

T1 =

[
0.9020
0.4923

]
, T2 =

[
−0.0001
0.4944

]
and γ = 1.3984. These results are obtained as a feasibility
problem without minimizing γ. The other matrices of the UIO
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are computed according to the equations Kk =
2∑
i=1

hikTi,

Nk = Ak −KkC, Lk = Kk −NkHk and Gk = (I +MC −
αk+1MC)B. For comparison, the classical UIO is designed
according to the result [2]. The linear gain K is obtained by
solving the corresponding LMIs. The other matrices of the
UIO are obtained by N = (I+MC)A−KC, L = K−NM
and G = (I + MC)B. The simulations are carried out with
uk = sin(k), dk = sin(2k) cos(3k) and the sampling time is
fixed to Ts = 0.1. From the figure 1, it can be seen that
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Fig. 1. Comparison of x2(k) estimations: Proposed LTV UIO and classical
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Fig. 2. Time evolution of the two eigenvalues of the matrix Nk

the proposed LTV UIO presents better performances than the
classical LTI UIO. Since the UI is decoupled asymptotically,
its effect is visible in the transient phase but vanishes as time
increases, but the convergence rate is enhanced considerably.
This is due to the fact that the proposed approach allows to
avoid, at least in a short interval time, the restriction caused by
the slow dynamics due to the zero λ2 = 0.99. Figure 2 shows
the time evolution of the two eigenvalues of the matrix Nk

according to time k. It can be seen then λ2 = 0.99 is moved
to 0.14 at k = 0 and when k → +∞, this zero converges
to λ2. This explains the enhancement in the convergence rate
of the state estimation error. In addition, the choice of the
bounds η1 and η2 are directly related to the properties of the
two vertexes i.e. since the pair (A1, C) is observable, it is
possible to place the poles arbitrarily, then a good choice for η1
close to 1 in order to enhance the convergence rate. However,
for the second vertex, the pair (A2, C) is only detectable and
presents a slow invariant zero dynamics, η2 should be less or
equal to the absolute value of the invariant zero.

B. Example 2
In this example, let us consider the third order system of

the form (1) defined by the matrices

A =

 0.5 −0.3847 0.7036
0 0.7 0.5468
0 0 −0.8

 , E =

 0
0
2

 , B =

 0
0
0


C =

[
−0.3518 −0.2734 0.5

]
The pair (A,C) is observable and the invariant zeros of the

system are located at z1 = 0.995 and z2 = 0.999. It can
be seen that their dynamics are very slow. By applying, the
proposed procedure, the matrix M is given by

M =
[

0 0 −2
]T

The function fk is defined by fk = 0.993k according to
Definition 1. The parameter η should be chosen such that

max
i=1,2

(|zi|) < 1− η < 1

in order to ensure a solution for the LMI (34) . By solving
the LMIs in Theorem 2 iteratively, the maximal value of µ is
obtained satisfying the LMIs and ensuring that τ1 = η(1 +µ)
satisfies 0 < τ1 < 1. For the present example, η = 7× 10−4,
the maximal value obtained for µ is µ = 15. Consequently, the
values of τ1 = η(1 +µ) = 0.0112 and τ2 = η = 7× 10−4 are
obtained. After solving the LMIs in Theorem 2, the following
results are obtained:

T1 =

 1.4037
−1.0108
−0.6693

 , T2 =

 1.4037
−1

0.4405


With these values the gains of the observer (2) are obtained
according to the procedure given above. Indeed, according to

the step 8), one obtains the gain matrix Kk =
2∑
i=1

hikTi and the

other matrices are derived from equations (40)-(44). Figures
3 and 4 illustrate the state estimation and estimation errors
with both the proposed approach and the classical approach.
It can be seen that the performances of the LTV observer
provide better results. Figure 5 illustrates the evolution of the
eigenvalues of the matrix Nk with respect to time. It can be
seen that the invariant zeros are moved in the complex plan
in the transient phase which enhances the performances of the
proposed UIO.

Let us focus on the function fk = αk. In the previous sim-
ulations, the parameter α is fixed to 0.993. Some simulations
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are conducted for different values of α in order to show how
this parameter affects the state estimation. For this purpose,
let us take 4 different values of α: 0.9, 0.98, 0.993 and 0.99.
Figure 6 illustrates the state estimation performances for each
value of α. From the figure 6, it can be seen that if α = 0.9, the
UIO provides similar performances than the classical LTI UIO.
When α = 0.99, the estimation function fk = αk converges
to zero slowly which affects the estimation since the unknown
input is slowly decoupled. Then, the value α = 0.993 provides
the best result for this example. Consequently, α should be

chosen as a compromise between convergence rate and UI
decoupling rate.
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Fig. 6. Effect of the parameter α on the state estimation error convergence

V. CONCLUSION

This paper shows that it is possible to improve Unknown
Input Observers (UIO) for LTI systems in the presence of slow
dynamics invariant zeros. The approach consists in relaxing
the exact decoupling condition by an asymptotic one under
mild conditions: observable pair (A,C) and bounded unknown
inputs. The approach is based on introducing time-varying
power function which allows to enhance the convergence rate
of the state estimation instead of undergoing the slow stable
invariant zeros. Future work will concern a depth study of the
different choices of the parameter ηk and the value of α.
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