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Decoupling Unknown Input Observer for nonlinear quasi-LPV systems

Dalil Ichalal, Thierry-Marie Guerra

Abstract— In this paper, the problem of unknown input
observer (UIO) design for nonlinear parameter varying (quasi-
LPV) systems is investigated. Three main improvements of the
existing UIO designs for LPV systems [11] are detailed. First,
the parameter dependency of the UIO is not restricted to be
the same as the one of the system, then the existing decoupling
conditions are relaxed. Secondly, the class of considered systems
is nonlinear which leads to the well-known quasi-LPV systems
(i.e. the parameters are state dependent). This paper focuses
on the case of parameters depending on unmeasured states.
Finally, the proposed UIO considers the cases when only
estimated time derivative of the parameters is available, and
also unavailable time derivative and estimation. For these cases,
the Disturbance-to-Error Stability (DES) is considered with
DES-gain optimization. Examples are provided to illustrate the
performances of the proposed UIO designs and highlight the
improvements brought to existing ones.

I. INTRODUCTION

Unknown Input observers have attracted a lot of atten-
tion due their central role in automatic control theory and
applications. Indeed, model-based control or diagnosis need
the knowledge of some state variables which are not always
accessible for measure via physical sensors. In addition,
systems are frequently affected to unknown inputs such
as faults, disturbances, noises. These unknown inputs can
also represent some modeling and parametric uncertainties,
neglected dynamics, faults etc.

The research field of Unknown Input Observer design by
decoupling is very active since forty years. These observers
are based on some structural conditions that aim to decouple
the UI from the state estimation error [4], [9], [12]. The
interest of such a decoupling approach is that no assumption
on the dynamics of the unknown input is needed.

The original linear UIO proposed in [4] has been ex-
tended to nonlinear polytopic systems (or Takagi-Sugeno
(TS) systems [16]) by duplicating the polytopic structure of
the system in the nonlinear UIO. Therefore, the structure of
the UIO is fixed a priori and the LMI conditions have been
obtained from the Lyapunov theory to ensure asymptotic
convergence of the state estimation error towards zero [12],
[3]. Despite the appealing simplicity of this approach, it was
pointed out in our previous work [6] that the duplication
of the polytopic structure of the system in the UIO reduces
significantly the system class for which such an observer can
be designed. For example, this UIO design may fail even if
a nonlinear system is strongly algebraically observable (i.e.
the state of a system affected by UI can be written using
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only the measured output, the known input and their time
derivatives of finite orders [1]) or at least strongly detectable.
In addition, all the published works on UIO design for TS or
LPV systems consider linear time invariant output equations
and the existing UIO designs cannot be applied to systems
with LPV outputs since the UI decoupling would not be
ensured anymore. In [11] a robust UIO design has been
presented by considering that the first time derivatives of
the parameters are available. In [13] the problem of state
estimation of LPV systems with uncertain parameters is
addressed in the context of bounded state estimation error
by using Input-to-State Stability (ISS) concept. This result is
extended for observer-based control in [5].

In this paper a new nonlinear LPV UIO is proposed, that
does not need to share the same polytopic form than the
one of the system (as in [11]). The class of systems under
consideration are quasi-LPV systems i.e. with parameters
depending on the state. Thus, in a general framework, the
designed observer may depend (possibly nonlinearly) on
unmeasured states. As it will be pointed out and illustrated,
it allows to provide a solution to the UIO design for a
larger class of systems by avoiding restrictive decoupling
conditions (as those of [12], [3]). The approach is obtained
by the proposition of a new, more flexible observer structure
and by postponing the use of the polytopic transformation
of a general quasi-LPV form into a polytopic or TS one.
It results in more degrees of freedom in the UIO design,
especially it avoids searching for a common solution to sev-
eral equality constraints imposed by the decoupling between
estimation and UI. Finally, the case of unavailable first time
derivatives of the measured parameters is considered, by
assuming that only an estimation of these derivatives are
available. An extension to the case where the time derivatives
and their estimations are unavailable is considered. The paper
is organized as follows: Notations, assumptions and problem
statement are provided in the section II. The UIO design
ensuring a perfect decoupling of the state estimation from the
UI and handling the nonlinear part is given in section III-B.
Before concluding, some illustrative examples are provided
in section IV.

II. PRELIMINARIES AND PROBLEM STATEMENT

This paper concerns nonlinear systems of the form ẋ(t) = A(α(t))x(t) + Υ(x(t), α(t))
+B(α(t))u(t) + F (α(t))d(t)

y(t) = C(α(t))x(t)
(1)

where x(t) ∈ X ⊂ Rn, u(t) ∈ U ⊂ Rnu , y(t) ∈ Y ⊂ Rny

and d(t) ∈ D ⊂ Rnd represent, respectively, the state,



the known input, the measured output and the unknown
input vectors. The sets X , U , Y and D are assumed to
be bounded. α(t) is a nonlinear vector function depending
only of measured variables such as y(t), u(t) or any external
known or measured real-time signals. It is also assumed that
α(t) is bounded (α(t) ∈ Πα where Πα is a bounded set)
and belongs, at least, to a class C1 and its time deriva-
tive is bounded and belongs to a bounded set Πα̇. The
function Υ(x, α) is nonlinear and depend on unmeasured
state variables (It represents the part of the nonlinear system
that cannot be written in a quasi-LPV form depending on
measured variables, i.e. the A(α(t)) part. Therefore, it may
depend on both α(t) and unmeasured state variables).

Notice that, the design of observers in TS or LPV poly-
topic forms begins by transforming the nonlinear system into
polytopic form via the sector nonlinear transformation. Of
course, there are other techniques aiming to approximate
a nonlinear system by a TS model, such as identification
or linearization around several operating points. However,
the sector nonlinear transformation is more interesting since
it provides an exact polytopic model, in a compact set of
the state space [17], without loss of information compared
to the approximation techniques. Generally, the observer is
designed by using the polytopic model. In the proposed
approach, the polytopic transformation is postponed at the
end of the observer design (Postponing the polytopic trans-
formation leads to avoid the conservatism related to the
polytopic form as explained in our previous works [6] and
[11]). In addition, the nonlinear term containing the quasi-
LPV part with unmeasured state parameter dependent is
handled in an efficient way in order to relax the constraint
related to an admissible Lipschitz constant. The contributions
of the paper are twofold:

1) Propose a novel UIO for an extended class of nonlinear
systems compared to our previous work [11], [6], by
taking into account nonlinear term Υ(x, α).

2) Relax the assumption that the time derivative of α(t) is
measured or estimated exactly. Indeed, in the present
paper, the time derivative α̇(t) is assumed to be un-
known and only an estimation is available ˆ̇α(t). In
addition, the result is extended to situations where
neither α̇(t), nor ˆ̇α(t) are available are available.

III. UNKNOWN INPUT OBSERVER AND LMI DESIGN

This section presents the structure of the UIO and the
corresponding LMI design. Compared to our previous work
[11] where the time derivative of α(t) is assumed available,
the proposed UIO is fed by only an estimation of such a
derivative. Consequently, since the time derivative of the α(t)
is unavailable, the proposed UIO for the system (1) takes the
form ż(t) = N(α(t), ˆ̇α(t))z(t) + S(α(t))Υ(x̂(t), α(t))

+G(α(t))u(t) + L(α(t), ˆ̇α(t))y(t)
x̂(t) = z(t)−M(α(t))y(t)

(2)

where the nonlinear matrices N(.), S(.), L(.), G(.) and
M(.). depend on the measured variable α(t) and the esti-

mated first time derivative of ˆ̇α(t), and will be defined later.
Let us denote the derivative estimation error given by

eα̇(t) = α̇(t)− ˆ̇α(t) (3)

In this paper, we assume that this error is bounded (i.e.
‖eα̇(t)‖∞ ≤ σ where σ > 0).

For clarity in the equations, in the remaining, the time
dependence of α(t), α̇(t) and ˆ̇α(t) is omitted.

A. State estimation error description

The state estimation error e(t) = x(t)− x̂(t) is given by

e(t) = P (α)x(t)− z(t) (4)

where P (α(t)) = I+M(α)C(α). By using the equation (1)
and (2), the state estimation error dynamics is expressed as
follows

ė(t) =
(
Ṗ (α) + P (α)A(α)− L(α, ˆ̇α)C(α)

)
x(t)

+ P (α)Υ(x(t), α) + (P (α)B(α)−G(α))u(t)

+ P (α)F (α)d(t)−N(α, ˆ̇α)z(t)− S(α)Υ(x̂(t), α)

(5)

By selecting S(α) = P (α), and using the fact that z(t) =
P (α)x(t)− e(t) obtained from (4), the dynamics (5) can be
written as follows

ė(t) = (Ṗ (α) + P (α)A(α)− L(α, ˆ̇α)C(α)

− N(α, ˆ̇α)P (α))x(t) +N(α, ˆ̇α)e(t)

+ P (α) (Υ(x(t), α)−Υ(x̂(t), α))

+ P (α)F (α)d(t) + (P (α)B(α)−G(α))u(t) (6)

Lemma 1: If the UIO’s matrices are selected in such a
way to satisfy the following conditions:

C1. ˆ̇P (α)+P (α)A(α)−L(α, ˆ̇α)C(α)−N(α, ˆ̇α)P (α) = 0
C2. P (α)F (α) = 0
C3. P (α)B(α)−G(α) = 0

the state estimation error dynamics (6) become:

ė(t) = N(α, ˆ̇α)e(t) + (Ṗ (α)− ˆ̇P (α))x(t)

+ P (α) (Υ(x(t), α)−Υ(x̂(t), α)) (7)
Proof: The condition (C2) of Lemma 1 leads to

M(α)C(α)F (α) = −F (α) (8)

This equation admits a solution if and only if

rank(C(α)F (α)) = rank(F (α)),∀α ∈ Πα (9)

If this condition is satisfied, the matrix M(α) is computed
as follows

M(α) = −F (α) (C(α)F (α))
† (10)

where X† is the pseudo-inverse of X . After computing the
matrix M(α), the matrix P (α) is given by

P (α(t)) = I +M(α(t))C(α(t)) (11)

By using P (α), the condition (C1.) can be written as follows

N(α, ˆ̇α) = ˆ̇P (α) + P (α)A(α)−K(α, ˆ̇α)C(α) (12)



where K(α, ˆ̇α) = L(α, ˆ̇α)+N(α, ˆ̇α)M(α) Finally, under the
conditions C1. and C2., the state estimation error dynamics
(7) is obtained.

The state estimation error dynamics (7) depends on the
nonlinear term

Υ̃(x(t), x̂(t), α(t)) = Υ(x(t), α(t))−Υ(x̂(t), α(t)) (13)

this term has been handled in many works by exploiting the
Lipschitz property of Υ(x(t)) such as

‖Υ(x(t), α(t))−Υ(x̂(t), α(t))‖ < γ ‖x(t)− x̂(t)‖ (14)

where ‖.‖ denotes the Euclidean norm and γ is a positive
scalar representing the Lipschitz constant. This property can
be local or global. However, it has been shown in many
works that the Lipschitz constant can end with conservative
results especially when the Lipschitz constant γ is greater
than an admissible one γ∗ (the word admissible is understood
in the sense that the obtained LMIs have no solution when
γ > γ∗, see for example the result of Bergsten in [2]). This
same problem is encountered in observer design for nonlinear
Lipschitz systems [19]. For Takagi-Sugeno observer design
with unmeasurable premise variables, a less conservative
solution has been proposed in [8] which consists in using
the Input-to-State Stability (ISS). Indeed, the obtained LMIs
are free from the Lipschitz constant but the price to pay
is that the asymptotic (or exponential) convergence is no
longer achieved and only bounded state estimation error is
obtained. The bound of the state estimation error is optimized
by minimizing the ISS-gain. In [19], an interesting approach
is exploited which aims to reformulate the Lipschitz property
in a polytopic form, by using the Differential Mean Value
Theorem. Hence, the structure of the nonlinear term is taken
into account and LMI constraints problems obtained reduce
the pessimism of the results. Nevertheless, the increase of
complexity of the method can bring computational issues
very quickly.

Less conservative LMI conditions with respect to the Lip-
schitz approach are proposed therein that ensure asymptotic
(or exponential) convergence of the state estimation error.
The idea is based on the use of the Differential Mean Value
Theorem (DMVT) in order to handle the term Υ̃(x(t), x̂(t)).
Using the DMVT, the nonlinear function Υ̃(x(t), x̂(t)) can
be exactly represented as

Υ(x(t), α(t))−Υ(x̂(t), α(t)) =
∂Υ(x̃(t), α(t))

∂x
(x(t)− x̂(t))

(15)
where x̃ ∈ [min(x, x̂),max(x, x̂)] understood in a
component-wise sense.

At this stage, the term ∂Υ(x̃(t),α(t))
∂x can be handled in

two ways: the first one is to bound the partial derivatives
of ∂Υ(x̃(t),α(t))

∂x by considering a subset D ⊆ Rn and
transform ∂Υ(x̃(t),α(t))

∂x in a polytopic form as performed in
[7]. However, this solution may lead to a huge number of
vertices and increase the conservatism of the LMI constraints
solutions. The second one uses classical tools of robust

control and transforms the nonlinear term ∂Υ(x̃(t),α(t))
∂x as

follows
∂Υ(x̃, α(t))

∂x
= H∆(x̃)E(α(t)), ‖∆(x̃)‖ ≤ 1 (16)

where H is a constant known matrix and E(α(t)) is known
and depends on the measured variables α(t). Embedding the
measured variables in the matrix E(α(t)) aims to relax the
bounds of the matrix ∂Υ(x̃(t),α(t))

∂x .
Let us consider the state estimation error dynamics (7).

The term (Υ(x(t), α)−Υ(x̂(t), α)) is expressed as in (16).
In order to handle the term (Ṗ (α)− ˆ̇P (α))x(t), let us denote
by P(α̇, x) = Ṗ (α)x(t), then, one obtains

P(α̇, x)− P( ˆ̇α, x) =
∂P( ˜̇α, x)

∂α̇
eα̇ (17)

where eα̇ = α̇(t)) − ˆ̇α(t) and where ˜̇α ∈
[min(α̇, ˆ̇α),max(α̇, ˆ̇α)] understood in a component-wise
sense. The state estimation dynamics becomes

ė(t) =
(

Φ(α, ˆ̇α) + P (α)H∆(x̃)E(α)
)
e(t) +W

(
˜̇α
)
eα̇(t) (18)

where

Φ(α, ˆ̇α) = P (α)A(α) + ˆ̇P (α)−K(α, ˆ̇α)C(α) (19)

W
(

˜̇α
)

=
∂P( ˜̇α, x)

∂α̇
(20)

For stability analysis, the Lyapunov theory is used to
establish exponential stability, Disturbance-to-Error Stability
(DES) or quasi-Disturbance-to-Error Stability according to,
respectively, the cases available α̇(t), only estimated version
of α(t) and the case where neither the time derivative nor
an estimation of that derivative are available. The definitions
of DES, that corresponds to an ISS sense, is given in the
Definition 1 (The qDES property will be given later).

Definition 1: (Disturbance-to-Error Stability (DES) [15])
Under bounded eα̇(t), the system (18) is Disturbance-to-
Error Stable if

‖e(t)‖ ≤ β (‖e(0)‖ , t) + γ (‖eα̇(t)‖∞) (21)

with β(.) a class KL function1 and γ(.) a class K function2

and ‖.‖ the Euclidean norm.

B. Unknown Input Observer design and stability analysis

This section provides a design approach of the observer
(2) for the system (1). The objective is to design the state
observer for the system (1) by decoupling the unknown
input d(t) from the state estimation error. Notice that at
this stage, the polytopic form of the observer’s matrices
is not fixed. As explained in [6] and [11], postponing
the polytopic transformation reduces the conservatism of
observer existence compared to the classical polytopic UIOs
[3]. The main result consisting in LMI conditions that ensure

1The function β : R+ × R+ → R+ is of class KL if β(., t) is of class
K for a fixed t ≥ 0, and β(r,t) is decreasing to zero for t → ∞ for each
fixed r.

2A function γ : R+ → R+ is of class K if γ is continuous, strictly
increasing, and γ(0) = 0. If in addition γ is unbounded, it is of class K∞



Disturbance-to-Error Stability (DES) of the state estimation
error dynamics for the UIO exploiting the estimated time
derivative of the parameter α(t) and qDES for the case of
unavailable time derivative and its estimation.

Theorem 1: Given a positive scalars η and α1. If there
exist a symmetric and positive definite matrix X, X > α1I ,
gain matrices K̄i, i = 1, ..., r, and positive scalars εi, i =
1, ..., r and γ such that

Ξiik < 0, i = 1, ..., r, k = 1, ..., r′
1
r−1Ξiik + 1

2 (Ξijk + Ξjik) < 0

i, j = 1, ..., r, i 6= j, k = 1, ..., r′
(22)

where

Ξijk =


Γ̄ij XWk XPiH εETi
WT
k X −γI 0 0

HTPiX 0 −εI 0
εEi 0 0 −εI

 (23)

Γ̄ij = XAi − K̄iCj + ηX + (∗)

Then the state estimation error is DES and satisfies

‖e(t)‖ <
√
α2

α1
‖e(0)‖ exp (−ηt)+

√
γ

2α1η
‖eα̇(t)‖∞ (24)

where α1 and α2 are positive scalars defined such that

α1 ‖e(t)‖2 ≤ V (e(t)) ≤ α2 ‖e(t)‖2 (25)
Proof: The proof is divided into two parts: firstly, the

Input-to-Error Stability is established with respect to the error
in estimating the time derivative of α(t) (i.e. eα̇). Secondly,
LMI conditions that ensures the IES are established.

a) Input-to-Error Stability analysis: Consider the
quadratic Lyapunov function

V (e(t)) = eT (t)Xe(t), X = XT > 0 (26)

where (25) is satisfied. The time derivative of V (e(t)) along
the trajectory of the state estimation error is given by

V̇ (e(t)) = eT (t)
(
ΩTX +XΩ

)
e(t)

+ eT (t)XWµeα̇ + eTα̇W
T
µ Xe(t) (27)

Where Ω = Φ(α, ˆ̇α) + P (α)H∆(x̃)E(α). By adding and
subtracting the term −2ηV (e(t)) + γeTα̇(t)eα̇(t) with η > 0
and γ > 0, the equation (27) is equivalent to

V̇ (e(t)) = ξT (t)Ξα, ˆ̇α, ˜̇αξ(t)− ηV (e) + γeTα̇eα̇ (28)

where

ξ(t) =

[
e(t)
eα̇

]
,Ξα, ˆ̇α, ˜̇α =

[
XΩ + ηX + (∗) XW ( ˜̇α)

W ( ˜̇α)TX −γI

]
(29)

Consequently, if Ξα, ˆ̇α, ˜̇α < 0, then, the time derivative of the
Lyapunov function can be bounded by

V̇ (e(t)) ≤ −2ηV (e(t)) + γeTα̇(t)eα̇(t) (30)

whose solution is given by

V (e(t)) < V (e(0)) exp (−2ηt) +
γ

2η
‖eα̇(t)‖2∞ (31)

By using the definition of the Lyapunov function (26)-
(25) and square root, The inequality (24) is obtained which
ensures Input-to-Error Stability.

b) LMI design conditions: In the first part, it is proved
that if Ξα, ˆ̇α, ˜̇α < 0 is satisfied, then the IES is ensured. Now
let us consider the matrix Ξα, ˆ̇α, ˜̇α defined in (29) with the
definition of the matrices[

XΦ(α, ˆ̇α) +XP (α)H∆ (x̃)E(α) + (∗) XW
(

˜̇α
)

W
(

˜̇α
)T
X −γI

]
< 0

(32)
By using the square completion and the fact that

∆T (x̃) ∆ (x̃) ≤ I , the term XP (α)H∆ (x̃)E(α) + (∗) can
ve bounded by

XP (α)H∆ (x̃)E(α) + (∗) < ε−1(α)XP (α)HHTP (α)X

+ε(α)ET (α)E(α) (33)

with ε(α) > 0, ∀α ∈ Πα. Consequently, the Matrix
Inequality (32) is bounded as follows

Γ(α, ˆ̇α) XW
(

˜̇α
)

XP (α)H ε(α)ET (α)

W
(

˜̇α
)T
X −γI 0 0

HTP (α)X 0 −ε(α)I 0
ε(α)E(α) 0 0 −ε(α)I

 < 0

(34)
where Γ(α, ˆ̇α) = XΦ(α, ˆ̇α) + ηX + (∗). In order to derive

LMI conditions aiming to determine the different matrices
of the UIO, the polytopic form is exploited. The polytopic
form is obtained by the sector nonlinear transformation [17]
and given as follows

ˆ̇P (α) + P (α)A(α) =

r∑
i=1

hi(α, ˆ̇α)Ai

E(α) =

r∑
i=1

hi(α, ˆ̇α)Ei, P (α) =

r∑
i=1

hi(α, ˆ̇α)Pi

K(α, ˆ̇α) =

r∑
i=1

hi(α, ˆ̇α)Ki, C(α) =

r∑
i=1

hi(α, ˆ̇α)Ci

ε(α) =

r∑
i=1

hi(α, ˆ̇α)εi, W
(

˜̇α
)

=

r′∑
i=1

µi( ˜̇α)Wi (35)

Consequently, the inequality (34) is expressed as follows

r∑
i=

r∑
j=1

r′∑
k=1

hi(α, ˆ̇α)hj(α, ˆ̇α)µi( ˜̇α)Ξijk < 0

where

Ξijk =


Γij XWk XPiH εiETj
WT
k X −γI 0 0

HTPiX 0 −εiI 0
εiEj 0 0 −εiI


where

Γij = X (Ai −KiCj) + ηX + (∗)

Now, by using the Tuan’s Lemma [18] and a change of
variables K̄i = XKi, the LMIs given in the Theorem 1 are
obtained which ensures Disturbance-to-Error Stability.

The Theorem 1 presents LMI conditions that ensure
Disturbance-to-Error Stability. In order to enhance the per-
formances of the UIO, it is interesting to minimize the DES-
gain expressed by the term

√
γ

2α1η
in the bound of the

state estimation error (24). For that a purpose, the following



corollary provides results that optimized the DES-gain under
LMI conditions.

Corollary 1: Given a positive scalars η and α1. If there
exist a symmetric and positive definite matrix X > α1I , gain
matrices K̄i, i = 1, ..., r, and positive scalars εi, i = 1, ..., r,
γ and ξ solution to the following optimization problem

min
X,K̄j ,γ,ε

ζ s.t. (22) and γ − 2α1ηζ ≤ 0

Then the state estimation error is DES and satisfies the
inequality (24) with minimal DES-gain.

Proof: In order to minimize the DES-gain, let us
consider the inequality

√
γ

2α1η
≤
√
ζ, where ζ is a positive

scalar. Then minimizing ζ will minimize the DES-gain. The
inequality is equivalent to γ − 2α1ηζ ≤ 0, which is linear
with respect to γ and ζ. Then minimizing ζ under the LMIs
(22) will ensure minimal DES-gain.

C. Case of known or measured time derivative of α(t)

The theorem 1 considers the case only an estimation of
the first time derivative of α(t). If this time derivative is
available in real-time (i.e. ˆ̇α(t) = α̇(t), the Theorem can be
reduced to the result of the following Corollary.

Corollary 2: Given a positive scalars η and α1. If there
exist a symmetric and positive definite matrix X > α1I , gain
matrices K̄i, i = 1, ..., r, and a positive scalar εi, i = 1, ..., r
such that{

Ξii < 0, i = 1, ..., r
1
r−1Ξii + 1

2 (Ξij + Ξji) < 0, i, j = 1, ..., r, i 6= j
(36)

where Ξij is similair to Ξijk in (23) without the second col-
umn and line. Then the state estimation error is exponentially
stable and satisfies: ‖e(t)‖ <

√
α2

α1
‖e(0)‖ exp (−ηt).

Proof: The proof is similar to the one given for
Theorem 1. It takes into account the fact that ˆ̇α(t) = α̇(t).
Then, the state estimation error dynamics (18) becomes

ė(t) =
(

Φ(α, ˆ̇α) + P (α)H∆(x̃)E(α)
)
e(t) (37)

With this state estimation error, the Corollary 1 is obtained
which ensures exponential stability.

D. Case of neither time derivative nor its estimation are
available

If neither the time derivative of α(t) nor its estimation are
unavailable, the proposed UIO (2) is expressed as follows ż(t) = N(α(t))z(t) + P (α(t))Υ(x̂(t), α(t))

+G(α(t))u(t) + L(α(t))y(t)
x̂(t) = z(t)−M(α(t))y(t)

(38)

where the matrices depend only on the measured parameter
α(t). Following the same steps as before with the condi-
tions P (α) = I + M(α)C(α), N(α) = P (α)A(α) −
K(α)C(α), G(α) = P (α)B(α), K(α) = L(α) +
N(α)M(α), The state estimation error between (1) and the
observer (38) is given by

ė(t) = (N(α) + P (α)H∆(x̃)E(α)) e(t) + Ṗ (α)x(t) (39)

The difference with the equation (18) is in the last term
Ṗ (α)x(t) and the fact that N(α) depends only on the mea-
sured parameter α(t). Under boundedness of x(t) and α̇(t),
the Theorem 1 can be used to ensure quasi-Disturbance-to-
Error Stability (qDES) with respect to bounded x(t) (i.e.
‖x(t)‖ ≤ K). The qDES property is given in the following
definition 2.

Definition 2: (quasi-Disturbance-to-Error Stability
(qDES) [15]) Under ‖x(t)‖ ≤ K, the system (39) is
quasi-Disturbance-to-Error Stable if

‖e(t)‖ ≤ βK (‖e(0)‖ , t) + γK (‖x(t)‖∞) (40)

with βK(.) a class KL function and γK(.) a class K function
and ‖.‖ the Euclidean norm.

Remark 1: Notice that in all the cases dealt with above,
the unknown input d(t) is completely decoupled. However,
if the time derivative α(t) is unavailable for measure, the
state estimation error is DES if Theorem 1 is satisfied for
available estimation of the time derivative of α(t). If this
estimation is unavailable too, the state estimation error can
be qDES with respect to x(t) when ‖x(t)‖ ≤ K.

IV. SIMULATION EXAMPLE

Let us consider the nonlinear system
ẋ1 = x2 − k sin(x2)
ẋ2 = x3 + (1 + x2

1)d
ẋ3 = −2x1 − 3x2 + (x2

1 + 1)x3 − 4x3 + d
y1 = x1, y2 = x3

(41)

where k is a positive constant and d represents the unknown
input. Notice that the nonlinearity sin(x2) depends on un-
measured state which leads to a quasi-LPV nonlinear system
with unmeasured parameters. After rewriting the system into
the form (1), one obtains the matrices

A(α(t)) =

 0 1 0
0 0 1
−2 −3 −4 + α(t)

 , F (α(t)) =

 0
α(t)

1


C =

[
1 0 0
0 0 1

]
,Υ(x) =

 −k sin(x2)
0
0


where α(t) = (1 + x2

1) = (1 + y2
1). The nonlinear function

Υ(x) is handled as in (16) with the matrices

H =

 −k0
0

 ,∆(x̃2) = cos(x̃2), E =
[

1 0 0
]

After computations, the matrices of the observer in LPV form
are given by

M(α(t)) =

 0 0
0 −α(t)
0 −1

 , P (α(t)) =

 1 0 0
0 1 −α(t)
0 0 0


A(α(t), α̇(t)) =

 0 1 0

2α(t) 3α(t) 1− α(t)(α(t)− 4)− ˆ̇α(t)
0 0 0





The objective of this example is to show both the decoupling
possibility offered by the proposed flexible design and the
approach that handles the nonlinear part. Indeed, since the
nonlinear term Υ(x) is Lipschitz with a Lipschitz constant k,
the LMIs presented in (22) provide a solution for values of
k around 106, while the classical approach (see for example
Theorem 1 in [14]) used for Lipschitz systems exploiting
the equation (14) provides a solution only for k ≤ 0.9995.
For the approach using the alternative Lipschitz condi-
tion ‖Υ(x(t), α(t))−Υ(x̂(t), α(t))‖ < ‖G(x(t)− x̂(t))‖,
where G is a square matrix, solutions exists for k ≤ 48.
By comparison with the approach of [19], a solution exists
for high values of the Lipschitz constant, but the number of
LMIs to solve is 9 while in the proposed approach (Theorem
1) it is reduced to 5. Now let us fix k = 0.5, the proposed
observer provides the results depicted in the Figure 1. The
time derivative of α(t) is obtained by a High Order Sliding
Mode Differentiator (HOSMD) [10] with order 4. Notice that
the parameters of this differentiators are chosen in such a
way to have a degraded estimation of the time derivative
α̇(t) in order to highlight the capabilities of the proposed
design approach (see Figure 1(bottom)). As can be seen,
the estimation of x2 obtained by the result of Theorem 1
without optimization of DES-gain is acceptable, while the
result obtained by using the Corollary 1 is better and robust
against errors in the estimation of the time derivative α̇(t).
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Fig. 1. UIO (Top) x2 and its estimation with both Theorem 1 and Corollary
1. (Middle) State estimation error x2 − x̂2 (Theorem 1 vs Corollary 1).
(Bottom) Exact time derivative of α(t) and its estimation by a HOSMD

V. CONCLUSION

In this paper, a new observation approach for a class of
nonlinear systems affected by unknown inputs is addressed.
This class of systems is known as quasi-LPV systems (i.e.
parameters are state dependent). The contributions of the pro-
posed approach can be summarized as follows: New structure
of unknown input observer which relaxes the classical rank
condition ensuring UI decoupling. Secondly, handling the
nonlinear terms in order to relax the constraint related to the
Lipschitz approach. Then, thanks to the DMVT and robust
stability analysis, LMI conditions are established in order to
ensure asymptotic convergence of the state estimation error.
It is shown that the proposed approach is more efficient and

general compared to the existing results based on Lipschitz
condition (admissible Lipschitz constant), ISS (bounded er-
ror) or classical DMVT (may leads to huge number of LMIs
which render the LMI problem intractable). In addition,
it is shown that postponing the polytopic transformation
avoids the conservatism introduced by the polytopic form.
Finally, the problem of availability of the time derivatives of
the parameters is handled by using the Disturbance-to-Error
Stability with optimized DES-gain.
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