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An Unknown Input Switched Functional Interval Observer for Vehicle
Lateral Velocity Estimation

Sara Ifqir1, Dalil Ichalal1, Naima Ait-Oufroukh1 and Saı̈d Mammar1

Abstract— Functional interval observer of dynamical
switched systems provides significant advantages in practical
applications. In view of the enlarged order of interval
observers, applying interval functional observers can result
in lower computational costs and more practicability in
some applications such as output feedback control and fault
diagnosis of these systems. In this paper, an unknown input
functional state interval observer design for a class of switched
uncertain systems is investigated. Necessary and sufficient
conditions for observer existence are derived. Based on Input
to State Stability (ISS) principle and Lyapunov theory, the
stability and positivity conditions for the estimation errors are
expressed in terms of Linear Matrix Inequalities. A design
procedure algorithm of the state observer is given. Finally, the
proposed estimation methodology is applied to vehicle lateral
velocity estimation problem. Simulation results obtained,
confirm the good accuracy and robustness of the proposed
state estimation concept.

I. INTRODUCTION

Recent years have witnessed an increasing interest in
investigating state estimation of systems subject to Unknown
Inputs (UIs) and modeling uncertainties using interval-
observer-based approaches [6], [5]. This issue, often leading
to the so called Unknown Input Interval Observers (UIIOs),
is of great concern when dealing with systems with bounded
uncertainties. In [7], a robust fault detection methodol-
ogy using UIIO based on zonotopic set representation for
discrete-time linear system is introduced. In [6], an interval
observer is built in a new coordinates basis in which the
state dynamics is only partially affected by the UIs. In [13],
authors deal with the problem of state interval estimation and
unknown inputs decoupling for a class of uncertain linear
time-invariant system. A robust state estimation problem for
a class of switched uncertain linear systems with UIs is
investigated in [8], [10]. Furthermore, authors in [9] propose
an algorithm to jointly estimate the state and unknown input
vector.
It is worth noting, that the interval observers have an enlarged
dimension (2n variables to estimate the upper and lower
bounds of n states), and their implementation requires high
degrees of complexity and computational load, especially
when dealing with high order complex systems. Thus, the
design of functional interval observers [17] that reconstruct
directly an upper and a lower bounds of a linear function of
the state is of a great importance. In [12] and [2] reduced
interval observers have been proposed for linear time-variant
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and linear time-delay systems. As compared to these works,
functional interval observers are flexible and more general.
Obviously, functional interval observer is a general form
of interval observer because when the linear functions are
chosen as the individual unknown states then the problem
of functional estimation amounts to the problem of reduced
state estimation as in [12], [2]. This feature is particularly
advantageous in some applications, such as state feedback
control and fault diagnosis. The functional interval observer
design problem is addressed in the present paper for the first
time, as our main contribution.
Motivated by the above shortcomings, we propose a con-
structive methodology to design unknown input functional
interval observer for switched linear systems with interval
uncertainties. Sufficient conditions for the stability and co-
operativity of the proposed observer are achieved using the
switched ISS-Lyapunov approach with average dwell time
switching, and are expressed in terms of Linear Matrix
Inequalities (LMIs). An application in the field of vehicle
state estimation which has not been treated so far is used
to illustrate the design procedure. Validation using real data
gathered from a prototype equipped vehicle demonstrates the
relevance and efficiency of the proposed interval observer.
This paper is organized as follows: System description to-
gether with some useful preliminaries are given in Section 2.
Section 3 states the main results. First, a new unknown input
switched functional interval observer structure is presented
and the existence conditions are derived. Finally, design
procedure algorithm is included. Simulation result of the
application of the proposed interval observer to the problem
of vehicle lateral velocity estimation is given in Section 4.
Conclusion and future line are detailed in Section 5.
Notation. Rn is the n-dimensional real vector space. The
euclidean norm of x ∈ Rn is denoted by ‖x‖. x and x denote
left and right endpoints of an interval [x] such as [x] = [x, x].
Let a vector x ∈ Rn or a matrix A ∈ Rn×n, one denotes
x+ = max{0, x}, x− = x+ − x or A+ = max{0, A},
A− = A+ − A. A > 0 (resp. A < 0) denotes a matrix
with positive (resp. negative) components and A � 0 (resp.
A ≺ 0) means that the matrix is positive (resp. negative)
definite. AT and A† = (ATA)−1AT stand to transpose
and pseudo-inverse of matrix A, respectively. In the sequel,
λM (A) (resp. λm(A)) denotes the biggest (resp. smallest)
eigenvalue of a symmetric matrix A. I is identity matrix of
appropriate dimension. A real matrix A is called Metzler
matrix if all its elements outside the main diagonal are non-
negative. In the rest of the paper, all inequalities must be
understood element-wise.



II. SYSTEM DESCRIPTION AND PRELIMINARIES

Let us consider the following uncertain switched dy-
namical model with p outputs, m inputs and unpredictable
unknown input signal d(t) ∈ Rd: ẋ(t) = (Aσ(t) + ∆Aσ(t))x(t) + (Bσ(t) + ∆Bσ(t))u(t)

+Eσ(t)d(t)
y(t) = Cx(t)

,

(1)
where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp are the state,
input and output vectors, respectively. σ(t) : R+ → I =
{1, 2, ..., N} is a known switching signal, which depends
on time t, where N denotes the number of subsystems.
Aσ(t) ∈ Rn×n, Bσ(t) ∈ Rn×m, Eσ(t) ∈ Rn×d and C ∈
Rp×n are known real constant matrices for a fixed σ(t).
∆Aσ(t) ∈ Rn×n and ∆Bσ(t) ∈ Rn×m are unknown but
bounded deviations from the nominal values Aσ(t) and Bσ(t),
respectively. In this paper, the matrices ∆Aσ(t) and ∆Bσ(t)
are assumed to be bounded and lie into a known interval
such that ∀σ(t):

∆Aσ(t) ≤ ∆Aσ(t) ≤ ∆Aσ(t), ∆Bσ(t) ≤ ∆Bσ(t) ≤ ∆Bσ(t).
(2)

The uncertain initial condition at the instant t0, x(t0), is
bounded by two known bounds as follows

x(t0) ≤ x(t0) ≤ x(t0). (3)

Furthermore, the control input u(t) in system (1) is subjected
to the following constraints:

u(t) ≤ u(t) ≤ u(t), (4)

where u(t), u(t) are known functions.
Let us define a functional state equation described by

z(t) = Lσ(t)x(t), (5)

where z(t) ∈ Rr is the vector to be estimated and Lσ(t) ∈
Rr×n is a non-negative known matrix whose pseudo-inverse
is written as L†σ(t) = Dσ(t)L

T
σ(t) ≥ 0 for some positive

diagonal matrix Dσ(t) [1]. Without loss of generality, we
assume that: rank(C) = p and rank(Lσ(t)) = r, ∀σ(t) ∈ I.
Since the switched system (1) is uncertain, an exact evalua-
tion of the linear function (5) at each time instant is difficult
to obtain. However, it is possible to evaluate all admissible
values for z(t) based on (2), (3) and (4). Consider z(t)
and z(t) being the upper and lower estimates of z(t); the
obtaining of these two trajectories such that

z(t) ≤ z(t) ≤ z(t), ∀t ≥ t0, (6)

is achieved by using a switched interval functional observer
of order 2r (r ≤ n). The following useful lemmas are firstly
given for further observer design.
Lemma 1. [15] A matrix A is Metzler if and only if there
exist η ∈ R+ such that A+ ηIn ≥ 0.
Definition 1. [11] If Aσ(t) is Metzler, then the solution of
the switched system:

ẋ(t) = Aσ(t)x(t) + δσ(t)(t), (7)

is non-negative for any δσ(t)(t) ≥ 0 and x(t0) ≥ 0, t ≥ t0.
Lemma 2. [3] Let the vector x(t) ∈ Rn be a variable vector

with given bounds x(t), x(t) ∈ Rn such that x(t) ≤ x(t) ≤
x(t).

1) If A ∈ Rn×n is a constant matrix, then

A+x(t)−A−x(t) ≤ Ax(t) ≤ A+x(t)−A−x(t). (8)

2) If A ∈ Rn×n is a variable matrix such that A ≤ A ≤ A
for some A, A ∈ Rn×n, then

A+x+(t)−A+
x−(t)−A−x+(t) +A

−
x−(t) ≤ Ax(t)

≤ A+
x+(t)−A−x+(t)−A+x−(t) +A−x−(t)

.

(9)

Lemma 3. [9] Consider the switched system (7), and let ε >
0. Suppose that there exist smooth functions Vσ(t) : Rn → R,
such that Vσ(t)(x(t)) = xT (t)Qσ(t)x(t), Qσ(t) = QTσ(t) � 0;
and constants γ, α2 > α1 > 0 such that for each ∀σ(t) =
i ∈ I, the following conditions hold:

α1‖x(t)‖2 ≤ Vσ(t)(x(t)) ≤ α2‖x(t)‖2, (10)

V̇σ(t)(x(t)) < −εVσ(t)(x(t)) + γ‖δσ(t)(t)‖, (11)

then, the system (7) is Input-to-State Stable with respect
to the additive term δσ(t)(t) for any switching signal with
Average Dwell Time

τa ≥ τ∗a =
ln(µ)

ε
, (12)

where µ = α2

α1
with α1 = min

i∈I
λm(Qi) and

α2 = max
i∈I

λM (Qi).

III. MAIN RESULT

Let us consider the following unknown input interval
observer structure for system (1) to estimate the upper and
lower bounds of z(t) as given in (5)

ξ̇(t) = Nσ(t)ξ(t) +Hσ(t)y(t) +Gσ(t)u(t)
+X+

σ(t)δσ(t)(t)−X
−
σ(t)δσ(t)(t)

z(t) = ξ(t) +Mσ(t)y(t)
z(t0) = L+

σ(t)x(t0)− L−σ(t)x(t0)

ξ̇(t) = Nσ(t)ξ(t) +Hσ(t)y(t) +Gσ(t)u(t)

+X+
σ(t)δσ(t)(t)−X

−
σ(t)δσ(t)(t)

z(t) = ξ(t) +Mσ(t)y(t)

z(t0) = L+
σ(t)x(t0)− L−σ(t)x(t0)

, (13)

where Xσ(t) ∈ Rr×n, Nσ(t) ∈ Rr×r , Hσ(t) ∈ Rr×p, Gσ(t) ∈
Rr×m and Mσ(t) ∈ Rr×p are interval functional observer
parameters to be determined. δσ(t)(t) and δσ(t)(t) given
below are defined using (2), (4), (6) and Lemma 2 such that
δσ(t)(t) ≤ δσ(t)(t) ≤ δσ(t)(t).

δσ(t)(t) = ∆A+
σ(t)z

+ −∆A+
σ(t)z

− −∆A−σ(t)z+ + ∆A−σ(t)z
−

+∆B
+
σ(t)u

+ −∆B+
σ(t)u

− −∆B
−
σ(t)u

+ + ∆B−σ(t)u
− .

(14a)
δσ(t)(t) = ∆A+

σ(t)z
+ −∆A+

σ(t)z
− −∆A−σ(t)z

+ + ∆A−σ(t)z−

+∆B+
σ(t)u

+ −∆B
+
σ(t)u

− −∆B−σ(t)u
+ + ∆B

−
σ(t)u

− .

(14b)
where ∆Aσ(t) = ∆Aσ(t)L

†
σ(t). Let e(t) = z(t) − z(t)

and e(t) = z(t) − z(t) be the upper and lower functional



estimation errors, using (13), e(t) and e(t) are rewritten as
follows:

e(t) = ξ(t)− (Lσ(t) −Mσ(t)C)x(t),
e(t) = (Lσ(t) −Mσ(t)C)x(t)− ξ(t). (15)

Define
Xσ(t) = Lσ(t) −Mσ(t)C (16)

Then, by taking the time derivative of (15), the upper and
lower errors dynamics are obtained as follows

ė(t) = Nσ(t)e(t) + (Gσ(t) −Xσ(t)Bσ(t))u(t)+
(Nσ(t)Xσ(t) +Hσ(t)C −Xσ(t)Aσ(t))x(t)+
X+
σ(t)δσ(t)(t)−X

−
σ(t)δσ(t)(t)−Xσ(t)δσ(t)(t)

−Xσ(t)Eσ(t)d(t),
ė(t) = Nσ(t)e(t)− (Gσ(t) −Xσ(t)Bσ(t))u(t)−
(Nσ(t)Xσ(t) +Hσ(t)C −Xσ(t)Aσ(t))x(t)+
Xσ(t)δσ(t) −X+

σ(t)δσ(t)(t) +X−σ(t)δσ(t)(t)

+Xσ(t)Eσ(t)d(t).

(17)

From (17), z(t) and z(t) are the upper and lower bounds of
z(t) if the following conditions hold.
Proposition 1. The linear function (5) and the solutions of
(13) satisfy:

z(t) ≤ z(t) ≤ z(t), (18)

if ∀σ(t)
Nσ(t) is Metzler; (19a)

Nσ(t)Xσ(t) +Hσ(t)C −Xσ(t)Aσ(t) = 0; (19b)

Gσ(t) −Xσ(t)Bσ(t) = 0; (19c)

Xσ(t)Eσ(t) = 0. (19d)

Proof. If conditions (19b-19d) are satisfied then (17) is
reduced to {

ė(t) = Nσ(t)e(t) + ∆σ(t)(t)
ė(t) = Nσ(t)e(t) + ∆σ(t)(t)

, (20)

where

∆σ(t)(t) = X+
σ(t)δσ(t)(t)−X

−
σ(t)δσ(t)(t)−Xσ(t)δσ(t)(t), (21)

∆σ(t)(t) = Xσ(t)δσ(t)(t)−X+
σ(t)δσ(t)(t) +X−σ(t)δσ(t)(t). (22)

Since ∆σ(t)(t) ≥ 0 and ∆σ(t)(t) ≥ 0 by construction ∀t ≥
t0, then, e(t) ≥ 0, i.e. z(t) ≥ z(t) and e(t) ≥ 0, i.e. z(t) ≥
z(t) provided that Nσ(t) is Metzler ∀σ(t) and e(t0) ≥ 0 and
e(t0) ≥ 0, ∀t ≥ t0 according to Definition 1. �
The Proposition 1 does not claim that variables z(t) and z(t)
are bounded, it establishes only the order relations (18). To
ensure the boundedness of solutions for the system (13), we
introduce the interval functional estimation error e(t), which
is defined to be the difference between the upper and lower
estimates z(t) and z(t) as follows

e(t) = z(t)− z(t), (23)

then the error dynamics is given by

ė(t) = Nσ(t)e(t) + ∆σ(t)(t), (24)

where
∆σ(t)(t) = ∆σ(t)(t)−∆σ(t)(t). (25)

Proposition 2. As long as the plant’s input u(t) and state
x(t) remain bounded, and Nσ(t) is chosen to be Hurwitz

∀σ(t), then the interval estimation error (24) is robust to the
additive uncertainties ∆σ(t) in the ISS sense [16].
Proof. Let us choose a a Switched ISS-Lyapunov function
candidate [9] as follows:

Vσ(t)(e(t)) = eT (t)Qσ(t)e(t), (26)

where Qσ(t) is a diagonal matrix such that Qσ(t) = QTσ(t) ≥
0, ∀σ(t). Taking the time derivative of Vσ(t)(e(t)) along the
trajectory of the interval functional estimation error (24) in
each mode i yields

V̇i(e(t)) = eT (t)
(
NT
i Qi +QiNi

)
e(t)+

∆T
i (t)Qie(t) + eT (t)Qi∆i(t).

(27)

By adding and subtracting the terms εeT (t)Qie(t) and
−γ ∆T

i (t) ∆i(t), (27) becomes

V̇i(e(t)) =

[
eT (t)
∆T
i (t)

]
Γi

[
e(t)

∆i(t)

]
−εVi(e(t)) + γ∆T

i (t)∆i(t)
, (28)

where
Γi =

[
NT
i Qi +QiNi + εQi Qi

Qi −γI

]
.

Then, if
Γi ≺ 0, (29)

it follows that

V̇i(e(t)) < −εVi(e(t)) + γ∆T
i (t)∆i(t), (30)

by integrating the inequality (30) over the interval [tk, t), one
obtains

Vi(e(t)) < e−ε(t−tk)Vi(e(tk)) + γ

∫ t

tk

e−ε((t−tk)−s)‖∆i(s)‖22 ds.

(31)
Using (10), we obtain

‖e(t)‖22 <
1

α1

(
e−ε(t−tk)Vi(e(tk)) +

γ

ε
‖∆i(t)‖2∞

)
, (32)

then

‖e(t)‖2 <
1√
α1

(
e−ε(t−tk)Vi(tk) +

γ

ε
‖∆i(t)‖2∞

) 1
2
. (33)

Therefore, it can be concluded that if ‖∆i(t)‖∞ = 0, then
‖e(t)‖2 → 0 when t → ∞. Moreover, in the presence of
uncertainties, the interval error ‖e(t)‖2 is upper bounded by√

γ
α1ε

max
i∈I
‖∆i(t)‖∞. This statement completes the proof

according to the definition of ISS principle. �
Remark 1. It is noted that, if the deviations from the
nominal values are absent (i.e., ∆Aσ(t) = 0 and ∆Bσ(t) =
0), the functional interval observer (13) becomes a so-called
globally convergent functional interval observer meaning that
limt→∞ e(t) = 0, i.e. z(t) → z(t) ← z(t) for any initial
conditions z(t0) ≤ z(t0) ≤ z(t0). However, in the presence
of bounded additive uncertainties (i.e., ∆Aσ(t) 6= 0 and
∆Bσ(t) 6= 0), the switched interval observer (13) should
generate an upper and lower estimates of the linear function
Lσ(t)x(t) with the interval estimation error satisfying an ISS
contraction property with respect to ∆σ(t)(t).
In the sequel, a constructive methodology for solving con-
straints (19b-19d) with the requirement that Nσ(t) is Hurwitz



and Metzler ∀σ(t) and the interval functional estimation error
(24) is ISS with respect to additive uncertainties ∆σ(t)(t) is
proposed.
By substituting Xσ(t) from (16) into (19b), we obtain

Nσ(t)Lσ(t) = Lσ(t)Aσ(t) −
[
Mσ(t) Tσ(t)

]
Λσ(t), (34)

where Tσ(t) = Hσ(t) −Nσ(t)Mσ(t) and Λσ(t) =

[
CAσ(t)
C

]
.

Define the following full row-rank switched matrix[
Qσ(t) Wσ(t)

]
=
[
L†σ(t) (I− L†σ(t)Lσ(t))

]
, (35)

multiplying both sides of (34) by (35) leads to
Nσ(t) = Lσ(t)Aσ(t)Qσ(t) −

[
Mσ(t) Tσ(t)

]
Λσ(t)Qσ(t), (36)

Lσ(t)Aσ(t)Qσ(t) =
[
Mσ(t) Tσ(t)

]
Λσ(t)Wσ(t). (37)

From the definition of Xσ(t), condition (19d) is written as
Lσ(t)Eσ(t) = Mσ(t)CEσ(t). (38)

Combining equations (37) and (38) gives[
Mσ(t) Tσ(t)

]
Ωσ(t) = Ψσ(t), (39)

where Ωσ(t) =

[
CAσ(t)Wσ(t) CEσ(t)
CWσ(t) 0

]
and Ψσ(t) =

[Lσ(t)Aσ(t)Qσ(t) Lσ(t)Eσ(t)].
The following lemma provides the necessary and sufficient
conditions for the existence of a solution to (39).
Lemma 4. There exists a solution to equation (39) if and
only if

rank

Cσ(t)Aσ(t) Cσ(t)Eσ(t)
Cσ(t) 0

Lσ(t)Aσ(t) Lσ(t)Eσ(t)
Lσ(t) 0

 =

rank

Cσ(t)Aσ(t) Cσ(t)Eσ(t)
Cσ(t) 0
Lσ(t) 0

 , ∀σ(t). (40)

Proof. The necessary and sufficient condition for the exis-
tence of a solution to (39) is

rank

[
Ωσ(t)
Ψσ(t)

]
= rank(Ωσ(t)). (41)

Let Sσ(t) be a full-row rank matrix ∀σ(t) defined as:

Sσ(t) =

[
Qσ(t) Wσ(t) 0

0 0 I

]
, (42)

then, we have

rank

Cσ(t)Aσ(t) Cσ(t)Eσ(t)
Cσ(t) 0

Lσ(t)Aσ(t) Lσ(t)Eσ(t)
Lσ(t) 0


= rank



Cσ(t)Aσ(t) Cσ(t)Eσ(t)
Cσ(t) 0

Lσ(t)Aσ(t) Lσ(t)Eσ(t)
Lσ(t) 0

Sσ(t)


= rank


Cσ(t)Aσ(t)Qσ(t) Cσ(t)Aσ(t)Wσ(t) Cσ(t)Eσ(t)
Cσ(t)Qσ(t) Cσ(t)Wσ(t) 0

Lσ(t)Aσ(t)Qσ(t) Lσ(t)Aσ(t)Wσ(t) Lσ(t)Eσ(t)
I 0 0


= p+ rank

[
Ωσ(t)
Ψσ(t)

]
.

On the other hand,

rank

[
Cσ(t)Aσ(t) Cσ(t)Eσ(t)
Cσ(t) 0
Lσ(t) 0

]

= rank

Cσ(t)Aσ(t) Cσ(t)Eσ(t)
Cσ(t) 0
Lσ(t) 0

Sσ(t)


= rank

Cσ(t)Aσ(t)Qσ(t) Cσ(t)Aσ(t)Wσ(t) Cσ(t)Eσ(t)
Cσ(t)Qσ(t) Cσ(t)Wσ(t) 0

I 0 0


= p+ rank(Ωσ(t)).

Using (41), (40) is obtained. �
Under condition (40), a general solution of equation (39) is
given by:

[Mσ(t) Tσ(t)] = Ψσ(t)Ω
†
σ(t) + Zσ(t)

(
I− Ωσ(t)Ω

†
σ(t)

)
, (43)

where Zσ(t) is a switched arbitrary matrix of appropriate
dimensions. By substituting the solution (43) into (36), gives

Nσ(t) = Θσ(t) − Zσ(t)∆σ(t), (44)

where Θσ(t) = Lσ(t)Aσ(t)Qσ(t)−Ψσ(t)Ω
†
σ(t)Λσ(t)Qσ(t) and

∆σ(t) =
(
I− Ωσ(t)Ω

†
σ(t)

)
Λσ(t)Qσ(t).

By substituting (43) into (16), the matrix Xσ(t) can be re-
expressed as

Xσ(t) = Lσ(t) −Ψσ(t)Ω
†
σ(t)

[
C 0

]T
+Zσ(t)

(
I− Ωσ(t)Ω

†
σ(t)

) [
C 0

]T . (45)

Now, the design problem of the switched functional interval
observer (13) is reduced to finding the matrix Zσ(t) such that
conditions of Propositions 1 and 2 are fulfilled. The Theorem
1 states the main results.
Theorem 1. Assume that there exist positive diagonal matrix
Qi and matrix Yi for given constants ησ(t) ≥ 0 and ε >
0 such that the following convex optimization problem is
solvable for all i ∈ I:

min
Qi,Yi

γ

subject to
α1 In � Qi � β In (46)ΘT

i Qi −∆T
i Y

T
i +QiΘi − Yi∆i + εQi Qi

Qi −γI

 ≺ 0, (47)

QiΘi − Yi∆i + ηQi ≥ 0, (48)

then, the interval functional error (24) is Input-to-State Stable
for any switching signal with the average dwell time (12),
with Zi = Q−1i Yi.
Proof. From Proposition 2, it has been shown that if inequal-
ity (29) is satisfied, then the interval functional estimation
error (24) is ISS with respect to ∆σ(t)(t) with the ISS gain√

γ
α1ε

. Now, by replacing Ni in (29) by (44) and denote
Yi = QiZi, inequality (47) is directly deduced. On the other
hand, according to Lemma 1, Nσ(t) is Metzler if

Ni + ηiIn ≥ 0, ∀i ∈ I, (49)



multiplying in the left side by Qi and using (44) together
with the change of coordinates Yi = QiZi, (48) is obtained.
�
The convex optimization problem given in Theorem 1 states
that the optimal gain γ which explicitly bounds the interval
estimation error in the steady state is obtained by selecting
among all possible solutions Qi, Yi those leading to the
smallest value for γ and therefore a smallest convergence
region.
Overall, the unknown input switched interval functional
observer parameters can be calculated based on the following
algorithm:
Step i: Solve the optimization problem in Theorem 1 for
given ε and ησ(t) and obtain Zσ(t), ∀σ(t) = i ∈ I.
Step ii: Calculate matrices Nσ(t) and Xσ(t) in accordance
with their definitions given in (44) and (45). Use (43) to
obtain Mσ(t) and Tσ(t).
Step iii Obtain Gσ(t) = Xσ(t)Bσ(t) and Gσ(t) = Tσ(t) +
Nσ(t)Mσ(t).

IV. APPLICATION TO VEHICLE LATERAL VELOCITY
ESTIMATION

Vehicle lateral velocity estimation has become the most
challenging aspect since the introduction of the first on-board
active safety systems controlling vehicle stability, such as the
Electronic stability control (ESC), also referred to as Elec-
tronic Stability Program (ESP). Recently, Vehicle Control
Systems (VCS) such as active steering, direct yaw control
(DYC), advanced traction control and the aforementioned
ESP are used together to improve vehicle handling stability.
All of these advanced control systems rely on an accurate
knowledge of vehicle dynamic states, and on vehicle lateral
velocity monitoring in particular. Therefore, looking for an
estimation method with high precision and good real-time
is very crucial. In this section, based on a 2-DOF vehicle
model and the proposed functional observer, an estimate of
the vehicle lateral velocity is proposed and evaluated using
experimental data.

A. Vehicle model
The basis of the proposed lateral velocity estimator is the

bicycle vehicle model [14], which describes the lateral and
yaw motions of a 2-axle, 1-rigid body ground vehicle. The

Fig. 1. Bicycle model.

dynamics equations with side-slip angle β and yaw rate ψ̇
selected as state variables are given as follows:[
β̇

ψ̈

]
=

 − cf+cr
mvx

crlr−cf lf
mv2x

− 1

crlr−cf lf
Iz

− crl
2
r+cf l

2
f

Izvx

[β
ψ̇

]
+

[
cf
mvx
cf lf
Iz

]
δf+

[ 1
mvx
lw
Iz

]
fw

(50)

where m is vehicle mass, Iz is yaw inertia moment, vx is
longitudinal velocity, δf is front wheel steering angle. lf and
lr are distances between the centre of gravity and the front
and rear axles, respectively. fw is the force due to the effect
of the wind gusts that are acting at a distance lw. cf and
cr are the front and rear tire cornering stiffness coefficients.
The available measurement output is the yaw rate r.
The parameters of the vehicle lateral dynamic model (50) are
assumed to be certain, except cornering stiffness coefficients,
which are the most influential and unpredictable ones. An
adaptation of the vehicle model (50) is done by decomposing
these parameters as follows:

cf = cf0 + ∆cf , cr = cr0 + ∆cr, (51)

where ci0, i ∈ {r, f} is a known nominal value, for example,
determined on a nominal surface, and ∆ci ∈ [∆c−i , ∆c+i ], i
∈ {r, f} is a time varying, unknown but bounded term. On
the other hand, in order to deal with longitudinal velocity
variation, we transform the uncertain system (50) into a
switched uncertain system where each subsystem operates
around a given constant longitudinal velocity value (for
example, three subsystems defined for low, average and high
longitudinal speed). According to these considerations, and
by substituting (51) into (50) yields to a state-space model
of the form (1). The switching signal σ(t) depends in this
case on the measured vehicle longitudinal velocity. Now, to
illustrate the design method in this paper, recall that the
side slip angle β can be related to vehicle lateral velocity
vy (under small angle assumptions) as: vy = βvx, then a
switched functional interval observer can be built to estimate
the state z(t) = vy =

[
vx 0

]
x(t) following the design

procedure presented in the previous section.

B. Simulation results
Now, we shall use numerical simulation to verify the

effectiveness of the proposed lateral velocity estimation
scheme. The real data used in the validation process are
based on measurements acquired using a prototype vehicle
in a test track located in the city of Versailles-Satory, France.
The vehicle is equipped with an inertial unit, an odometer
and an absolute optical encoder measuring respectively, the
yaw rate, the vehicle longitudinal speed and the steering
angle. The effect of wind lateral force acting as unknown
input is added in simulation to real acquired data. Effect of
the added wind force is incorporated into the measurements
using the nonlinear vehicle model [4]. Steering angle, yaw
rate, longitudinal velocity and lateral wind force profiles are
shown in Figure 2. For the simulation scenario, in order
to deal with the time-varying velocity, three subsystems
are considered for v1x = 8.5m/s, v2x = 13.55m/s and
v3x = 18.05m/s. The switching signal illustrated in Figure 3
is defined as:

σ(t) =

 1 if vx ∈ [V 0
x , V

1
x [

2 if vx ∈ [V 1
x , V

2
x [

3 if vx ∈ [V 2
x , V

3
x ]

, (52)

where vkx =
V k
x −V

k−1
x

2 for k = 1, 2, 3. In addition, we assume
that the cornering stiffness coefficients are affected by ±30%



Fig. 2. Steering angle input δf , yaw rate ψ̇, Longitudinal velocity vx and
Wind lateral force fw .

uncertainty in their nominal values, which represents a
realistic estimate of the variation range (from dry asphalt to
ice-covered roads). Choosing ε = 0.2, η1 = η2 = η3 = 0.1

Fig. 3. Switching signal σ(t).

and solving LMIs 46-48, we obtain

Z1 = 10−14
[
0.3065 − 0.0766

]
, Z2 = 10−14

[
0.3065 − 0.0766

]
,

Z3 = 10−14
[
0.3065 − 0.0766

]
, X1 =

[
8.0000 − 3.8344

]
,

X2 =
[
12.5000 − 3.8344

]
, X3 =

[
17.5000 − 3.8344

]
,

N1 = −9.9287, N2 = −6.3544, N3 = −4.5388, P1 = 0.0168,
P2 = 0.0173, P3 = 0.0200, γ = 0.0023.

The result of the switched functional interval observer is
given in Figure 4. The vehicle lateral velocity remains inside
the estimated interval [v−y , v

+
y ] which confirms the accuracy

and efficiency of the proposed method.

V. CONCLUSION

An unknown input functional interval observer has been
designed for switched linear systems with bounded uncer-
tainties. A method based on unknown input decoupling, ISS

Fig. 4. Vehicle lateral velocity interval estimation.

principle and switched Lyapunov theory has been presented.
The existence conditions of the proposed observer have been
established. Application to vehicle lateral velocity estima-
tion demonstrates the effectiveness of the proposed design
method. Future work will be devoted to extend the presented
technique to uncertain switched linear parameter varying
systems.
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