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Abstract. Privacy is a major concern when publishing new datasets in
the context of Linked Open Data (LOD). A new dataset published in the
LOD is indeed exposed to privacy breaches due to the linkage to objects
already present in the other datasets of the LOD. In this paper, we focus
on the problem of building safe anonymizations of an RDF graph to
guarantee that linking the anonymized graph with any external RDF
graph will not cause privacy breaches. Given a set of privacy queries as
input, we study the data-independent safety problem and the sequence of
anonymization operations necessary to enforce it. We provide sufficient
conditions under which an anonymization instance is safe given a set of
privacy queries. Additionally, we show that our algorithms for RDF data
anonymization are robust in the presence of sameAs links that can be
explicit or inferred by additional knowledge.

Keywords: Linked Open Data · Data privacy · RDF anonymization.

1 Introduction

Since its inception, the Linked Open Data (LOD) paradigm has allowed to pub-
lish data on the Web and interconnect uniquely identified objects by realizing
widely open information exchange and data sharing. The LOD cloud is rapidly
growing and contains 1,231 RDF graphs connected by 16,132 links (as of June
2018). Since 2007, the number of RDF graphs published in the LOD has seen
an increase of about two orders of magnitude. Nevertheless, the participation
of many organizations and institutions to the LOD movement is hindered by
individual privacy concerns. Personal data are ubiquitous in many of these data
sources and recent regulations about personal data, such as the EU GDPR Gen-
eral Data Protection Regulation (GDPR) make these organizations reluctant to
publish their data in the LOD.

While there has been some effort [15, 22] to bring data anonymization tech-
niques from the relational database world to the LOD, such as variations of
k-anonymity [23, 18, 16], most of the state of the art is mainly based on differ-
ential privacy techniques for relational data [8, 17]. However, differential privacy
is not a perfect match for Linked Data, focusing more on statistical integrity
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rather than accurate, qualitative query results which represents the main us-
age of Linked Data through SPARQL endpoints [2, 19]. Differential privacy is
indeed useful whenever the aggregate results of data analysis (such as statistics
about groups of individuals) can be seamlessly published. Whereas this is highly
desirable in many applications, it becomes not sufficient in privacy-preserving
data publishing (PPDP) [9] scenarios where the privacy of individuals need to
be protected while at the same time ensuring that the published data can be
utilized in practice. Whereas the underpinnings of PPDP under its most promi-
nent form, such as anonymization, have been widely studied for relational data
(see [9] for a comprehensive survey), the theoretical foundations for PPDP in
the context of Linked Data have only been recently laid out in [12] by focusing
on the theoretical study of its computational complexity

In this paper, we build upon the foundations of [12] by focusing on the linkage
safety requirement and present practical algorithms to compute the anonymiza-
tion operations needed to achieve such a requirement when a graph G is linked to
external graphs in the LOD. By relying on the computational complexity of the
linkage safety problem, which is AC0 in data complexity under the open-world
assumption, we address the problem of actually computing a safety-compliant
sequence of anonymization operations setting up their guarantees against link-
age attacks. In doing this, we also devote special care to :sameAs links (i.e. links
expressed in RDF syntax) that can be either explicit in the original graph G
linking to entities in external graphs or derived by inference mechanisms on G
itself. In particular, this approach exhibits two distinguishing features. First, it
is query-based since the privacy policies as well as the anonymization operations
are specified by means of conjunctive queries and updates in SPARQL, respec-
tively. Second, our approach is data-independent since, given a privacy policy
(specified as a set of privacy queries), our algorithms produce anonymization
operations (under the form of delete and update queries) with the guarantee
that their application to any RDF graph will satisfy the safety requirement. Our
contributions can be summarized as follows: we first ground the linkage safety
problem to the sequence of anonymization operations necessary to enforce it by
providing a novel data-independent definition of safety; such a definition con-
siders a set of privacy queries as input and does not look at the actual graph
instances (Section 4); as such, it departs from the basic definition of linkage
safety of [12]. We then provide sufficient conditions under which an anonymiza-
tion instance is safe given a set of privacy queries and design an anonymization
algorithm that solves the above query-based safety requirement and study its
runtime complexity (Section 5). Next, we introduce :sameAs links and show that
slight modification of our algorithm is robust to them (Section 6) and finally,
we provide a quick discussion about the evaluation of our algorithms and the
remaining utility of the anonymized graphs (Section 7) that confirms the good
behavior of our framework in practice. Related work is discussed in Section 2,
and we provide the necessary background in Section 3. We conclude in Section 8.
All proofs and implementations are available online in a companion appendix.4

4 See https://perso.liris.cnrs.fr/remy.delanaux/papers/WISE2019appx.pdf
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2 Related work

A query-based approach to privacy-preserving RDF data publishing has been
presented in [6], in which the focus was to check the compatibility between a
privacy policy and an utility policy (both specified as queries) and to build
anonymizations preserving the answers to a set of utility queries (when compati-
bility is ensured). However, the above approach suffers from the lack of resilience
against privacy breaches caused by linking external datasets, which is clearly a
recurrent situation in the LOD.

In line with existing works [7, 20, 11] on safety models defined in terms of
secret or privacy queries for relational data. A query-based safety model for
RDF data has been introduced in [12] where linking RDF graphs is reduced to
their union, several results are provided on the computational complexity of the
decision problems. In our paper, we slightly extend the considered safety model
and we address the data-independent construction problem underpinning safety,
i.e. how to produce a sequence of update operations that are safe for any RDF
graph, given a privacy policy expressed as queries.

Graph specific, but non RDF, declinations of privacy criteria and related at-
tacks have been proposed such as l-opacity [21] or k-isomorphism [5], the typical
use cases being social networks graphs. In this paper, we follow a complemen-
tary direction where the privacy criteria is declared by the data protection officer
and not fixed, with a concrete and efficient procedure that uses standard and
efficient SQPARL engines to enforce them. Compared to existing approaches
based on k-anonymity in RDF graphs [15, 22], we focus on generalizations that
replace constants by blank nodes. We have also shown that in some cases, triple
suppressions are required in addition to generalizations for guaranteeing safe
anonymizations.

Privacy-preserving record linkage has been recently considered in [24] as the
problem of identifying and linking records that correspond to the same real-world
entity without revealing any sensitive information about these entities. For pre-
serving privacy while allowing the linkage, masking functions are proposed to
transform original data in such a way that there exists a specific functional
relationship between the original data and the masked data. The problem of
privacy-preserving record linkage is a difficult problem that is significantly dif-
ferent from the privacy-preserving data publishing problem considered in this
paper, in which sameAs links are input of the anonymization process.

3 Formal background

We recall the usual concepts for RDF graphs and SPARQL queries as formalized
in [13]. Let I, L and B be countably infinite pairwise disjoint sets representing
respectively IRIs, literals and blank nodes. IRIs (Internationalized Resource Iden-
tifiers) are standard identifiers used for denoting any Web resource described in
RDF within the LOD. We denote by T = I ∪ L ∪B the set of terms, in which
we distinguish constants (IRIs and literals) from blank nodes, which are used to
model unknown IRIs or literals like in [10, 3] and correspond to labeled nulls [1].



4 Remy Delanaux et al.

We also assume an infinite set V of variables disjoint from the above sets.
Throughout this paper, we adhere to the SPARQL conventions: variables in V
are prefixed with a question mark (?), IRIs in I are prefixed with a colon (:),
blank nodes in B are prefixed with an underscore and a colon ( :).

Definition 1 (RDF graph and graph pattern). An RDF graph is a finite
set of RDF triples (s, p, o), where (s, p, o) ∈ (I ∪B)× I× (I ∪ L ∪B). A triple
pattern is a triple (s, p, o) ∈ (I ∪B ∪V)× (I ∪V)× (I ∪ L ∪B ∪V). A graph
pattern is a finite set of triple patterns.

We can now define the three types of queries that we consider. Definition 2
corresponds to conjunctive queries and will be the basis for formalizing the sensi-
tive information that must not be disclosed. Definition 6 corresponds to counting
queries which will model a form of utility that it may be useful to preserve for
analytical tasks. Finally, Definition 7 describes update queries, modeling the
anonymization operations handled in our framework.

Definition 2 (Conjunctive query). A conjunctive query Q is defined by an
expression SELECT x̄ WHERE GP (x̄, ȳ) where GP (x̄, ȳ), also denoted body(Q), is
a graph pattern without blank nodes and x̄ ∪ ȳ is the set of its variables, among
which x̄ are the result variables, and the subset of variables in predicate position
is disjoint from the subset of variables in subject or object position. A conjunctive
query Q is alternatively written as a pair Q = 〈x̄, GP 〉. A boolean query is a
query of the form Q = 〈∅, GP 〉.

Conjunctive queries with variables in predicate position are allowed, if such
variables do not appear in a subject or object position. This ensures that within
a conjunctive query, all occurrences of a given variable are in the same connected
component (see Definition 3).

Example 1. The conjunctive query SELECT ?p WHERE {?s ?p ?o. ?s a :VIP.}

conforms to Definition 2. Intuitively, this query selects all properties of subjects
who are “VIP”.

Definition 3 (Connected components of a query). Given a conjunctive
query Q = 〈x̄, GP 〉, let GQ = 〈NQ, EQ〉 be the undirected graph defined as
follows: its nodes NQ are the distinct variables and constants appearing in subject
or object position in GP , and its edges EQ are the pairs of nodes (ni, nj) such
that there exists a triple (ni, p, nj) or (nj , p, ni) in GP .

Each subgraph SGQ of GQ corresponds to the subgraph of body(Q) made of
the set of triples (s, p, o) such that either (s, o) or (o, s) is an edge of SGQ. By
slight abuse of notation, we will call the connected components of the query Q the
(disjoint) subsets of GP = body(Q) corresponding to the connected components
of GQ. A connected component GPC of the query Q is called boolean when it
contains no result variable.

Example 2. Let Q be the following query in the SPARQL syntax where a is a
shorthand for rdf:type, Q has two connected components GP1 and GP2:
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SELECT ?x ?y WHERE { ?x :seenBy ?z. ?z :specialistOf ?y.

?v a :VIP. ?v :isHospitalized true. }

GP1 = { ?x :seenBy ?z. ?z :specialistOf ?y. }

GP2 = { ?v a :VIP. ?v :isHospitalized true. }

Definition 4 (Critical terms). A variable (resp. constant) in subject or object
position having several occurrences within the body of a query is called a join
variable (resp. join constant). We name join variables, join constants and result
variables of a query as its critical terms.

Example 3. The query SELECT ?p WHERE { ?s ?p ?o. ?s a :VIP.} has two
critical terms: ?s, which has two occurrences, and ?p which is a result variable.
Critical terms are computed in Algorithm 1 (Lines 5 to 10).

The evaluation of a query Q = 〈x̄, GP 〉 over an RDF graph G consists in
finding mappings µ assigning the variables in GP to terms such that the set of
triples, denoted µ(GP ), obtained by replacing with µ(z) each variable z appear-
ing in GP , is included in G. The corresponding answer is defined as the tuple of
terms µ(x̄) assigned by µ to the result variables.

Definition 5 (Evaluation of a conjunctive query). Let Q = 〈x̄, GP 〉 be a
conjunctive query and let G be an RDF graph. The answer set of Q over G is
defined by : Ans(Q,G) = {µ(x̄) | µ(GP ) ⊆ G}.

Definition 6 (Counting query). Let Q be a conjunctive query. The query
Count(Q) is a counting query, whose answer over a graph G is defined by:
Ans(Count(Q), G) = |Ans(Q,G)|

We now define an additional ingredient: update queries. Intuitively, an update
query DELETE D(x̄) INSERT I(ȳ) WHERE W (z̄) isNotBlank(b̄) executed on a
graph G searches for the instances of the graph pattern W (z̄) in G, then deletes
the instances of D(x̄) and finally inserts the I(ȳ) part. The isNotBlank operator
will be used in Algorithm 1 to avoid replacing the images of critical terms that
are already blank nodes.

Definition 7 (Update query). An update query (or update operation) Qu is
defined by DELETE D(x̄) INSERT I(ȳ) WHEREW (z̄) isNotBlank(b̄) where D (resp.
W ) is a graph pattern whose set of variables is x̄ (resp. z̄) such that x̄ ⊆ z̄; and
I is a graph pattern where blank nodes are allowed, whose set of variables is ȳ
such that ȳ ⊆ z̄. isNotBlank(b̄) is a parameter where b̄ is a set of variables such
that b̄ ⊆ z̄. The evaluation of Qu over an RDF graph G is defined by:

Result(Qu, G) = G \ {µ(D(x̄))|µ(W (z̄)) ⊆ G ∧ ∀x ∈ b̄, µ(x) /∈ B}
∪ {µ′(I(ȳ))|µ(W (z̄)) ⊆ G ∧ ∀x ∈ b̄, µ(x) /∈ B}

where µ′ is an extension of µ renaming blank nodes from I(ȳ) to fresh blank
nodes, i.e. a mapping such that µ′(x) = µ(x) when x ∈ z̄ and µ′(x) = bnew ∈
B otherwise. The application of an update query Qu on a graph G is written
Qu(G) = Result(Qu, G). This notation is extended to a sequence of operations
O = 〈Q1

u, . . . Q
n
u〉 by O(G) = Qn

u(. . . (Q1
u(G)) . . .).
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4 Safety model

We generalize the definition of a safe anonymization introduced in [12] as follows:
an RDF graph is safely anonymized if it does not disclose any new answer to a set
of privacy queries when it is joined with any external RDF graph. Additionally,
compared to [12], we define a notion of data-independent safety for a sequence
of anonymization operations independently of any RDF graph. Given an RDF
graph G, a sequence O of update queries called anonymization operations and
a set P of conjunctive privacy queries, the safety of the anonymization instance
(G,O,P) is formally defined as follows.

Definition 8 (Safe anonymization instance). An anonymization instance
(G,O,P) is safe iff for every RDF graph G′, for every P ∈ P and for every
tuple of constants c̄, if c̄ ∈ Ans(P,O(G) ∪G′) then c̄ ∈ Ans(P,G′).

Notice that the safety property is stronger than the privacy property defined
in [12, 6] which requires that for every privacy query P , Ans(P,O(G)) does not
contain any tuple made only of constants. In contrast with [12], the safety prob-
lem that we consider is data-independent and is a construction problem. Given a
set of privacy queries, the goal is to build anonymization operations guaranteed
to produce a safe anonymization when applied to any RDF graph, as follows.

Definition 9 (Safe sequence of anonymization operations). Let O be a
sequence of anonymization operations, let P be a set of privacy queries, O is
safe for P iff (G,O,P) is safe for every RDF graph G.

Problem 1. The data-independent Safety problem.
Input : P a set of privacy queries
Output: A sequence O of update operations such that O is safe for P.

Our approach to solve Problem 1 is to favour whenever possible update oper-
ations that replace IRIs and literals by blank nodes over update operations that
delete triples. We exploit the standard semantics of blank nodes that interprets
them as existential variables in the scope of local graphs. As a consequence,
two blank nodes appearing in two distinct RDF graphs cannot be equated.
The privacy-preserving approach described in [6] is also data-independent but is
based on deleting operations that may lead to unsafe anonymizations, as shown
in Example 4.

Example 4. Let consider the following privacy query P stating that IRIs of peo-
ple seen by a specialist of a disease should not be disclosed.

SELECT ?x WHERE { ?x :seenBy ?y. ?y :specialistOf ?z. }

Let the RDF graph to anonymize be G that is made of the following triples:

:bob :seenBy :mary. :mary :specialistOf :cancer. :mary :worksAt :hospital1.

:ann :seenBy :mary. :jim :worksAt :hospital1.
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Let O1 be the update query deleting all the :seenBy triples, written as
DELETE { ?x :seenBy ?y. } WHERE { ?x :seenBy ?y. } in SPARQL. The
resulting anonymized RDF graph O1(G) is as follows:

:mary :specialistOf :cancer. :mary :worksAt :hospital1.

:jim :worksAt :hospital1.

O1 preserves privacy (the evaluation of P against O1(G) returns no answer).
However, O1 is not safe since the union of O1(G) with an external RDF graph
G′ containing the triple (:bob, :seenBy, :mary) will provide :bob as an answer.
This example shows that the problem for safety comes from a possible join
between an internal and an external constant (:mary here). This can be avoided
by replacing critical constants by blank nodes. Example 5 illustrates the strategy
considered in Algorithm 1 to enforce safety (see Section 5).

Example 5. Consider the following update query O2:

DELETE {?x :seenBy ?y. ?y :specialistOf ?z.}

INSERT {_:b1 :seenBy _:b2. _:b2 :specialistOf ?z.}

WHERE {?x :seenBy ?y. ?y :specialistOf ?z.}

The result RDF graph O2(G) is made of the following triples and is safe:

_:b1 :seenBy _:b2. _:b2 :specialistOf :cancer. :mary :worksAt :hospital1.

_:b3 :seenBy _:b4. _:b4 :specialistOf :cancer. :jim :worksAt :hospital1.

It is worth noticing that the result of the counting query Count(P ) is pre-
served i.e. it returns the same value as when evaluated on the original RDF
graph G. Many other utility queries are preserved, such as for instance the one
asking for who works at which hospital.

5 Safe anonymization of an RDF graph

In this section, we provide an algorithm that computes a solution to the Safety
problem. We first prove a sufficient condition (Theorem 1) guaranteeing that
an anonymization instance is safe, then we define an algorithm based on this
condition. We extend the definition of a mapping, which is now allowed to map
constants to blank nodes: an anonymization mapping µ is a function V∪I∪L→
T. For a triple τ = (s, p, o) we write µ(τ) for (µ(s), µ(p), µ(o)). Theorem 1 is
progressively built on two conditions that must be satisfied by all the connected
components of the privacy queries.

Theorem 1. An anonymization instance (G,O,P) is safe if the following con-
ditions hold for every connected component GPc of all privacy queries P ∈ P:

(i) for every critical term x of GPc, for every triple τ ∈ GPc where x appears,
for each anonymization mapping µ s.t. µ(τ) ∈ O(G), µ(x) ∈ B holds;

(ii) if GPc does not contain any result variable, then there exists a triple pattern
of GPc without any image in O(G) by an anonymization mapping.



8 Remy Delanaux et al.

The intuition of condition (i) is that if all the images of critical terms are
blank nodes, it is impossible to graft external pieces of information to the
anonymized graph as they cannot have common blank nodes. Condition (ii)
deals with boolean connected components with no result variable. We are now
able to design an anonymization algorithm that solves the Safety problem.
Algorithm 1 computes a sequence5 of operations O for a privacy policy P such
that O is safe for P. Operations are computed for each connected component of
each privacy query from P, the crux being to turn conditions (i) and (ii) into
update queries.

Algorithm 1: Find update operations to ensure safety

Input : a set P of privacy conjunctive queries Pi = 〈x̄i, GPi〉
Output : a sequence O of operations which is safe for P

1 function find-safe-ops(P):
2 Let O = 〈 〉;
3 for Pi ∈ P do
4 forall connected components GPc ⊆ GPi do
5 Let I := [ ];
6 forall (s, p, o) ∈ GPc do
7 if s ∈ V ∨ s ∈ I then I[s] = I[s] + 1;
8 if o ∈ V ∨ o ∈ I ∨ o ∈ L then I[o] = I[o] + 1;

9 Let x̄c := {v | v ∈ x̄i ∧ ∃τ ∈ GPc s.t. v ∈ τ};
10 Let Tcrit := {t | I[t] > 1} ∪ x̄c;
11 Let SGPc = {X | X ⊆ GPc ∧X 6= ∅ ∧X is connected} ordered by

decreasing size;
12 forall X ∈ SGPc do
13 Let X ′ := X and x̄′ = {t | t ∈ Tcrit ∧ ∃τ ∈ X s.t. t ∈ τ};
14 forall x ∈ x̄′ do
15 Let b ∈ B be a fresh blank node;
16 X ′ := X ′[x← b];

17 O := O + 〈DELETE X INSERT X ′ WHERE X isNotBlank(x̄′)〉
18 if x̄c = ∅ then
19 Let τ ∈ GPc // non-deterministic choice

20 O := O + 〈DELETE τ WHERE GPc〉

21 return O;

The starting point of Algorithm 1 is to compute joins variable, constants and
then critical terms (Lines 5 to 10). The update queries that replace the images
of critical terms by blank nodes are built from Line 14 to Line 17. The subtle
point is that as many update queries as the connected subsets of the component
GPc need to be constructed. Considering these subsets in decreasing order of
cardinality (Line 11) and using the isNotBlank(x̄′) construct guarantees that
all the images of a critical term in a given RDF graph will be replaced only
once. Non-connected subsets of GPc are skipped because their own connected

5 The + operator denotes the concatenation of sequences.
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components are handled afterwards. Finally, if the connected component under
scrutiny is boolean, one of its triple is deleted (Line 20).

When applied to the privacy query considered in Example 4, operation O2

reported in Example 5 is the first one generated at Line 17. When applied to Ex-
ample 2, Algorithm 1 will sequentially generate anonymization operations start-
ing from those replacing the images of all the variables by blank nodes (since all
its variables are critical), followed by those deleting all the triples corresponding
to one of the triple patterns (?v a :VIP or ?v :isHospitalized true) in the
boolean connected component. Note that anonymizations may create an RDF
graph where some properties have been replaced by blank nodes. In this case, the
output is a generalized RDF graph. Theorem 2 states the soundness and com-
putational complexity of Algorithm 1. Since Algorithm 1 is data-independent,
its exponential worst-case complexity (due to the powerset SGPc computed on
Line 11) is not necessarily an important limitation in practice, as it will be
demonstrated in Section 7.

Theorem 2. Let O = find-safe-ops(P) be the sequence of anonymization op-
erations returned by Algorithm 1 applied to the set P of privacy queries: O is safe
for P. The worst-case computational complexity of Algorithm 1 is exponential in
in the size of P.

Algorithm 2 (reported in the companion appendix) is a polynomial approx-
imation of Algorithm 1 obtained as follows: instead of considering all possible
subsets of triple patterns of SGc (Line 12), we simply construct update queries
that replace, in each triple pattern τ ∈ GPc, every critical term with a fresh
blank node. As a result, there does not exist anymore any equality between im-
ages of join variables, literals or IRIs (while in Algorithm 1 all occurrences of
each critical term were replaced by the same blank node). For instance, Algo-
rithm 2 generates a sequence of three update queries, one for each triple, more
general than O2 from Example 5 of Section 4. Theorem 3 states that Algorithm 2
is sound but leads to anonymizations that are more general than those produced
by Algorithm 1.

Theorem 3. The worst-case computational complexity of Algorithm 2 is poly-
nomial in the size of P. Let O and O′ be the result of applying respectively
Algorithm 1 and Algorithm 2 (with the same non deterministic choices) to a set
P of privacy queries: for any RDF graph G, (G,O,P) is safe and G |= O(G)
and O(G) |= O′(G).

Theorem 4 establishes that the anonymization operations computed by Al-
gorithm 1 preserve some information on Count(P ) for privacy queries P with no
boolean connected component. It is not necessarily the case for Algorithm 2.

Theorem 4. Let O = find-safe-ops({P}) be the output of Algorithm 1 ap-
plied to a privacy query P with no boolean connected component. For every RDF
graph G, O(G) satisfies the the condition Ans(Count(P ), O(G)) ≥ Ans(Count(P ), G).
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6 Safe anonymization robust to :sameAs links

One of the fundamental assets of the LOD is the possibility to assert that two
resources are the same by stating owl:sameAs triples (shortened to :sameAs

later), also known as entity linking. We do not consider :sameAs between prop-
erties and we interpret :sameAs triples (called :sameAs links) as equality be-
tween constants (including blank nodes) that are in subject or object position.
With this interpretation, :sameAs links can also be inferred by a logical reason-
ing on additional knowledge known on some properties (e.g. that a property is
functional). In this section, we study the impact of both explicit and inferred
:sameAs links on safety.

We extend Definition 5 to the semantics of query answering in presence of
a set sameAs of :sameAs links. Let closure(sameAs) be the transitive, reflexive
and symmetric closure of sameAs. This set can be computed in polynomial time.
We write G[b0 ← b′0, . . . , bk ← b′k] for denoting the graph obtained from G by
replacing each occurrence of bi by b′i for every i ∈ [1..k].

Definition 10 (Answer of a query modulo sameAs). Let Q be a conjunc-
tive query, G an RDF graph and sameAs a set of :sameAs links. A tuple ā is
an answer to Q over G modulo sameAs iff there exists (b0, :sameAs, b

′
0), . . .,

(bk, :sameAs, b
′
k) in closure(sameAs) s.t. ā ∈ Ans(Q,G[b0 ← b′0, . . . , bk ← b′k]).

We note AnssameAs(Q,G) the answer set of Q over G modulo sameAs.

Hence, we extend Definition 8 to handle a set sameAs of :sameAs links.

Definition 11 (Safety modulo sameAs). An anonymization instance (G,O,P)
is safe modulo sameAs iff for every RDF graph G′, for every P ∈ P and for any
tuple of constants c̄, if c̄ ∈ AnssameAs(P,O(G) ∪G′) then c̄ ∈ AnssameAs(P,G

′).
O is safe modulo sameAs for P if (G,O,P) is safe modulo sameAs for every

RDF graph G and for every set sameAs of :sameAs links.

We first study how to build anonymization operations that are robust to
explicit :sameAs links. Then, we focus on handling the case of inferred :sameAs

links through knowledge.
Theorem 5 establishes that Algorithm 1 (and thus Algorithm 2) computes

safe anonymizations even in presence of a set sameAs of explicit :sameAs links.

Theorem 5. Let O be the result of applying Algorithm 1 to a set P of privacy
queries: for any set sameAs of explicit :sameAs links, O is safe modulo sameAs
for P.

We address two cases in which knowledge on properties may infer equalities.
The first case occurs in the ontology axiomatization of the OWL language 6 when
some of the properties are functional or inverse functional, as in Definition 12,
where we model equalities by :sameAs links.

6 See OWL 2 RDF-Based Semantics, notably section 5.13. https://www.w3.org/TR/
2012/REC-owl2-rdf-based-semantics-20121211/#Semantic Conditions
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Definition 12. A property p is functional iff for every ?x, ?y1, ?y2:
(?x, p, ?y1) ∧ (?x, p, ?y2) ⇒ (?y1, :sameAs, ?y2).
A property p is inverse functional iff for every ?x, ?y1, ?y2:
(?y1, p, ?x) ∧ (?y2, p, ?x) ⇒ (?y1, :sameAs, ?y2).

For example, declaring that property :bossOf as inverse functional expresses
the constraint that every person has only one boss. As shown in Example 6,
exploiting this knowledge may lead to re-identifying blank nodes that have been
produced by the previous anonymization algorithms.

Example 6. Let P be the following privacy query written in SPARQL syntax:

SELECT ?x WHERE { ?x :seenBy ?y. ?x :bossOf ?z. }

Let G, O(G) and G′ be the following RDF graphs where O is an update operation
returned by Algorithm 1:

G = {:bob :seenBy :mary. :bob :bossOf _:b1. _:b1 :bossOf :ann.}

O(G) = {_:b :seenBy :mary. _:b :bossOf _:b1. _:b1 :bossOf :ann.}

G’ = {:bob :bossOf :jim. :jim :bossOf :ann.}

From O(G)∪G′ and the inverse functionality of :bossOf, it can be inferred
first (:jim, :sameAs, :b1) and second (:bob, :sameAs, :b). Consequently, :b

is re-identified as :bob, which is returned as answer of P over O(G)∪G′ modulo
sameAs, and the anonymization operation O is not safe.

One solution is to add a privacy query for each functional property p and for
each inverse functional property q, respectively SELECT ?x WHERE {?x p ?y.}

and SELECT ?x WHERE {?y q ?x.}. By doing so, the update queries returned
by our algorithms will replace each constant in subject position of a functional
property by a fresh blank node, and each constant in an object position of an
inverse functional property by a fresh blank node. In the previous example, the
constant :ann in ( :b1, :bossOf, :ann) would be replaced by a fresh blank node.

The second case that we consider may lead to infer equalities (modeled as
:sameAs links) when a property is completely known, i.e., when its closure is
available in an external RDF graph. For instance, suppose that the closure of
the property :seenBy is stored in an extension of the external RDF graph G′

containing the following triples:

:bob :seenBy :mary. :alice :seenBy :ann.

:john :seenBy :ann. :tim :seenBy :ann.

Knowing that G′ is the complete extension of the seenBy predicate allows to
infer ( :b, :sameAs, :bob) and thus to re-identify the blank node :b.

One solution is to add a privacy query SELECT ?x ?y WHERE { ?x p ?y }
for each property p for which we suspect that a closure could occur in the LOD.
Then, the update queries returned by our algorithms will replace each constant
in the subject or object position of such a property by a fresh blank node. For
instance, in the Example 6, the constant :mary in ( :b, :seenBy, :mary) would
be replaced by a fresh blank node.
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7 Experimental evaluation

We have evaluated the runtime performance of the anonymization process pro-
duced by Algorithm 1 and the resulting loss of precision on three real RDF graphs
for which we have designed a reference privacy query as a union of privacy con-
junctive queries. Table 1 provides the indicators characterizing each RDF graph
used in the experiments: #Triples (respectively #IRIs and #Blanks) denotes
the number of triples (respectively unique IRIs and unique blank nodes) in the
graph, and #PrivQuery denotes the size of the reference privacy query (i.e.,
the sum of the triple patterns in each conjunctive privacy query). The reference
privacy queries are reported in the companion appendix. The source code of our
prototype is openly available on GitHub7.

Table 1: RDF graphs and privacy queries used in our experiments.

RDF graph #Triples #IRIs #Blanks #PrivQuery

TCL 6,443,256 1,020,580 705,030 19
Synthetic transportation data

Drugbank8 517,023 109,494 0 6
Real-world data about approved drugs

(Swedish) Heritage9 4,970,464 1,687,452 0 6
Real world Europeana Swedish heritage data

7.1 Runtime performances

The average runtime of Algorithm 1 has been measured over 10 executions for
each graph, using the reference privacy queries as input. Table 2 reports the
results: T-Algo1 denotes the time in seconds for computing the sequence of
anonymization operations by Algorithm 1 (which depends only of the reference
privacy query) whereas T-Anonym denotes the time in seconds required for
applying them on the different RDF graphs to compute their anonymized version,
and #UpdateQueries is the number of update queries returned by Algorithm 1.

Table 2: Running time (in seconds) of anonymization process.

RDF graph T-Algo1 #UpdateQueries T-Anonym

TCL 0.207 16 3.5
Drugbank 0.012 6 1.7

Swedish Heritage 0.013 14 53.6

The anonymization time is reasonable in all cases. The cost for anonymizing
the Swedish Heritage graph is due to a few update queries with graph patterns
having many occurrences in the graph.

7 https://github.com/RdNetwork/safe-lod-anonymizer
8 http://wifo5-03.informatik.uni-mannheim.de/drugbank/
9 General Europeana portal: https://pro.europeana.eu/page/linked-open-data
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7.2 Evaluation of the precision loss

We have evaluated the precision loss and how it depends on the privacy query
specificity defined relatively to the reference privacy query. We distinguish the
absolute precision loss which is the the number of blank nodes introduced by the
anonymization process, from the relative precision loss which the ratio of it with
the total number of IRIs in the input graph.

From each reference privacy query P , we create more specific privacy queries
by applying a set of random mutations that replace a variable by a constant
in one of the privacy conjunctive queries. The specificity of a privacy query
P ′ obtained by this mutation process is defined by specif(P ′) = |Ans(P ′, G)| /
|Ans(P,G)|.

By construction, specif(P ′) is a normalized value between 0 and 1, as any
mutated privacy query P ′ is more specific than the reference privacy query P .

Results displayed on Figures 1a to 1c show that the precision loss grows
linearly with the policy specificity: the less precise the privacy policy is in its
selection of data, the more blank nodes will be inserted in the graph.

(a) TCL (b) Drugbank (c) Swedish Heritage

Fig. 1: Loss of precision depending on privacy query specificity for each graph.

We can also observe that precision is very dependent on the input: if the
privacy policy only cover a specific part of the whole data (e.g. only the sub-
scriptions in the data of whole transportation network) then its impact is quite
small: for the TCL graph (Figure 1a), this precision value only drops marginally
(99.9% to 99.4%). The trend is similar for other graphs: precision drops when
the privacy policy gets more general. It drops to 85% in the case of the Swedish
Heritage graph, and 96% for the Drugbank graph. This confirms that in gen-
eral, using plausible privacy policy semantics, the number of IRIs lost in the
anonymization process is not huge.

However, Figure 1c for the Swedish Heritage graph have a quite large spread
on the x = 0 line. Indeed, the privacy policy forbids the disclosure of very general
pieces of information such as the description of objects in the graph. Thus, this
leads to many replacements by blank nodes in such a situation.
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8 Conclusion

We have tackled the safety problem for Linked Open Data by providing a data-
independent version and grounding it in a set of privacy queries (expressed in
SPARQL). Our algorithms let seamlessly construct sequences of anonymization
operations in order to prevent privacy leakages due to external RDF graphs
along with explicit or inferred knowledge (under the form of sameAs links). We
have proved the soundness of our anonymization algorithms and shown their
runtime complexity. We have conducted experiments showing the quality of our
anonymization and the performance of its operations.

Our approach can be seamlessly combined with existing privacy-preserving
approaches. Once the RDF graph is transformed according to the operations
generated by our algorithms, one could apply any other method to the obtained
RDF graph. In particular, it could be verified whether the resulting anonymized
RDF graph verifies some desired k-anonymity property. The adaptation of k-
anonymity approaches for a more fine-tuned generalization of literals, see for
instance [22], is planned as future work. Our approach can be also combined with
ontology-based query rewriting for first-order rewritable ontological languages
such as RDFS [3], DL-Lite [4] or EL fragments [14], by providing as input to
Algorithm 1 the rewritings of the privacy queries.

We envision several other directions of future work. The first is to study
the potential risk for re-identification of delegating the generation of fresh blank
nodes to a standard SPARQL engine. Next, since the conditions provided in
Theorem 1 for guaranteeing that a anonymization instance is safe are sufficient
but not necessary, it would be beneficial to explore both sufficient and neces-
sary conditions. We also plan to extend our safety model to handle additional
knowledge, like for instance that some properties are equivalent. Finally, we plan
to study whether considering the data-dependent version of the safety problem
could lead to more specific anonymization operations while guaranteeing safety.
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