
HAL Id: hal-02444659
https://hal.science/hal-02444659v2

Submitted on 29 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive Regularization for Three-dimensional Optical
Diffraction Tomography

Thanh-An Pham, Emmanuel Soubies, Ahmed Ayoub, Demetri Psaltis,
Michael Unser

To cite this version:
Thanh-An Pham, Emmanuel Soubies, Ahmed Ayoub, Demetri Psaltis, Michael Unser. Adap-
tive Regularization for Three-dimensional Optical Diffraction Tomography. , 2020 IEEE 16th
International Symposium on Biomedical Imaging (ISBI), Apr 2020, Iowa City, United States.
�10.1109/ISBI45749.2020.9098523�. �hal-02444659�

https://hal.science/hal-02444659v2
https://hal.archives-ouvertes.fr


ADAPTIVE REGULARIZATION
FOR THREE-DIMENSIONAL OPTICAL DIFFRACTION TOMOGRAPHY

Thanh-an Pham 1, Emmanuel Soubies 2, Ahmed Ayoub 3, Demetri Psaltis 3, and Michael Unser 1

1 Biomedical Imaging Group, EPFL, Lausanne, Switzerland.
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ABSTRACT
Optical diffraction tomography (ODT) allows one to quantitatively
measure the distribution of the refractive index of the sample. It re-
lies on the resolution of an inverse scattering problem. Due to the
limited range of views as well as optical aberrations and speckle
noise, the quality of ODT reconstructions is usually better in lat-
eral planes than in the axial direction. In this work, we propose an
adaptive regularization to mitigate this issue. We first learn a dic-
tionary from the lateral planes of an initial reconstruction that is ob-
tained with a total-variation regularization. This dictionary is then
used to enhance both the lateral and axial planes within a final re-
construction step. The proposed pipeline is validated on real data
using an accurate nonlinear forward model. Comparisons with stan-
dard reconstructions are provided to show the benefit of the proposed
framework.

Index Terms— plug-and-play, nonlinear inverse problems, dic-
tionary learning, computational imaging.

1. INTRODUCTION

Optical diffraction tomography (ODT) is a microscopic technique
that provides a three-dimensional map of the refractive index (RI)
of the sample [1]. It proceeds by measuring the complex fields that
are produced when the sample is illuminated with different tilted
plane waves. These measurements are related to the RI of the sam-
ple through the wave equation that governs the light-scattering phe-
nomenon. This allows for the deployment of numerical methods to
recover the RI.

The reconstruction of the RI consists in solving an inverse scat-
tering problem which is particularly challenging for several reasons.
First, wave scattering is a nonlinear phenomenon and the most faith-
ful forward model for ODT is iterative [2–5]. Second, the wavevec-
tor of the incident wave is limited to a small cone around the optical
axis (Figure 1). This leads to the well-known missing-cone prob-
lem [6, 7] whose effect is an elongation of the reconstructed object
along the optical axis. Put simply, the ODT lateral resolution is bet-
ter than its axial resolution. Finally, the measured fields contain opti-
cal aberrations or speckle noise [8,9] which are usually unknown and
constitute a source of model mismatch. To mitigate these problems,
former works added prior knowledge in the reconstruction process
using regularization [4, 7, 10, 11]. These include, for instance, non-
negativity constraints and total-variation (TV) regularization.

In this work, we propose to go one step further and take into ac-
count the anisotropic resolution in ODT while improving the quality
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Fig. 1. Principle of optical diffraction tomography. The wave vectors
{kin

q }Qq=1 ∈ R3 of the Q incident plane waves {uin
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to a cone around the optical axis.

of the reconstructions. Our motivation is to learn highly resolved
features from lateral planes and use them to enhance the quality
in the axial direction. Hence, inspired by the strategy proposed by
Soulez [12] for the deconvolution of fluorescent microscopic images,
we deploy a dictionary-based regularizer that is learnt from the lat-
eral planes of an initial reconstructed volume.

2. PHYSICAL MODEL

We denote the RI of the sample by n : Ω 7→ R and we assume that
its support is included in the region of interest Ω ⊂ R3 (Figure 1).
The RI of the surrounding medium is denoted by nb. Let the sample
be illuminated with the monochromatic incident field uin : Ω 7→ C
of wavelength λ. The resulting total field u = uin + usc,where
usc : Ω 7→ C is the scattered field, follows the Lippmann-Schwinger
(LiSc) model

u(x) = uin(x) +

∫
Ω

g(x− z)f(z)u(z) dz, (1)

where f(x) = k2
b

(
n(x)2/n2

b − 1
)

is the scattering potential and
kb = 2πnb/λ is the wavenumber in the surrounding medium. Fi-
nally, under Sommerfeld’ radiation condition, the free-space Green
function g : Ω→ C is defined by [13]

g(x) =
exp (jkb‖x‖)

4π‖x‖ . (2)



Following [2, 4], we consider a two-step ODT forward model. We
first discretize Ω intoN = n3 voxels. Then, the scattered field ysc ∈
CM at the camera plane Γ is computed as

u = (I−G diag(f))−1 uin (3)

ysc = G̃ diag(f)u, (4)

where f ∈ RN , uin ∈ CN , and u ∈ CN are sampled version
of f , uin, and u within Ω, respectively. The discrete counterpart
of the convolution with the Green function in (1) is denoted by G :
CN → CN . Finally, given u within Ω, G̃ : CN → CM provides the
scattered field ysc. We refer the reader to [5] for details concerning
the implementation of G and G̃.

3. THREE-STEP RECONSTRUCTION

In the spirit of [12], we designed a three-step reconstruction scheme.

1. TV-regularized reconstruction.
2. Dictionary learning (DL) from lateral planes.
3. Final reconstruction using the learnt dictionary.

3.1. TV-Regularized Reconstruction

The first step consists in solving the nonnegative TV-regularized
problem

fTV ∈

{
arg min

f∈RN
≥0

(
Q∑
q=1

‖Hq(f)− ysc
q ‖22 + τTV‖f‖TV

)}
,

(5)
where Hq : CN 7→ CM denotes the two-step forward model de-
scribed by (3) and (4) for the qth incident wave uin

q , ‖ · ‖TV ,
‖∇ · ‖2,1 is the TV seminorm, and τTV > 0 is the regularization
parameter which balances between the data-fidelity term and the TV
term. As in [4], we deploy a forward-backward splitting (FBS), im-
plemented using the GlobalBioIm library1 [14], to obtain fTV.

3.2. DL from Lateral Planes

Given the nonnegative TV solution fTV, our goal is to learn a dic-
tionary D ∈ Rn×K formed out of K atoms of size n < N such that
fTV can be represented as

fTV =

PXY∑
p=1

(RXY
p )TDαp, (6)

where RXY
p : RN → Rn is an operator that extracts a 2D patch

of size n centered on the pth element of the input vector (its ad-
joint inserts the patch at the pth position), PXY denotes the number
of patches, and {αp ∈ RK}PXY

p=1 are sparse vectors. The super-
script XY in RXY denotes the fact that the operation only extracts
2D patches from lateral planes.

We formulate the DL problem as

{D̂, α̂p} ∈

{
arg min

D∈Rn×K

αp∈RK

(∥∥∥∥∥
PXY∑
p=1

(RXY
p )TDαp − fTV

∥∥∥∥∥
2

2

+ τDL

PXY∑
p=1

‖αp‖1

)}
, (7)

1http://bigwww.epfl.ch/algorithms/globalbioim/

where τDL > 0 controls the sparsity level.
Our formulation is fundamentally different from the pioneer-

ing approaches [15, 16] where the solution was such that each ex-
tracted patch had a sparse representation in D. Our representa-
tion f =

∑PXY
p=1 (RXY

p )TDαp is related to convolutional dictionary
learning (CDL) [17–19], as shown by Papyan et al. [20, 21]. As
opposed to traditional DL, CDL accounts for global information in
the image such as shift invariance. Hence, (8) not only enjoys the
global sparse representation of CDL but also benefits from the local
(patch-based) processing of DL [20, 21].

By introducing the auxiliary variable sp = Dαp in (7), we can
deploy the alternating-direction method of multipliers (ADMM) to
minimize the augmented-Lagrangian functional

L(D̂, α̂p, ŝp, ŵp) =

∥∥∥∥∥
PXY∑
p=1

(RXY
p )T sp − fTV

∥∥∥∥∥
2

2

+

PXY∑
p=1

ρ

2

∥∥∥∥sp −Dαp +
wp

ρ

∥∥∥∥2

2

+ τDL‖αp‖1, (8)

where {wp ∈ Rn}PXY
p=1 are the dual variables and ρ > 0 is the La-

grangian multiplier. Using the CDL terminology [21], the auxiliary
variable sp is referred to as the pth slice. The ADMM is imple-
mented using the SPAM toolbox2 [22].

3.3. Final Reconstruction Using the Learnt Dictionary

Equipped with the dictionary D̂ ∈ Rn×K learnt from lateral planes
in Section 3.2, we now consider the optimization problem

f? = RT s∗,

s∗ ∈

{
arg min

s∈RnP

(
Q∑
q=1

‖Hq(R
T s)− ysc

q ‖22

+Rpos(R
T s) +RD̂(s)

)}
,

(9)

where s = [sT1 · · · sTP ]T ∈ RnP is the concatenation of all the
slices, P = PXY + PXZ + PYZ is the total number of slices, and
R = [RT

XY RT
XZ RT

YZ]T ∈ RnP×N with RXZ (RYZ) the counter-
part of RXY for the XZ (YZ, respectively) sections of the volume.
We use the differentiable functionalRpos : RN → R

Rpos(f) =
N∑
n=1

λpos

µ
log (exp(−µfn) + 1) (10)

to favor nonnegative solutions. Here, λpos > 0 is a weighting factor
and µ > 0 shapes the tolerance to negative values. Finally, the
functionalR : RnP → R in (9) is a regularization term designed to
enforce the slices sp to have a sparse representation in D̂. Denoting
F =

∑Q
q=1 ‖Hq(R

T · )−ysc
q ‖22 +Rpos(R

T · ) , we can deploy the
FBS algorithm whose iterates are given by

sk+1 = proxγR
D̂

(
sk − γ∇F(sk)

)
, (11)

where γ > 0 is a descent parameter and proxγR
D̂

denotes the prox-
imity operator of the functionalRD̂. Here, we follow the plug-and-
play prior philosophy [23–25] and replace proxγR

D̂
in (11) by the

2http://spams-devel.gforge.inria.fr/



Algorithm 1 Proposed algorithm to solve (9)

Require: y ∈ CMQ, x0 ∈ CN , D̂ ∈ Rn×K , γ > 0,τsc > 0
1: Define F =

∑Q
q=1 ‖Hq(R

T · )− ysc
q ‖22 +Rpos(R

T · )
2: s0 = 1

n2Rx0

3: k = 1
4: while (not converged) do
5: zk = sk − γ∇F(sk)
6: sk+1

p = Cτsc,D̂(zkp), ∀p ∈ {1, . . . , P}
7: k ← k + 1
8: end while
9: return x? = RT sk−1

XZ

XY

τTV

Fig. 2. TV-regularized solutions obtained with regularization param-
eters τTV = {0.15, 0.3, 0.5}/963 (from left to right, respectively).

“denoising” operator

Cτsc,D̂ : Rn−→Rn

s 7−→ D̂α?, (12)

where τsc > 0, and

α? ∈
{

arg min
α∈RK

(
1

2
‖s− D̂α‖22 + τsc‖α‖1

)}
. (13)

Numerous solvers exist to solve (13) [16,26]. Again, we use the
GlobalBioIm library together with the SPAMS toolbox for this step.
Finally, we summarize the complete reconstruction scheme of this
section in Algorithm 1.

4. RESULTS

We validated our method on real data acquired with the ODT setup
described in [27]. We acquired 61 views with illumination of wave-
length λ = 532nm within a cone of 35

◦
. Each view has (300×300)

(complex) measurements focused at the center of the sample. The
sample is a yeast cell (Figure 1) immersed in water (nb = 1.3388).
The size of the reconstructed volume is (96× 96× 96) with a sam-
pling step of 99.3nm (9.53µm in each dimension).

4.1. TV-Regularized Reconstruction

We first reconstructed the sample using the method described in [4]
by minimizing (5). The initial guess was the solution provided by the

Fig. 3. Dictionary D̂ learnt from lateral planes of the TV regularized
solution (fTV, dotted rectangle in Figure 2).

Rytov model [28]. We used diverse regularization parameters τTV

for TV (Figure 2). When the regularization is weak, artifacts due to
model mismatch are hindering the quality of reconstruction. On the
contrary, over-regularization results in cartoon-like solutions.

4.2. Learning the Dictionary

We learned the dictionary by minimizing (8). We used patches of
size (8 × 8) (n = 64) and K = 64 atoms. We set τDL = 1/

√
8

and ρ = 0.5 max(fTV)n2. The learnt atoms of the dictionary D̂ are
shown in Figure 3.

4.3. Final Reconstruction

We solved the optimization problem (9) and encouraged the nonneg-
ativity of the solution with λpos = 1/963 and µ = 5 in (10). The
initial guess was fTV. The denoising operator (12)–(13) was used
with regularization parameter τsc = 10−4.

We observe that the Rytov-based solution suffers from the
missing-cone problem whereas the regularized solutions (i.e., TV
and the proposed one) mitigate its effect. In addition, some features
are enhanced with the proposed solution in comparison to the TV
solution (Figure 4). Finally, the proposed method is able to recover
features in deeper axial position whereas the TV-regularized solution
is over-regularized (Figure 4, right column).

5. CONCLUSION

We designed an adaptive regularization that allowed us to improve
the quality of optical diffraction tomography (ODT) reconstructions
in the axial direction using features learned in lateral planes. The
proposed regularization relies on a dictionary that is learnt from the
lateral planes of an initial total-variation reconstruction. This dictio-
nary is then used in a final step to enhance the quality of the recon-
struction in all XY, XZ, and YZ sections. We applied this strategy
to the reconstruction of real ODT measurements. Our results show
the superior performance of the proposed pipeline over conventional
regularizations.
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