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Abstract

We obtain optimal Gaussian concentration bounds (GCBs) for stochastic chains of un-
bounded memory (SCUMs) on countable alphabets. These stochastic processes are also known
as “chains with complete connections” or “g-measures”. We consider two different conditions
on the kernel: (1) when the sum of its oscillations is less than one, or (2) when the sum of its
variations is finite, i.e., belongs to `1(N). We also obtain explicit constants as functions of the
parameters of the model. The proof is based on maximal coupling. Our conditions are optimal
in the sense that we exhibit examples of SCUMs that do not have GCB and for which the sum
of oscillations is strictly larger than one, or the variation belongs to `1+ε(N) for any ε > 0.
These examples are based on the existence of phase transitions. We also extend the validity of
GCB to a class of functions which can depend on infinitely many coordinates.

We illustrate our results by three applications. First, we derive a Dvoretzky-Kiefer-Wolfowitz
type inequality which gives a uniform control on the fluctuations of the empirical measure.
Second, in the finite-alphabet case, we obtain an upper bound on the d̄-distance between two
stationary SCUMs and, as a by-product, we obtain new (explicit) bounds on the speed of
Markovian approximation in d̄. Third, we obtain exponential rate of convergence for Birkhoff
sums of a certain class of observables.
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1 Introduction

Stochastic chains with unbounded memory (SCUMs) are a natural generalization of Markov chains.
Their dynamics is provided by a family of probability kernels that describe the probability of
observing a symbol at any time given (possibly) the entire past. Such processes first appeared in
[48], and, since then, have been intensively studied in different fields under different names. In
the literature of stochastic processes Doeblin and Fortet [16] coined the name chains with complete
connections, while Harris [31] later called the same objects chains of infinite order. In symbolic
dynamical systems, stationary SCUMs are studied under the name of g-measures [36, 41, 53, 34].
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In the applied statistics literature, SCUMs have been used to model various natural phenomena,
including some popular stochastic processes, e.g., categorical time series and binary autoregressive
models [45, 37, 21, 52]. SCUMs are also natural dynamical counterpart of Gibbs measures on the
lattice Z in statistical physics and the family of probability kernels has been called left interval
specifications [20]. Different fields investigated SCUMs using different techniques, making this
family of stochastic processes a rich object to be studied.

One of the main interests in SCUMs comes from the fact that they exhibit different mixing
properties depending on the characteristics of the probability kernels. For instance, kernels with
strong dependence on the past can have two or more shift invariant measures compatible with the
kernel [4, 33, 23, 22, 14, 1]. Weak dependence on the past leads to uniqueness of the compatible
measure. Different uniqueness conditions and the respective mixing properties have been studied
[16, 31, 10, 5, 20, 26, 24].

In the present paper, we investigate the relationship between the characteristics of the proba-
bility kernel and the existence or non-existence of Gaussian concentration bounds (GCB) for the
associated SCUMs, i.e., non-asymptotic exponential inequalities for the probability that functions
of finite samples deviates from its mean [3]. The formal definition of GCBs will be given in Section
2.3. We prove that when the kernel has sum of oscillations less than one, or has summable varia-
tion, the respective SCUMs satisfy a GCB. Moreover, we show that both conditions are tight by
exhibiting processes that do not satisfy GCB whenever the oscillation is strictly larger than one, or
the variation belongs to `1+ε(N) for any ε > 0.

We show that a reason for the failure of GCB comes from the non-uniqueness of measures that
are compatible with the same kernel. Our proof has an interest in its own by providing a method
to prove that a GCB cannot be satisfied.

Our bounds are explicit and involve constants that are straightforwardly calculated from the
kernels. We apply our inequalities in some important examples. Whenever possible, we make
comparisons with other papers obtaining GCB for non-independent processes in the literature
[43, 50, 40, 39, 29]. Finally, as a simple application of our results, we use the relationship between
GCB and transportation cost inequalities to obtain new bounds for d̄-distance between SCUMs.
As a corollary, we obtain the speed of Markovian approximation in d̄-distance for SCUMs, in cases
not covered in [10, 6, 27]. We also prove a Dvoretzky-Kiefer-Wolfowitz type inequality for SCUMs
with summable variation.

Notation and necessary definitions are given in Section 2. Section 3 contains our main results
and in Section 4 we present some consequences of these results. We end the paper with the proofs
of our results in Section 5.

2 Definitions and notation

Let A be a countable set (“alphabet”) endowed with the discrete topology. We then put the product
topology on AZ, the set of bi-infinite sequences drawn from A. We denote by T the shift on AZ,
that is, (Tω)i = ωi+1, i ∈ Z. We equip this space with the sigma-algebra generated by the cylinder
sets [a−n+1, . . . , an−1] = {ω ∈ AZ : ωi = ai, |i| ≤ n− 1}, ai ∈ A, n ∈ N. It comprises all Borel sets
of AZ.

For i, j ∈ Z such that i < j we write Ji, jK = [i, j] ∩ Z. For i < j, we indicate the “string”
(ωi, . . . , ωj) by writing ωji . We also use the convention that if i > j, ωji is the empty string. When
we write σ ∈ AJi,jK, we stress at which coordinate the string (σi, . . . , σj) starts. When we treat a
string of length k as a “pattern”, regardless of where it is “located”, we will simply write σ ∈ Ak.
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Define X− = AJ−∞,−1K. For x ∈ X−, n ≥ 0, and σ ∈ AJ0,nK, z = xσ is a concatenation of
the respective symbols, such that (. . . , z−1, z0, . . . , zn) = (. . . , x−1, σ0, . . . , σn). For all S ⊂ Z and
σ ∈ AS we define the projection function associated to all indices i, j ∈ S, i ≤ j, by πji (σ) = σji .

Throughout the paper x, y, z will denote left-infinite sequences and ω and η will denote right-
(or bi-) infinite sequences.

2.1 Kernels and SCUMs

To define the probability measures of interest in this paper, namely stochastic chains of unbounded
memory (SCUMs, for short), we first need to define what we mean by a probability kernel.

Definition 2.1 (Probability kernel). For all n ∈ Z, a probability kernel gn is a function gn :
A × AJ−∞,n−1K → [0, 1] such that for all x ∈ AJ−∞,n−1K,

∑
s∈A gn(s|x) = 1. Because we will only

consider shift-invariant kernels, with some abuse of notation, we will always refer to function g
instead of gn regardless of the index set inside the function.

Let us first introduce SCUMs started from a fixed past.

Definition 2.2 (Probability measure started with a fixed past). For x ∈ X−, k ≥ −1 and σ ∈
AJ0,...,kK, we define P xσ as the probability measure specified by g when started with xσ ∈ AJ−∞,kK,
that is, for all ω ∈ AN and all n ≥ k + 1

P xσ([ωnk+1]) =

n∏
j=k+1

g
(
ωj |xσωj−1k+1

)
.

Sometimes we will write P xσg when it is not clear from the context to which kernel the measure
corresponds.

Now, we introduce the definition of SCUMs compatible with a kernel, which is similar to the
definition of a Gibbs measure compatible with a specification. We denote by F ji the σ-algebra
generated by the cylinders with base in the interval Ji, jK. We use the shorthand notation Fk = Fk0 ,
k ≥ 0.

Definition 2.3 (Probability measure compatible with a kernel). We say that a probability measure
µ on AZ is compatible with g if, for all n ∈ Z, a ∈ A and µ-a.e. x ∈ AJ−∞,n−1K, we have

µ([a]|Fn−1−∞ )(x) = g(a|x).

A stationary stochastic process (Xn)n∈Z, where the random variables take values in A, is chara-
terized by a shift-invariant probability measure µ on AZ, that is, a measure satisfying µ ◦ T−1 = µ.
The canonical process (Xn)n∈Z corresponding to a measure µ compatible with a kernel is called a
stochastic chains of unbounded memory (SCUM) compatible with g. Equivalently, we say that a
SCUM (Xn)n∈Z is compatible with g if it satisfies

Eµ[1a(Xn)|Xn−1
∞ = x] = g(a|x)

for all n, a ∈ A, and µ-a.e x ∈ AJ−∞,n−1K, where 1a(·) is the indicator function of the symbol a.
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2.2 Regularity assumptions on kernels

In order to study the statistical properties of SCUMs we will quantify how the kernel g depends on
the past in two ways. We will use the oscillation of g of order j ≥ 1, defined by

Oscj(g) := sup

{
1

2

∑
a∈A
|g(a|z)− g(a|z′)| : z, z′ ∈ X−, zk = z′k,∀k 6= −j

}
.

and the variation of order j ≥ 1, defined by

Varj(g) := sup

{
1

2

∑
a∈A
|g(a|z)− g(a|z′)| : z, z′ ∈ X−, zk = z′k,∀k ≥ −j

}
.

We also define Var0(g) := supz,z′∈X−
1
2

∑
a∈A |g(a|z) − g(a|z′)|. Note that the usual definition of

oscillation ([33, 20, for instance]) and variation ([31, 36, for instance]) are, respectively,

oscj(g) := sup
{
|g(a|z)− g(a|z′)| : a ∈ A, z, z′ ∈ X−, zk = z′k,∀k 6= −j

}
and

varj(g) := sup
{
|g(a|z)− g(a|z′)| : a ∈ A, z, z′ ∈ X−, zk = z′k,∀k ≥ −j

}
.

When the alphabet is finite the definitions are equivalent since we have varj(g) ≤ Varj(g) ≤
|A| varj(g) and oscj(g) ≤ Oscj(g) ≤ |A| oscj(g). We use Oscj(g) and Varj(g) as these quantities
appear naturally in the proofs when we introduce maximal coupling and they are more convenient
to state our results when |A| = ∞. Given a kernel g, the following quantities will play a central
role:

∆(g) := 1−
∞∑
j=1

Oscj(g) (2.1)

and

Γ(g) :=

∞∏
j=0

(1−Varj(g)). (2.2)

Remark 2.1 (Relation with existence/uniqueness criteria of the literature). A natural question to
ask is whether there exists a unique shift-invariant measure compatible with a given kernel g. If
∆(g) > 0, Theorem 4.6 in [20] states that there is at most one compatible measure, which is therefore
shift-invariant. In the case of finite alphabet, the assumption Γ(g) > 0 implies uniqueness of a shift-
invariant compatible measure (see [31, 36] for instance). In the case of countably infinite alphabets,
the conditions for uniqueness of the compatible measure are not based on varj(g) anymore, and it is
not obvious how to compare the assumption Γ(g) > 0 with other assumptions of the literature. For
our purpose, we only discuss the conditions of uniqueness and existence when needed in the proofs.

2.3 Gaussian concentration bound

We first define a class of functions. Let n ≥ 0 and f : An+1 → R. Since A is countable and endowed
with the discrete topology, f is continuous. Define

δj(f) = sup
{∣∣f(ωj−10 aωnj+1)− f(ωj−10 b ωnj+1)

∣∣ : a, b ∈ A,ω ∈ An+1
}

for 0 ≤ j ≤ n.
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Definition 2.4. Let

L =
⋃
n≥0

Ln where Ln =
{
f : An+1 → R : δj(f) < +∞, j = 0, . . . , n

}
.

Each f ∈ L is bounded. Indeed, for each f ∈ L, there exists n such that f ∈ Ln. Now pick
an arbitrary ω′ ∈ An+1. An obvious telescoping then gives |f(ω) − f(ω′)| ≤

∑n
j=0 δj(f), whence

‖f‖∞ ≤ |f(ω′)|+
∑n
j=0 δj(f) < +∞. We denote by δ(f) the column vector of size n+ 1 whose j-th

coordinate is δj−1(f). For a function f : AN → R, we define the semi-norm

‖δ(f)‖22 =

∞∑
j=0

δj(f)2. (2.3)

If f ∈ Ln, we have ‖δ(f)‖22 =
∑n
j=0 δj(f)2, in which case ‖δ(f)‖2 < +∞.

For every interger p ≥ 1 and v = (v0, v1, . . .) with vi ∈ R, define

‖v‖pp =

∞∑
j=0

|vj |p .

We say that v ∈ `p(N) if ‖v‖p < +∞.
For f : AZ → R µ-integrable, we use the notation Eµ[f ] =

∫
f dµ.

We can now define what we mean by a Gaussian concentration bound.

Definition 2.5 (Gaussian concentration bound). A probability measure µ on AZ or on AN is said
to satisfy a Gaussian concentration bound (GCB for short) if there exists a constant C > 0 such
that, for all f ∈ L, we have

Eµ
[
ef−Eµ[f ]

]
≤ eC‖δ(f)‖

2
2 (2.4)

where ‖δ(f)‖2 is defined in (2.3).

A key-point in this definition is that C does neither depend on n nor on f . Since f is bounded,
this inequality implies that, for all θ ∈ R, we have

Eµ
[
eθ(f−Eµ[f ])

]
≤ eCθ

2‖δ(f)‖22

and using a standard argument (usually referred to as Chernoff bounding method, see [46]), we
deduce that, for all u > 0,

µ(|f − Eµ[f ]| > u) ≤ 2 exp

(
− u2

4C‖δ(f)‖22

)
. (2.5)

The formulation of Definition 2.5 is made in such a way that we can take a probability measure
with a fixed past (see Definition 2.2). Also, if we have a shift-invariant probability measure µ, then
it is indifferent to work either with AZ or AN.
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3 Main results and examples

3.1 GCB under a condition on the oscillation of the kernel

Our first result is a GCB for a probability measure started with a fixed past in the sense of Definition
2.2. Note that the bounds are uniform in the past x ∈ X−.

Theorem 3.1. Let g be a kernel such that ∆(g) > 0. Then, for all f ∈ L and θ ∈ R, we have

sup
x∈X−

EPx
[
eθ(f−EPx [f ])

]
≤ e

θ2∆(g)−2

8 ‖δ(f)‖22 . (3.1)

As a consequence, for all u > 0, we have

sup
x∈X−

P x(|f − EPx [f ]| > u) ≤ 2 exp

(
− 2u2

∆(g)−2‖δ(f)‖22

)
. (3.2)

Let us illustrate this theorem with two examples.

Example 3.1 (Binary autogregressive process). Consider a function ψ : R → (0, 1) such that
ψ(r) + ψ(−r) = 1 and an absolutely summable sequence of real numbers (ξj)j≥0. Then the kernel
g : {−1,+1} × {−1,+1}J−∞,−1K → (0, 1) is defined as

g(a|x) = ψ

a ∞∑
j=1

ξjx−j + aξ0

 .

The process generated by this kernel is called a binary auto-regressive process [37]. If ψ is differ-
entiable, we have that Oscj(g) ≤ 2(supψ′)|ξj |, hence we have ∆(g) ≥ 1 − 2(supψ′)

∑∞
j=1 |ξj |. For

instance, if ψ(u) = (1 + e−2u)−1 then ∆(g) ≥ 1−
∑∞
j=1 |ξj |.

Example 3.2 (Poisson regression for count time series). Let A = N and (ξj)j≥0 be a sequence of
non-positive absolutely summable real numbers, and a constant c > 0. For all x ∈ NJ−∞,−1K, let

v(x) = exp

 ∞∑
j=1

ξj min{x−j , c}

 .

For all a ∈ N and x ∈ X−, the kernel of a Poisson regression model is defined as [37]

g(a|x) =
e−v(x) v(x)a

a!
.

Applying the mean value theorem to ψ(r) = e− er era /a!, and maximizing on r ∈ (−∞, 0] for each
a ∈ N, we obtain Oscj(g) ≤ e−1

∑
a≥0

1
a! |ξj | = |ξj |. Therefore, ∆(g) ≥ 1−

∑∞
j=1 |ξj |.

We also have a theorem for stationary SCUMs.

Theorem 3.2. If µ is a shift-invariant measure compatible with a kernel g satisfying ∆(g) > 0,
then inequalities (3.1) and (3.2) hold with µ in place of P x, with the same constant.
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3.2 GCB under a condition on the variation of the kernel

We have the analog of Theorem 3.1 under a natural condition on the variation. The bounds are
uniform in the past x ∈ X−.

Theorem 3.3. Let g be a kernel such that Γ(g) > 0. Then, for all f ∈ L and θ ∈ R, we have

sup
x∈X−

EPx
[
eθ(f−EPx [f ])

]
≤ e

θ2Γ(g)−2

8 ‖δ(f)‖22 . (3.3)

As a consequence, for all u > 0, we have

sup
x∈X−

P x(|f − EPx [f ]| > u) ≤ 2 exp

(
− 2u2

Γ(g)−2‖δ(f)‖22

)
. (3.4)

We give a class of examples illustrating this theorem.

Example 3.3 (Convex mixture of Markov chains). Let (λj)j≥1 be a sequence of non-negative real
numbers such that

∑∞
j=1 λj = 1. Let A be a countable set. Define a family of Markov kernels

p[k] : A × AJ−k,−1K → [0, 1], k ≥ 0, that is, for all x ∈ X−,
∑
a∈A p

[k]
(
a|x−1−k

)
= 1. The kernel for

mixture of Markov chains is defined, for all a ∈ A and x ∈ X−, as

g(a|x) =

∞∑
j=1

λj p
[j]
(
a|x−1−j

)
.

We have
∑∞
j=1 Varj(g) ≤

∑∞
j=1 jλj . This result is quite general since a large class of kernels,

including all kernels g on finite alphabet with limj Varj(g) = 0, can be represented as a convex
mixture of Markov chains [35].

The next result complements Theorem 3.3 in the case of stationary SCUMs.

Theorem 3.4. If µ is a shift-invariant measure compatible with a kernel g such that Γ(g) > 0,
then inequalities (3.3) and (3.4) hold with µ in place of P x, with the same constant.

3.3 Optimality of the bounds

Here we show that Theorems 3.2 and 3.4 are optimal already for binary alphabets. Theorems 3.5
and 3.6 below give necessary conditions to get GCB for a large class of processes that exhibit phase
transition. Our optimality results are simple consequences of these theorems.

The following result shows that, for kernels satisfying strong regularity conditions, a “phase
transition” is a fundamental obstruction for having GCB.

Theorem 3.5. Let g be a kernel such that infa∈A,x∈X− g(a|x) > 0 and limj Varj(g) = 0. If g has
two (or more) distinct ergodic compatible measures, then they do not satisfy GCB.

It is proved in [33] that, for all ε > 0, there are examples of g such that ∆(g)+ ε < 0 and exhibit
multiple shift-invariant ergodic compatible measures. Because of Thereom 3.5, this implies that the
shift-invariant ergodic compatible measures do not satisfy GCB. This shows optimality of Theorem
3.2 regarding the assumption ∆(g) > 0, a fact that we now state as a corollary of Theorem 3.5.
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Corollary 3.1. For any ε > 0, there is a kernel g on a binary alphabet and a compatible shift-
invariant probability measure µ such that

∑∞
j=1 Oscj(g) ∈ (1, 1 + ε] and µ does not satisfy GCB.

Moreover, g can be chosen to satisfy limj Varj(g) = 0 and infa∈A,x∈X− g(a|x) > 0.

To demonstrate the optimality of Theorem 3.4, we consider “renewal measures”, a particular
class of SCUMs. Let (qj)j≥0 with qj ∈ (0, 1). Given x ∈ X−, let `(x) = inf{k ≥ 0 : x−k−1 = 1}
and `(. . . 00) = ∞. We define the renewal kernel g̃ : {0, 1} × {0, 1}J−∞,−1K → (0, 1) by taking
g̃(1|x) = q`(x). Obviously, if q∞ = 0 then the degenerate measure δ0∞ is stationary and compatible,
and trivially satisfies GCB. However, we call renewal measure the stationary measure µ̃ compatible
with g satisfying µ̃([a]) > 0 for any a ∈ {0, 1}, when it exists. It is not difficult to see that this
measure will actually consists of a sequence of i.i.d. concatenation of blocks of the form 0i1, i ≥ 1.
The probability that the distance between two consecutive 1’s equals n ≥ 1, denoted fn, is

fn := P x1g̃ (0n−11) = qn−1

n−2∏
i=0

(1− qi), ∀n ≥ 1,∀x ∈ X− (3.5)

with the convention
∏−1
i=0 = 1. The probability distribution (fn)n≥1 is usually called inter-arrival

distribution in the literature. Then, the renewal measure exists if and only if the expected distance
between consecutive ones,

∑
n≥1 nfn, is finite, which is equivalent to

∑
j≥1

j−1∏
i=0

(1− qi) <∞. (3.6)

We have the following result.

Theorem 3.6. The renewal measure µ̃ satisfies a GCB if, and only if,
∑
n fnr

n < ∞ for some
r > 1.

Consider now the particular case in which qj = j−α for j ≥ 2 with α ∈ (0, 1) so that (3.6)
is satisfied and therefore the renewal process exists. A simple calculation shows that in this case
fn is stretched exponential, and therefore, by Theorem 3.6, the renewal process does not satisfy
GCB. In order to fix ideas, let us put q0 = 2/3 and q1 = 1/2 and q∞ = 0. It is easy to check that
Varj(g) = qj < 1, j ≥ 0 and in this case, Γ(g) > 0 is equivalent to

∑
i≥0 Vari(g) < ∞. Hence, if

we choose α = (1 + ε/2)(1 + ε)−1 the variation will not be summable, but
∑∞
j=1 Varj(g)1+ε < ∞,

proving that Theorem 3.4 is optimal, a fact that we state as a corollary of Theorem 3.6.

Corollary 3.2. For any ε > 0, there is a kernel g on a binary alphabet and a compatible shift-
invariant probability measure µ such that

∞∑
j=1

Varj(g)1+ε <∞,
∞∑
j=1

Varj(g) =∞

and µ does not satisfy GCB. Moreover, g can be chosen to satisfy infx∈X− g(a|x) > 0 for some
a ∈ A.

Remark 3.1. Note that the two kernels used to obtain examples of processes which do not satisfy
GCB exhibit phase transition since for the renewal process, when qj = j−α we have that q∞ = 0 (to
get Vark(g)→ 0), in which case the Dirac measure δ0∞ is also compatible. However, this kernel does
not fall into the class considered by Theorem 3.5 because it does not satisfy infa∈A,x∈X− g(a|x) > 0.
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Remark 3.2. Kernels satisfying infa∈A,x∈X− g(a|x) > 0 are said to be “strongly non-null”. If we
restrict to strongly non-null kernels g instead of assuming the weak non-nullness

∑
a infx∈X− g(a|x) >

0, then we don’t know if the summable variation condition is tight for the validity of GCB. Neverthe-
less, even if we restrict to strongly non-null kernels g, GCB does not hold in general beyond square
summable variation because of Theorem 3.5 and the existence of examples with phase transition for
strongly non-null kernels such that

∑∞
j=1 Varj(g)2+ε <∞, ε > 0, see [1].

3.4 GCB for a more general class of functions

Denote by C(AN) the set of real-valued continuous functions on AN that we equip with the supremum
norm. We define two of its subspaces, namely the set of bounded continuous functions, denoted
BC(AN), and the set of uniformly continuous functions, denoted UC(AN). As AN is in general
not compact, UC(AN) intersects but does not contain BC(AN), nor does BC(AN) ⊇ UC(AN).
Obviously, the set L (see Definition 2.4) is contained in each of these three spaces. We have
C(AN) = UC(AN) = BC(AN) if and only if AN is compact, which holds if and only if A is finite.
For f ∈ C(AN), let

varn(f) = sup{|f(ω)− f(ω′)| : ωi = ω′i, i = 0, . . . , n} , n ≥ 0.

One can easily check that varn(f)→ 0 if and only if f ∈ UC(AN).
We can generalize Theorems 3.1, 3.2, 3.3 and 3.4, thanks to the following abstract result.

Theorem 3.7. If a probability measure µ satisfies a Gaussian concentration bound for some con-
stant C > 0, then this bound remains true for all f ∈ UC(AN) ∩BC(AN) such that ‖δ(f)‖2 < +∞,
with the same constant C.

We refer the reader to Section 4.3 for a natural application of Theorem 3.7.

3.5 Comparisons with existing results

We first mention that, in the independent case, Γ(g) = ∆(g) = 1, so we recover McDiarmid’s
inequality with the optimal constant [46]. Next, for the sake of clarity, we will distinguish between
the one-step Markov case and the non-Markov case.

3.5.1 The Markov case

In the one-step Markov case Γ(g) = 1 − Var0(g) = 1 − Osc1(g) = ∆(g). In order to compare our
results with those in the literature, let us make a slight abuse of notation and put g = Q where
Q : A × A → [0, 1] is the transition matrix defined by g through Q(a|b) := g(a|x) for any x ∈ X−
such that x−1 = b. Now, observe that

Var0(g) = sup
a,b∈A

‖Q(·|a)−Q(·|b)‖TV =: d(Q). (3.7)

This is the Dobrushin ergodicity coefficient (see [15] and [17, Section 18.2] for instance). Therefore,
our theorems state that, if d(Q) < 1 we have

µ(|f − Eµ[f ]| > u) ≤ 2 exp

(
− 2u2

(1− d(Q))−2‖δ(f)‖22

)
.
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GCBs for Markov chains on countable alphabet under d(Q) < 1 were previously obtained by other
authors [39, 42]. The literature on GCB for Markov chains is extensive and the interested reader
should consult [49] for a nice review. Here, we make a brief comment on the limitation of our
result in the Markov case. Without getting into details, let us mention that uniform ergodicity of
a Markov chain is equivalent to d(Qm) < 1 for some m ≥ 1 [17, Section 18.2]. So our condition
is slightly stronger than assuming uniform ergodicity. Now, uniform ergodicity is stronger than
geometric ergodicity, which is necessary and sufficient for having a Gaussian concentration bound
for a Markov chain [12]. As far as we know, the only explicit bound under geometric ergodicity was
recently obtained in [32].

For a uniformly ergodic Markov chain, Corollary 23.2.4 in [17] states that, if

d :=
∑
m≥1

d(Qm) <∞

then

µ(|f − Eµ[f ]| > u) ≤ 2 exp

(
− 2u2

(1 + d)2‖δ(f)‖22

)
, u > 0. (3.8)

We note that we obtain the same inequality using our Theorem 5.1 below for the case of Markov
chains. When d(Q) < 1 we have that d(Qm) ≤ d(Q)m [17, Equation 18.2.2] and obtain the
inequality 1 + d ≤ (1 − d(Q))−1, which permits to compare the two previous bounds. The main
advantage of the bound (3.8) is that it might hold even if d(Q) = 1 but d(Qm) < 1 for some m ≥ 1.
Furthermore, there is in principle a slight advantage, even in the case where d(Q) < 1, on having
1 + d instead of (1 − d(Q))−1. However, calculating d(Qm) is intractable even for large but finite
alphabets. Finally, let us also mention Theorem 7.1 of [9] is also based on a coupling approach,
but the obtained constant is not optimal, even for nice particular cases. We point out that in [9]
Theorem 7.1 the constant C should appear in the denominator of the quotient appearing in the
bound and in the example of the house-of-cards process, in the uniform case C should be equal to
1/2q instead of 1/2(1− q).

3.5.2 The non-Markov case

In general, Γ(g) 6= ∆(g) and our conditions are complementary to each other, as we now illustrate.
Consider the kernel in Example 3.1 with ψ(u) = 1/(1 + exp(−2u)), ξi ≥ ξj ≥ 0 for all j > i ≥ 1,
and ξ0 =

∑∞
k=1 ξk. We have

2 e2ξj

(1 + e2ξj )2
ξj ≤ Oscj(g) ≤ ξj and

2 e2ξ1

(1 + e2ξ1)2

∑
k>j

ξk ≤ Varj(g) ≤
∑
k>j

ξk.

If ξj = c/j1+ε with ε ∈ (0, 1] and small enough c > 0, we have ∆(g) > 0 but Γ(g) = 0. On the
other hand, if ξj = C/j1+ε with ε ∈ (1,∞) and large enough C we have Γ(g) > 0, but ∆(g) < 0.

There are SCUMs that satisfy GCB, but are not covered by our results. Here is an example using
the renewal kernel defined in Section 3.3. For this example, let α ∈ (0, 1) and consider the sequence
qj = q∞ + α/jα. For the renewal kernel we have Oscj(g̃) = Varj(g̃) = qj − q∞ = α/jα. If q∞ > 0
we easily find that the inter-arrival distribution defined in (3.5) is exponential, and therefore, by
Theorem 3.6 this renewal process satisfies GCB. However, neither the oscillation nor the variation
are summable, and therefore we have ∆(g̃) < 0 and Γ(g̃) = 0. The problem in this example is that
we have slow uniform variation rate. The interested reader should consult [25, 28, 26].
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Marton [43] proved a property which is equivalent to a version of Theorem 3.4 in which ‖δ(f)‖22 is
substituted by n‖δ(f)‖2∞. Because ‖δ(f)‖22 ≤ (n+1)‖δ(f)‖2∞, our result gives a slight improvement.
For example, consider A = {0, 1}, ε > 0, and f(xn0 ) =

∑n
j=0 xj/(j + 1)(1+ε)/2. In this case, for

all n ≥ 0, ‖δ(f)‖22 < C for some constant C, but n‖δ(f)‖2∞ = n + 1. Perhaps more importantly,
we offer a different proof. Marton’s proof is based on a transportation cost inequality together
with its tensorization, whereas our proof is based on the martingale method together with coupling
inequalities. Because of the stationarity requirement in [43], we do not know if we can obtain
Theorem 3.3 using the same method as in [43]. We also note that [29] obtained a version of
Theorem 3.4 for finite alphabets by a different approach than the one we use here (coupling-from-
the-past algorithm), and with a suboptimal constant 2/9 instead of 2 as we obtained here. To
conclude, let us mention that [40] proved a GCB for Gibbs random fields satisfying the two-sided
Dobrushin condition. On Z, if a Gibbs specification satisfies the two-sided Dobrushin condition
then it also satisfies ∆(g) > 0 [19, Theorem 4.20]. Therefore, our Theorem 3.2 implies the result in
[40] for one-dimensional Gibbs measures, but we do not know whether the converse also holds.

3.6 Some open problems

There are only a few results in the literature giving necessary conditions for the existence of GCB for
dependent process. We think that answers to the following questions could help in the development
of new tools to prove necessary conditions for GCB.

• Is there a SCUM on finite alphabet with a unique compatible stationary measure but which
does not satisfy GCB?

• Do we have GCB when ∆(g) = 0 and Varj(g) = O(1/j)?

• What is the “rate of concentration” for kernels with more than one compatible measure?

4 Applications

In this section we explore some consequences of our results. We show (1) a new bound on the
probability of deviation of the empirical distribution from the stationary distribution, (2) new
bounds for the distance between two processes under the d̄-distance, and (3) an exponential bound
for the rate convergence of Birkhoff sums for SCUMs. For further applications of GCBs in general,
the reader can check [8].

4.1 Dvoretzky-Kiefer-Wolfowitz type inequality

In statistics we are often interested in the empirical distribution. For σ ∈ AJ1,kK and ω ∈ AN, let

ρ̂n,k(σ, ω) =
1

n− k + 2

n−k+1∑
j=0

1σ(πj+k−1j ω).

We will simply write ρ̂n,k(σ) for the corresponding random variable. To estimate the probability
of deviation from the expected value, it is natural to use Theorem 3.3 to obtain

µ (|ρ̂n,k(σ)− ρ(σ)| > u) ≤ 2 exp
(
−(n− k + 2)Γ(g)2u2

)
12



where ρ̂n,k(σ) = ρ̂n,k(σ, ·) and ρ(σ) := Eµ[ρ̂n,k(σ)] = µ([σ]). If we want to obtain a uniform bound,
we should upper bound

µ (‖ρ̂n,k − ρ‖∞ > u) = µ

(
sup
σ
|ρ̂n,k(σ)− ρ(σ)| > u

)
, u > 0.

In this case, it is tempting to use a union bound. However, when the cardinality of the set of
symbols is large, we get a bad bound, and when A = N this approach obviously fails. One possible
solution is to concentrate directly the uniform deviation ‖ρ̂n,k − ρ‖∞, which yields the following
result.

Theorem 4.1. Let g be a kernel and µ be a shift-invariant measure compatible with g. If Γ(g) > 0,
we have, for all u > 0 and for all n > 0 and 0 < k ≤ n,

µ

(
‖ρ̂n,k − ρ‖∞ >

u+
√

2k√
(n− k + 2)Γ(g)

)
≤ exp

(
− Γ(g)u2

)
. (4.1)

A similar result for k = 1 was obtained in [38] for Markov chains and hidden Markov models, but
as far as we know, our result is the first in the literature for SCUMs. Because Theorem 4.1 gives a
uniform control on the empirical distributions, we can use these results to estimate quantities that
can be written as functionals of empirical distribution, e.g., entropy, kernels, and potentials of the
processes.

4.2 Explicit upper bound for the d̄-distance, and speed of Markovian
approximation

Given two probability measures µ and ν on AZ, a coupling of µ and ν is a probability measure P
on AZ ×AZ satisfying, for all B ∈ F+∞

−∞

P
(
B ×AZ) = µ(B) and P

(
BZ ×A

)
= ν(B).

Let Jµ,ν denote the set of couplings of µ and ν. The d̄-distance between µ and ν is then defined as

d̄(µ, ν) = inf
P∈Jµ,ν

P
(
{(η, ω) ∈ AZ ×AZ : η0 6= ω0}

)
.

It is natural to ask if given two “close” (in a sense to be made precise below) probability kernels g
and h, whether we can upper bound the d̄-distance between the respective compatible measures µ
and ν. The following result gives such a bound.

Theorem 4.2. Let µ be a shift-invariant measure compatible with a kernel g such that

inf
a∈A,x∈X−

g(a|x) > 0

and satisfying either the conditions of Theorem 3.2 or of Theorem 3.4. Let also ν be a shift-
invariant measure compatible with a kernel h with limj Varj(h) = 0 and infa∈A,x∈X− h(a|x) > 0.
The d̄-distance between µ and ν is bounded by

d̄(µ, ν) ≤ 1

C
√

2

√
Eν
[
log

h

g

]
(4.2)

where C equals ∆(g) or Γ(g) depending on which condition g satisfies.
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Remark 4.1. The conditions

inf
a∈A,x∈X−

g(a|x) > 0, inf
a∈A,x∈X−

h(a|x) > 0

imply that the alphabet is finite. Although this condition can be weakened, it is the simplest way
to guarantee that | log h

g | < ∞, so that the upper bound on the right hand side of (4.2) remains
meaningful.

In Theorem 4.2 we measure the closeness of h and g by Eν
[
log h

g

]
. It was proved in [10], but

without obtaining an explicit upper bound, that if the variation of kernel g satisfies
∑
n≥r

∏n
j=r(1−

(|A|/2) varj(g)) = ∞, for some r ≥ 1, then a small ‖g − h‖∞ implies a small d̄(µ, ν). As a
consequence of Theorem 4.2 we have

Eν
[
log

h

g

]
=

∫
log

h

g
dν =

∫
log

(
1 +

h− g
g

)
dν ≤

∫
h− g
g

dν

=

∫ ∑
a∈A

h(a|x)
h(a|x)− g(a|x)

g(a|x)
dν(x)

=

∫ ∑
a∈A

(h(a|x)− g(a|x))2

g(a|x)
dν(x)

≤ 1

inf g

∫ ∑
a∈A

(h(a|x)− g(a|x))2 dν(x)

≤ 1

inf g

(
sup
x∈X−

∑
a∈A

∣∣h(a|x)− g(a|x)
∣∣)2

where inf g := infa∈A,x∈X− g(a|x). Therefore, Theorem 4.2 yields

d̄(µ, ν) ≤ 1

C
√

2 inf g
sup
x∈X−

∑
a∈A
|h(a|x)− g(a|x)|. (4.3)

Theorem 4.2 can also be used to upper bound the d̄-distance between a measure µ with kernel
g and a k-step Markov approximation of µ, µ[k], k ≥ 1. We introduce the kernels

g[k]
(
a|x−1−k

)
:= g

(
a|x−1−ky

−k−1
−∞

)
, k ≥ 1

for some fixed y ∈ X−. [6, 18] showed that if the kernel g satisfies Γ(g) > 0, then there exists
a sequence µ[k], k ≥ 1 such that d̄(µ, µ[k]) ≤ C vark(g) where C is some positive constant. Later
[27] extended this result, obtaining, via “coupling from the past” arguments, upper bounds in the
case where

∑
n≥1

∏n
k=1(1− vark(g)) =∞, but their results are not explicit, depending on the tail

distribution of the time for success in the coupling. Such bounds have proved to be a valuable
tool to obtain further properties of the measure µ [11, for instance]. Here, if either Γ(g) > 0 or
∆(g) > 0, using (4.3) we obtain the following result (where we use vark(g) since A is finite).

Corollary 4.1. For all k ≥ 1 we have

d̄(µ, µ[k]) ≤ |A|
2
√

2 C
√

inf g
vark(g)

where C equals ∆(g) or Γ(g) depending on which condition g satisfies.
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Proof. Apply (4.3) with ν = µ[k].

Remark 4.2. A similar bound was obtained by [18] under the assumption that Γ(g) > 0, while
Corollary 4.1 also holds if ∆(g) > 0. We refer the reader to Subsection 3.5 where an example
satisfying ∆(g) > 0, but such that Γ(g) = 0, is provided, showing that our result is strictly more
general than the one in [18].

Example 4.1 (Bramson-Kalikow-Friedli model). Let A = {−1,+1}, ε ∈ (0, 1/2), (λj)j≥1 be a
sequence of positive real numbers such that

∑∞
j=1 λj = 1, and (mj)j≥1 be an increasing sequence

of positive odd integers. Let also ϕ : [−1, 1] → [ε, 1 − ε] be a monotonically increasing function
satisfying ϕ(−s) + ϕ(s) = 1 for s ∈ [−1, 1]. The Bramson-Kalikow-Friedli model is given by

g(+1|x) =

∞∑
j=1

λj ϕ

(
1

mj

mj∑
i=1

x−i

)
, x ∈ X−.

There always exists at least one compatible measure µ since the alphabet is finite and Varj(g)
vanishes in j. If ϕ(s) = ε + (1 − 2ε)1Z<0

(s), we get the original model introduced by Bramson
and Kalikow [4]. They showed that the sequences (λj)j≥1 and (mj)j≥1 can be chosen so that the
corresponding kernel exhibits multiple compatible shift-invariant measures [4].

For all k ≥ 1, the mk-step Markov approximation µ[mk] is defined by the kernel

g[mk](+1|x) =

k∑
j=1

λj ϕ

(
1

mj

mj∑
i=1

x−i

)
+ (1− ε)

∑
j>k

λj .

The sequence of measures µ[mk], k ≥ 1 was used by [23] for their proof of phase transition of the
Bramson-Kalikow model.

Suppose for now that there exists a shift-invariant measure µ compatible with g. We can easily
derive a lower bound for d̄(µ, µ[mk]). Indeed, from the definition of d̄-distance, we have that

d̄
(
µ, µ[mk]

)
≥ |µ[mk]([1])− µ([1])|.

By symmetry and uniqueness of µ, we have that µ([1]) = 1/2. A direct calculation then shows that

µ[mk]([1]) ≥ ε
∑
j>k

λj + 1/2,

hence
d̄
(
µ, µ[mk]

)
≥ ε

∑
j>k

λj .

If Γ(g) > 0 or ∆(g) > 0, Corollary 4.1 allows us to show that this bound is actually of the right
order in k since we have that for all k ≥ 1,

d̄
(
µ, µ[mk]

)
≤ 1

2
√

2εΓ(g)

∑
j>k

λj .

Thus, it only remains to give examples of kernels for which Γ(g) > 0 or ∆(g) > 0. First, observe
that, for any function ϕ, we have ∑

j≥1

Varj(g) ≤
∑
j≥1

mj

∑
i≥j

λi.
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So if
∑∞
j=1mj

∑
i≥j λi < ∞, we have Γ(g) > 0 and Var0(g) = 1 − 2ε > 0, independently of the

function ϕ. Observe that, if
∑∞
j=1mj

∑
i≥j λi =∞, we can still have examples in which ∆(g) > 0

and use Corollary 4.1. For example, take ϕ(s) := 1
2 +

(
1
2 − ε

)
s, which was studied in [22]. In this

case, a simple calculation shows that∑
j≥1

Oscj(g) ≤ (1− 2ε)
∑
j≥1

λj < 1

and therefore ∆(ḡ) > 0, independently of the choice of the sequences (λj)j≥1 and (mj)j≥1.

4.3 Concentration of functions that depend on infinitely many coordi-
nates

A natural application of Theorem 3.7 is the following. For n ≥ 1, let Snφ := φ+φ◦T+· · ·+φ◦Tn−1
where φ ∈ UC(AN) ∩ BC(AN) and satisfies ‖δ(φ)‖1 < +∞. Then we have, for all n ≥ 1 and u > 0,

µ

(∣∣∣∣Snφn −
∫
φdµ

∣∣∣∣ > u

)
≤ 2 exp

(
− 2nu2

C‖δ(φ)‖21

)
(4.4)

where C equals ∆(g) or Γ(g) depending on which condition g satisfies. The proof is as follows.
Taking f = Snφ, we can check that

‖δ(Sn)φ‖22 ≤ n‖δ(φ)‖21, n ≥ 1. (4.5)

Then we apply (2.5) to get (4.4). To prove (4.5), observe that δj(Sn)φ ≤
∑n−1
i=0 δi+j(φ), and apply

Young’s inequality for (discrete) convolutions: if v ∈ `p(N) and w ∈ `q(N), for some 1 ≤ p ≤ q ≤
+∞, then v ∗ w ∈ `r(N) where r ≥ 1 satisfies 1 + r−1 = p−1 + q−1, and ‖v ∗ w‖r ≤ ‖v‖p‖w‖q. We
use it with r = 2, p = 2, q = 1, vk = 1J0,n−1K(k) and wk = δk(h). (1)

5 Proofs of the results

5.1 Gaussian concentration bound using coupling

All the GCBs obtained in this work are consequences of an abstract GCB proved in [7] for finite
alphabet processes. The point is then to have a good control on a certain “coupling matrix”, which
is what we do hereafter for stochastic chains with unbounded memory. We will state it in a form
more adapted for our purpose.

Initially we write f(σn0 ) − E[f(σn0 )] as a sum of martingale differences. Defining Vk(σ) :=
Eµ[f |Fk](σ)− Eµ[f |Fk−1](σ), we have

f(σn0 )− Eµ[f(σn0 )] =

n∑
k=0

(
Eµ[f |Fk](σ)− Eµ[f |Fk−1](σ)

)
=

n∑
k=0

Vk(σ).

Observe that Eµ[f |Fk] =
∑
ωnk+1

f(σk0ω
n
k+1)µ([ωnk+1]|σk0 ), where µ(B|σk0 ) := µ(B ∩ [σk0 ])/µ([σk0 ]) for

all measurable sets B. Now, we will obtain an upper bound on Vk(σ) based on coupling.

1Note that we don’t have a convolution defined as usual, but one can readily check that the proof of Young’s
inequality works if we use

∑
i≥0 uivj+i instead of

∑
i≥0 uivj−i.
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Lemma 5.1. For σ ∈ AJ0,∞K, a, b ∈ A, n ≥ 1, and j ≥ 0, let νσ,a,bj be any coupling between

µ(·|σj−10 a) and µ(·|σj−10 b). For all k ∈ J0, nK we have

Vk(σ) ≤ δk(f) + sup
a,b∈A

n−k−1∑
j=1

νσ,a,bk (ηk+j 6= ωk+j) δk+j(f).

Proof. Following [7] we have for σ ∈ An+1 We have

Vk(σ) =
∑
ωnk+1

f(σk0ω
n
k+1)µ([ωnk+1]|σk0 )−

∑
ωnk

f(σk−10 ωnk )µ
(
[ωnk ]|σk−10

)
=
∑
ωnk+1

f(σk0ω
n
k+1)µ

(
[ωnk+1]|σk0

)
(5.1)

−
∑
ωnk

f(σk−10 ωnk )µ
(
[ωnk+1]|σk−10 ωk

)
µ
(
[ωk]|σk−10

)
≤ sup
a∈A

∑
ωnk+1

f(σk−10 aωnk+1)µ
(
[ωnk+1]|σk−11 a

)
− inf
b∈A

∑
ωnk

f(σk−10 b ωnk+1)µ
(
[ωnk+1]|σk−11 b

)
µ
(
[ωk]|σk−10

)
≤ sup
a∈A

∑
ωnk+1

f(σk−10 aωnk+1)µ
(
[ωnk+1]|σk−10 a

)
− inf
b∈A

∑
ωnk+1

f(σk−10 b ωnk+1)µ
(
[ωnk+1]|σk−10 b

)
. (5.2)

Let ηk := a and ωk := b. We have

|f(σk−11 a ηnk+1)− f(σk−11 b ωnk+1)|

≤
n−k∑
j=0

|f(σk−11 ωk−1+jk ηnk+j)− f(σk−11 ωk+jk ηnk+j+1)|

≤
n−k∑
j=0

δk+j(f)1{ηk+j 6=ωk+j}. (5.3)

Hence, from (5.2) and (5.3), we have

Vk(σ) ≤ sup
a,b∈A

∑
ωnk+1

|f(σk−10 a ηnk+1)− f(σk−10 b ωnk+1)| νσ,a,bk

(
[ηnk+1, ω

n
k+1]

)
≤ sup
a,b∈A

∑
ηnk+1,ω

n
k+1

n−k∑
j=0

δk+j(f)1{ηk+j 6=ωk+j} ν
σ,a,b
k

(
[ηnk+1, ω

n
k+1]

)
≤ δk(f) + sup

a,b∈A

n−k∑
j=1

νσ,a,bk (ηk+j 6= ωk+j) δk+j(f).

This ends the proof of the lemma.
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At the end of the proof we used the notation [anm, b
n
m] := {(ω, η) ∈ AZ×AZ : ωnm = anm, η

n
m = bnm}

as a natural extension for denoting cylinder sets in AZ ×AZ.

Theorem 5.1. For σ ∈ AJ0,∞K, a, b ∈ A, n ≥ 1, and k ≥ 1, let νσ,a,bk be any coupling between

µ
(
· |σk−10 a

)
and µ

(
· |σk−10 b

)
. Also, define

r =

∞∑
j=1

sup
k

sup
σ

sup
a,b

νσ,a,bk

(
ηk+j 6= ωk+j

)
.

For all θ ∈ R, n ≥ 1 and f : An → R such that δj(f) < +∞ for j = 0, . . . , n, we have

Eµ
[
eθ(f−Eµf)

]
≤ exp

(
θ2(1 + r)2

8
‖δ(f)‖22

)
.

As a consequence, we get, for all u > 0,

µ(|f − Eµ[f ]| > u) ≤ 2 exp

(
− 2u2

(1 + r)2 ‖δ(f)‖22

)
.

Proof. Define

Uk(σ) = sup
a∈A

∑
ωnk+1

f(σk−10 aωnk+1)µ
(
[ωnk+1]|σk−10 a

)
− Eµ[f |Fk−1](σ)

and
Lk(σ) = inf

b∈A

∑
ωnk+1

f(σk−10 b ωnk+1)µ
(
[ωnk+1]|σk−10 b

)
− Eµ[f |Fk−1](σ).

For k, j ≥ 0, let us also define

Dk,k+j := sup
σ

sup
a,b∈A

νσ,a,bk (ηk+j 6= ωk+j).

From Lemma 5.1, we have

Uk − Lk ≤ δk(f) +

n−k∑
j=1

sup
σ

sup
a,b∈A

νσ,a,bk (ηk+j 6= ωk+j) δk+j(f) =

n−k∑
j=0

Dk,k+j δk+j(f) .

Now observe that Lk ≤ Vk ≤ Lk+(Uk−Lk), and thus, using Lemma 2.3 of [13] and then proceeding
as in the proof of Theorem 1 of [7] we get for all θ > 0

Eµ
[
eθ(f−Eµ[f ])

]
≤ exp

(
θ2‖D‖22 ‖δ(f)‖22

8

)
and, for all u > 0,

µ (|f − Eµ[f ]| ≥ u) ≤ 2 exp

(
− 2u2

‖D‖22 ‖δ(f)‖22

)
.

Using the inequality ‖D‖22 ≤ ‖D‖1‖D‖∞ ≤ (1 + r)2, we conclude the proof of the theorem.
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5.2 One-step maximal coupling

Here we introduce what is called the one-step maximal coupling. We will assume without loss
of generality that A = {1, . . . , |A|}, when A is finite, and A = N when A is infinite. We will
define a probability kernel on p : A × A × X− × X− → [0, 1] as follows. For (s, s′) ∈ A × A and
(x, x′) ∈ X− ×X−, we put∑

c≥s

∑
d≥s′

p(c, d|x, x′) =
∑
c≥s

g(c|x) ∧
∑
d≥s′

g(d|x′).

Let us denote by P the measure specified by the kernel p. The following equalities∑
c≥s

∑
d≥1

p(c, d|x, x′) =
∑
c≥s

g(c|x) and
∑
c≥1

∑
d≥s′

p(c, d|x, x′) =
∑
d≥s′

g(d|x′)

imply that P is a coupling of two copies of the process specified by g. It is called one-step maximal
coupling because it maximizes the probability of agreement (diagonal of the coupling) at each step,
given any pair of pasts,

p(s, s|x, x′) = g(s|x) ∧ g(s|x′).
In particular, notice that∑

c 6=d

p(c, d|x, x′) = 1−
∑
s∈A

g(s|x) ∧ g(s|x′) =
1

2

∑
s∈A
| g(s|x)− g(s|x′)|.

5.3 Bounding the coupling error by oscillation

We have the following important lemma.

Lemma 5.2. Take any x ∈ X−. For all a, b ∈ A, let Px,a,b be the one-step maximal coupling
between P xa and P xb. Then, for all j ≥ 1, we have

Px,a,b (ηj 6= ωj) ≤ Oscj(g) +

j−1∑
k=1

Oscj−k(g)Px,a,b (ηk 6= ωk) .

Proof. We want to compute Px,a,b(ηi 6= ωi), which equals∑
yi−1

1 ,zi−1
1

Px,a,b([yi−11 , zi−11 ])Px,a,b
(
ηi 6= ωi|[yi−11 , zi−11 ]

)
.

Under the maximal coupling we have

Px,a,b
(
ηi 6= ωi|[yi−11 , zi−11 ]

)
≤ 1

2

∑
s∈A

∣∣g(s|xayi−11

)
− g
(
s|xbzi−11

)∣∣.
Let y0 := a and z0 := b. We get for each s ∈ A

∣∣g(s|xayi−11 )− g(s|xbzi−11 )
∣∣ =

∣∣∣ i∑
j=0

g
(
s|xzj−10 yi−1j

)
− g
(
s|xzj0y

i−1
j+1

)∣∣∣
≤

i−1∑
j=0

∣∣ g(s|xzj−10 yi−1j

)
− g
(
s|xzj0y

i−1
j+1

)∣∣.
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Putting y0 := a and z0 := b, we have the bound

1

2

∑
s∈A

∣∣g(s|xayi−11

)
− g
(
s|xbzi−11

)∣∣ ≤ i−1∑
j=0

1{yj 6=zj}Osci−j(g).

Hence

Px,a,b(ηi 6= ωi) ≤
∑

yi−1
1 ,zi−1

1

Px,a,b
(
[yi−11 , zi−11 ]

) i−1∑
j=0

1{yj 6=zj}Osci−j(g)

=

i−1∑
j=0

∑
yi−1

1 ,zi−1
1

Px,a,b
(
[yi−11 , zi−11 ]

)
1{yj 6=zj}Osci−j(g)

=

i−1∑
j=0

∑
yj 6=zj

Px,a,b
(
[yj , zj ]

)
Osci−j(g)

≤ Osci(g) +

i−1∑
j=1

Px,a,b(ηj 6= ωj) Osci−j(g)

which concludes the proof.

The following result is a straightforward consequence of Lemma 5.2.

Proposition 5.1. For all a, b ∈ A and x ∈ X−, let Px,a,b be the one-step maximal coupling between
P xa and P xb. If ∆(g) > 0, then, for all n ≥ 1, we have

n∑
j=1

sup
a,b∈A
x∈X−

Px,a,b(ηj 6= ωj) ≤
1−∆(g)

∆(g)
.

Proof. From Lemma 5.2, we have

sup
a,b∈A
x∈X−

Px,a,b (ηj 6= ωj) ≤ Oscj(g) +

j−1∑
k=1

Oscj−k(g) sup
a,b∈A
x∈X−

Px,a,b (ηk 6= ωk) . (5.4)

Define vectors α and β such that for i ≥ 1, αi = supa,b∈A
x∈X−

Px,a,b (ηi 6= ωi) and βi = Osci(g). We

also define a matrix L such that for i > j, Lij = Osci−j(g) and Lij = 0 otherwise. Hence, from
(5.4) we have

α ≤ Lα+ β.

Therefore,

‖α‖1 ≤
‖β‖1

1− ‖L‖1
=

∑∞
j=1 Oscj(g)

1−
∑∞
j=1 Oscj(g)

as we wanted to prove.
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5.4 Proofs of Theorems 3.1 and 3.2

Proof of Theorem 3.1. In the statement of Theorem 5.1, for σ ∈ AJ0,∞K, a, b ∈ A, n ≥ 1, and

k ≥ 1, let νσ,a,bk be the one-step maximal coupling between P xσ
k−1
0 a = P x(·|σk−10 a) and P xσ

k−1
0 b =

P x(·|σk−10 b). In this case, for all x ∈ X−, Proposition 5.1 implies that 1 + r ≤ ∆(g)−1, proving
Theorem 3.1.

In order to prove Theorem 3.2, we need the following lemma. Recall that T denotes the shift
operator defined by (Tx)i = xi+1 and define the shifted probability measures P xj = P x ◦T−j , j ≥ 1
in which P x is the measure compatible with g started from the fixed past x ∈ X−. We need
the following definitions and facts on weak convergence of probability measures. A sequence of
probability measures (µn)n on AZ weakly converges to µ if for every bounded continuous function
h : AZ → R we have

∫
hdµn →

∫
hdµ. By Remark 3 of Section 4.1 in [30], this is equivalent to the

convergence µn(C)→ µ(C) for every cylinder C. (This is well known when A is finite.)

Lemma 5.3. Under the assumptions of Theorem 3.2, (PT
−jx

j )j≥1 converges weakly to µ for µ-a.e
x.

Proof. We need to find a set S ⊂ X− satisfying the following conditions: µ(S) = 1, and for any

x ∈ S, PT
−jx

j (C) converges to µ(C) for all cylinders C. Fix a cylinder set C. According to

Definitions 2.2 and 2.3, we have, for sufficiently large j’s, PT
−jx

j (C) = µ(C|F−j−∞)(x) for µ-almost

every past x. On the other hand, the Reverse Martingale Theorem ensures that µ(C|F−j−∞)(x) →
µ(C|F−∞)(x) for µ-almost every past x, where F−∞ :=

⋂
j≥1 F

−j
−∞ is the left tail sigma-algebra.

By [20, Theorem 4.6], if g is continuous and satisfies ∆(g) > 0, then the measure µ is the unique
measure compatible with g. We are in force of both assumptions since on a countable alphabet,
condition ∆(g) > 0 automatically implies continuity. Thus µ is the unique measure compatible
with g. Now, invoking [20, Theorem 3.2 items (a) and (b)], we get that µ is trivial on F−∞. It
follows that µ(C|F−∞)(x) = µ(C) for µ-almost every past x. We have therefore proved that there

exists a set S(C) ⊂ X− such that µ(S(C)) = 1 and PT
−jx

j (C) converges to µ(C) for any x ∈ S(C).
We conclude observing that, since the alphabet is countable, there are countably many cylinders
and we can take S =

⋂
C S(C).

We are now ready for the proof of Theorem 3.2.

Proof of Theorem 3.2. Let f ∈ L. Recall that f is bounded and continuous. Lemma 5.3 above
guarantees that PT

−jx
j converges weakly to µ, for µ-a.e. x. So let us fix such a point x and take

θ ∈ R+. For σ ∈ AJ0,n+jK, let fj(σ) := f(σj+n+1
j ). Now, for any ε > 0, there is a j0 such that for

all j ≥ j0 we have

Eµ
[
exp

(
θ
(
f − Eµ[f ]

))]
≤
(
E
PT
−jx

j

[
exp

(
θ
(
f − E

PT
−jx

j
[f ]
))]

+ ε
)

exp(θε)

≤
(
EPT−jx

[
exp

(
θ
(
fj − EPT−jx [fj ]

))]
+ ε
)

exp(θε)

≤
(

exp
(θ2∆(g)−2

8
‖δ(f)‖22

)
+ ε

)
exp(θε)

where the last inequality follows from Theorem 3.1 because fj ∈ L and ‖δ(f)‖2 = ‖δ(fj)‖2. Taking
ε→ 0, we conclude the proof for θ ∈ R+. The proof for θ ∈ R− is very similar.
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5.5 Bounding the coupling error by variation

Fix y, z ∈ AJ−∞,0K. Let Py,z be the one-step maximal coupling between measures P y and P z with
kernel g. We want to obtain an upper bound Py,z (ηj 6= ωj). To achieve this, we will use an auxiliary
process. Given x ∈ X−, let `(x) = inf{k ≥ 1 : x−k = 1} and `(. . . 00) = ∞. Consider the kernel h
associated with g as hg : {0, 1} × {0, 1}J−∞,−1K → (0, 1) where hg(1|x) = q`(x) and qj = Varj(g).

For any x ∈ {0, 1}X− consider the measure P x1h constructed as in Definition 2.2 using h in place
of g. It is the undelayed renewal measure, and will be our auxiliary process. Recall the definition
of the projection functions πji , i ≤ j given in Section 2, and put πi := πii as the projection on the
single coordinate i.

Lemma 5.4. We have that, for all y, z ∈ AJ−∞,0K and all j ≥ 0,

Py,z (ηj 6= ωj) ≤ P x1h (πj = 1).

Proof. For any η, ω in AZ, let σj(η, ω) := 1{ηj 6=ωj} for j ∈ Z. By definition, for all j ≥ 0, we have

sup
y,z∈AJ−∞,0K

Py,z
(
σj = 1|σj−11 = 0, σ0 = 1

)
≤ Varj+1(g) = qj+1.

By stochastic domination, we conclude that

Py,z (σj = 1) ≤ P x1h (πj = 1)

as we wanted to prove.

Lemma 5.5. Let γ1(g) = Var0(g) and for k ≥ 2, γk(g) := Vark−1(g)
∏k−2
i=0 (1 − Vari(g)). If P x1h

be the measure specified by renewal kernel hg starting with x0 = 1 then, for all j ≥ 1, we have the
renewal equation

P x1h (πj = 1) = γj(g) +

j−1∑
k=1

γj−k(g)P x1h (πk = 1) .

Proof. We want to compute (for any i ≥ 2 we denote by 0i the string 00 . . . 0 of i consecutive 0)

P x1h (πj = 1) = P x1h
(
πj = 1, πj−11 = 0j−1

)
+

j−1∑
k=1

P x1h
(
πj = 1, πj−1j−k+1 = 0k−1, πj−k = 1

)
.

For k ≥ 1, we have that

P x1h
(
πj = 1, πj−1j−k+1 = 0k−1, πj−k = 1

)
= P x1h

(
πj = 1 | πj−1j−k+1 = 0k−1, πj−k = 1

)
×

j−1∏
i=j−k+1

P x1h
(
πi = 0 | πi−1j−k+1 = 0k−1, πj−k = 1

)
= Vark−1(g)

k−2∏
i=0

(1−Vari(g))P x1h (πj−k = 1)

= γk(g)P x1h (πj−k = 1)
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where we used the convention
∏−1
i=0 = 1. Similarly,

P x1h
(
πj = 1, πj−11 = 0j−1

)
= γj(g).

Therefore, we have

P x1h (πj = 1) ≤ γj(g) +

j−1∑
k=1

γk(g)P x1h (πj−k = 1).

Using the symmetry between the indices k and j− k in the summation, we conclude the proof.

The next result is a direct consequence of Lemmas 5.4 and 5.5.

Proposition 5.2. For all y, z ∈ AJ−∞,0K, let Py,z be the one-step maximal coupling between P y

and P z. If Γ(g) :=
∏∞
j=0(1−Varj(g)) > 0, then, for all n ≥ 1, we have

n∑
j=1

sup
y,z∈AJ−∞,0K

Py,z(ηj 6= ωj) ≤
1− Γ(g)

Γ(g)
.

Proof. From Lemma 5.5, we have

P x1h (πj = 1) = γj(g) +

j−1∑
k=1

γj−k(g)P x1h (πk = 1) . (5.5)

Define vector α such that for j ≥ 1, αj = P x1h (πj = 1). We also define a matrix L such that for
i > j, Lij = γi−j(g) and Lij = 0 otherwise. Therefore, from (5.5) we have

α ≤ Lα+ β.

Therefore,

‖α‖1 ≤
‖γ‖1

1− ‖L‖1
=

∑∞
j=1 Varj−1(g)

∏j−2
k=0

(
1−Vark(g)

)
1−

∑∞
j=1 Varj−1(g)

∏j−2
k=0

(
1−Vark(g)

) . (5.6)

Because

Varj−1(g)

j−2∏
k=0

(
1−Vark(g)

)
=

j−2∏
k=0

(
1−Vark(g)

)
−
j−1∏
k=0

(
1−Vark(g)

)
we have

∞∑
j=1

Varj−1(g)

j−2∏
k=0

(
1−Vark(g)

)
= Var0(g)−

∞∏
k=0

(
1−Vark(g)

)
≤ 1−

∞∏
k=1

(
1−Vark(g)

)
.

Therefore, from (5.6), we get

‖α‖1 ≤
1−

∏∞
k=0

(
1−Vark(g)

)∏∞
k=0

(
1−Vark(g)

) .

From Lemma 5.4, we have that

n∑
j=1

sup
y,z∈AJ−∞,0K

Py,z(ηj 6= ωj) ≤
n∑
j=1

P x1h (πj = 1),

which concludes the proof.
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5.6 Proofs of Theorems 3.3 and 3.4

Proof of Theorem 3.3. We proceed exactly as in the proof of Theorem 3.1, substituting ∆(g) by
Γ(g).

Proof of Theorem 3.4. Let µ be a measure compatible with g. Let also σ ∈ AJ0,∞K, a, b ∈ A, n ≥ 1,
and k ≥ 1. Let first define a coupling νσ,a,bk between µ(· | σk−10 a) and µ(· | σk−10 b). For all x, y ∈ X−,

let Px,y,σ,a,bk be the one-step maximal coupling between P x(· | σk−10 a) and P y(· | σk−10 b). We define

νσ,a,bk (·) =

∫
X−

∫
X−

Px,y,σ,a,bk (·)µ
(

dx|σk−10 a
)
µ
(

dy|σk−10 a
)
.

From the definition of the above coupling, we have

sup
k

sup
σ

sup
a,b

νσ,a,bk (ηk+j 6= ωk+j) ≤ sup
k

sup
σ

sup
a,b

sup
x,y

Px,y,σ,a,bk (ηk+j 6= ωk+j)

≤ sup
y,z∈AJ−∞,0K

Py,z(ηj 6= ωj)

where Py,z is the one-step maximal coupling between P y and P z. Using Proposition 5.2 and
Theorem 5.1, we conclude that 1 + r ≤ Γ(g)−1 and GCB holds, as we wanted to show.

5.7 Proof of Theorem 3.5

We first need to define two properties: the positive divergence property, and the blowing-up prop-
erty.

Definition 5.1. We say that an ergodic measure µ on AZ satisfies the positive divergence property
if for any ergodic measure ν on AZ different from µ we have

lim inf
n

1

n+ 1
Eνn

[
log

νn
µn

]
> 0

where µn = µ|Fn and νn = ν|Fn .

We now state two propositions that we will use to prove the next theorem.

Proposition 5.3. Let g be a kernel such that infa∈A,x∈X− g(a|x) > 0 and limj Varj(g) = 0. Suppose
that there are two distinct ergodic measures µ and µ compatible with g. Then the positive divergence
property does not hold.

Proof. Let µ be an ergodic measure compatible with a kernel g, and ν another ergodic measure
compatible with a kernel h. Assume that limj Varj(g) = limj Varj(h) = 0 and infa∈A,x∈X− g(a|x) >
0, infa∈A,x∈X− h(a|x) > 0. We have

1

n+ 1
Eνn
[
log

νn
µn

]
=

1

n+ 1

∫
log

ν([xn0 ])

µ([xn0 ])
ν(dxn−∞)

=

∫
1

n+ 1

 n∑
j=1

log
ν
(
[xj ]|xj−10

)
µ
(
[xj ]|xj−10

) + log
ν([x0])

µ([x0])

 ν(dxn−∞)

=

∫
1

n+ 1

n∑
j=1

log
ν
(
[x0]|x−1−j

)
µ
(
[x0]|x−1−j

) ν(dx0−∞) +
1

n+ 1

∑
x0∈A

log
ν([x0])

µ([x0])
ν([x0])
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where the last equality uses shift-invariance of the measures. By uniform continuity of g and h we
have

log
ν
(
[x0]|x−1−j

)
µ
(
[x0]|x−1−j

) j→∞−−−→ log
h(x)

g(x)

uniformly in x, and therefore

1

n+ 1

n∑
j=1

log
ν
(
[x0]|x−1−j

)
µ
(
[x0]|x−1−j

) n→∞−−−−→ log
h(x)

g(x)
(5.7)

uniformly in x by Cesàro lemma. By the dominated convergence theorem we conclude that

lim
n

1

n+ 1
Eνn
[
log

νn
µn

]
= Eν

[
log

h

g

]
.

Therefore, if g = h and if there are multiple ergodic measures compatible with g, then the measure
cannot have the positive divergence property. Indeed, if ν is an ergodic measure compatible with
g but different from µ, then the r.h.s. of (5.7) is equal to 0, which violates the positive divergence
property.

For all n ≥ 0, define the normalised Hamming distance between ω and σ on An+1 by

d̄n(σ, ω) =
1

n+ 1

n∑
i=0

1{σi 6=ωi}. (5.8)

For F ⊂ An+1 and ε > 0, 〈F 〉ε denotes the ε-blowup of F , that is

〈F 〉ε = {σ ∈ An+1 : d̄n(σ, ω) ≤ ε for some ωn0 ∈ F} .

Definition 5.2. An ergodic measure µ has the blowing-up property if given ε > 0 there is a % > 0
and n0 such that if n ≥ n0 then µ(〈F 〉ε) ≥ 1−ε, for any subset F ⊂ An+1 for which µ(F ) ≥ e−(n+1)%.

We make a slight abuse of notation by writing µ(F ) instead of µn(F ), or, stated differently, we
use the same notation for a subset of An+1 and the union of cylinders it generates.

Proposition 5.4. Suppose that µ is a probability measure which satisfies GCB with a constant C.
For any n ≥ 0 and any F ⊂ An+1 such that µ(F ) > 0, we have

µ(〈F 〉ε) ≥ 1− exp

−n+ 1

4C

(
ε− 2

√
C log(µ(F )−1)

n+ 1

)2
 (5.9)

whenever ε > 2
√

C log(µ(F )−1)
n+1 . In particular, µ has the blowing-up property.

Proof. Let n ≥ 0 and f(ωn0 ) = infσn0 ∈F
∑n
i=0 1{σi 6=ωi}. It is obvious that δi(f) = 1 for i = 0, . . . , n.

Since µ satisfies GCB with a constant C by assumption, we get from (2.5)

µ(f > Eµ[f ] + u) ≤ exp

(
− u2

4C(n+ 1)

)
, u > 0.

25



We now derive an upper bound for Eµ[f ]. We use (2.4) with −θf , where θ > 0 will be fixed later
on, to get

exp(θEµ[f ])Eµ
[

exp(−θf)
]
≤ exp

(
Cθ2(n+ 1)

)
.

But, by the very definition of f , we have

Eµ
[

exp(−θf)
]
≥ Eµ

[
exp(−θf)1F

]
= µ(F ).

Hence, combining the two previous inequalities, taking the logarithm, and dividing out by θ, we
obtain

Eµ[f ] ≤ inf
θ>0

{
C(n+ 1)θ +

1

θ
log
(
µ(F )−1

)}
which gives

Eµ[f ] ≤ 2
√
C(n+ 1) log(µ(F )−1) .

To finish the proof of (5.9), observe that µ(f > ε) = µ(〈F 〉cε).
Now, if we fix ε > 0 and take F such that µ(F ) ≥ exp(−(n + 1)%), for some % > 0 to be chosen
later on, subject to the condition ε > 2

√
C%, we get from (5.9) that, for all n ≥ 0,

µ(〈F 〉ε) ≥ 1− exp

(
−n+ 1

4C

(
ε− 2

√
C%
)2)

.

We now take % = ε2/(4C) which gives

µ(〈F 〉ε) ≥ 1− ε

for all n ≥ n0 := b4ε−2 log(ε−1)c. We thus proved that GCB implies the blowing-up property.

We are ready to prove the following result, which is of independent interest.

Proof of Theorem 3.5. If infa∈A,x∈X− g(a|x) > 0, then the alphabet has to be finite (see Remark
4.1). It is proved in [44] that, for finite alphabet ergodic stationary processes, the blowing-up
property implies the positive divergence property. But by Proposition 5.3, we cannot have the
latter property since we assume that there are at least two ergodic measures compatible with the
kernel. Hence the blowing-up properties does not hold. But then, by Proposition 5.4, we cannot
have GCB.

5.8 Proof of Theorem 3.6

Recall the definitions of g̃, the kernel of the renewal measure µ̃, and the distribution fn, n ≥ 1 of the
distance between consecutive 1’s. In order to prove Theorem 3.6 we will use a well-known relation
between the renewal process and an N-valued Markov chain. Indeed, let F : NN → {0, 1}N be the
deterministic coordinate-wise function defined by

(
F (σ)

)
i

= 1[0](σi), i ∈ N. We refer the reader

to [47], where in particular it is explained that µ̃ = ν ◦ F−1 where ν is the Markov measure with
transition matrix Q given by

Q(m, 0) = 1−Q(m,m+ 1) =
fm+1∑
i≥m+1 fi

, m ≥ 0.
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Proof of Theorem 3.6. We start by proving sufficiency. Suppose first that
∑
n fnr

n < ∞ for some
r > 1. Then the time τ0 separating two consecutive 0’s for the Markov measure ν has distribution
fn, n ≥ 1, by construction. Therefore, Eν0 [rτ

0

] < ∞ for the same r, where Eν0 denotes the
expectation with respect to the measure of the Markov chain initiated at state 0. Following [47],
this characterizes ν as a geometrically ergodic Markov measure (in fact, it is equivalent, see [47,
Section 15.1.4]). Using the result of [12], we conclude that ν satisfies GCB, and, as a coordinate-wise
image of ν, the renewal process µ̃ also has GCB. This last step is a consequence of [39, Theorem
7.1].

We now prove necessity. Suppose that µ̃ satisfies GCB. Then, for some sufficiently small c > 0,

µ̃([0n+1]) = µ̃

({
ω :

1

n+ 1

n∑
i=0

ωi = 0

})

≤ µ̃

({
ω :

1

n+ 1

n∑
i=0

ωi − µ̃([1]) ≤ − µ̃([1])

2

})
≤ e−cn .

On the other hand, by shift-invariance we have

µ̃([0n+1]) =
∑
i≥n+1

µ̃([10i]) = µ̃([1])
∑
i≥n+1

∑
j≥i

fj ≥ µ̃([1])
∑
i≥n+1

fi.

This means that µ̃([1])
∑
i≥n+1 fi ≤ e−cn which implies that

∑
n fnr

n <∞ for some r > 1.

5.9 Proof of Theorem 3.7

Take an arbitrary η ∈ AN and for n ≥ 0 define fn(ω) := f(ωn0 η
∞
n+1). By construction we have

‖f − fn‖∞ ≤ varn(f)→ 0. Now, for each i, δi(f − fn) goes to 0 when n→∞ since for all n ≥ i it
is easy to check that

δi(f − fn) ≤ 2 varn(f).

We have the inequality
(δi(f − fn))2 ≤ 4δi(f)2, ∀i, n.

Therefore, since ‖δ(f)‖2 <∞ by assumption, we can use the dominated convergence theorem (for
the counting measure on the set of nonnegative integers) to get

‖δ(f − fn)‖2 → 0.

Finally, using GCB for fn, and the obvious fact that δi(f + g) ≤ δi(f) + δi(g), we get

Eµ
[
ef−Eµ[f ]

]
≤ Eµ

[
efn−Eµ[fn]

]
e2‖f−fn‖∞

≤ eC‖δ(fn)‖
2
2 e2‖f−fn‖∞

≤ eC‖δ(f)‖
2
2 e2C‖δ(f)‖2‖δ(f−fn)‖2 eC‖δ(f−fn)‖

2
2 e2‖f−fn‖∞

where the third inequality follows by writting fn = fn − f + f and expanding (δi(fn − f + f))2.
The result follows by letting n tend to infinity.
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5.10 Proof of Theorem 4.1

Define f = ‖ρ̂n,k−ρ‖∞. Recall that ρ̂n,k(σ) = ρ̂n,k(σ, ·). For all n ≥ 1, we have ‖δ(f)‖2 = 1, hence,
from Theorem 3.1, we have

µ(‖ρ̂n,k − ρ‖∞ − Eµ[‖ρ̂n,k − ρ‖∞] > u) ≤ exp
(
− 2(n− k + 2) Γ(g)2u2

)
. (5.10)

Therefore, to prove Theorem 4.1, we only need to find a good upper bound for Eµ[‖ρ̂n,k − ρ‖∞].
Here, we follow the argument used in [38]. By Jensen’s inequality, and since Eµ[ρ̂n,k(σ)] = ρ(σ),
we have

(
Eµ[‖ρ̂n,k − ρ‖∞]

)2 ≤ Eµ
[
‖ρ̂n,k − ρ‖2∞

]
≤ Eµ

 ∑
σ∈AJ1,kK

(ρ̂n,k(σ)− ρ(σ))2


≤

∑
σ∈AJ1,kK

(
Eµ
[
ρ̂n,k(σ)2

]
− ρ(σ)2

)
. (5.11)

Recall that, for all S ⊂ Z and σ ∈ AS , we define the projection function associated to all indices
i, j ∈ S, j ≤ i, by πij(σ) = σij . For all σ ∈ AJ1,kK, we have

Eµ
[
ρ̂n,k(σ)2

]
=

1

(n− k + 2)2
Eµ

(n−k+1∑
i=0

1σ ◦ πi+k−1i

)2


=
1

(n− k + 2)2
Eµ

n−k+1∑
i=0

1σ ◦ πi+k−1i + 2

n−k+1∑
j=1

j−1∑
i=0

(
1σ ◦ πi+k−1i

)(
1σ ◦ πj+k−1j

)
=

ρ(σ)

n− k + 2
+

2

(n− k + 2)2

n−k+1∑
j=1

j−1∑
i=0

µ
(
πi+k−1i = σ, πj+k−1j = σ

)
=

ρ(σ)

n− k + 2
+

2

(n− k + 2)2

n−k+1∑
j=1

j−1∑
i=0

ρ(σ)µ
(
πj+k−1j = σ

∣∣πi+k−1i = σ
)

≤ ρ(σ)

n− k + 2
+

2

(n− k + 2)2

n−k+1∑
j=1

j−1∑
i=0

ρ(σ)
(
ρ(σ) +

∣∣µ(πj+k−1j = σ
∣∣πi+k−1i = σ

)
− ρ(σ)

∣∣).
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Now let j∗ = max{j, i+ k}. For all a ∈ A, we have∣∣µ(πj+k−1j = σ
∣∣πi+k−1i = σ

)
− ρ(σ)

∣∣
≤ sup
σ̃∈AJ1,kK

|µ(πj+k−1j∗ = πj+k−1j∗ (σ)|πi+k−1i = σ)− µ(πj+k−1j∗ = πj+k−1j∗ (σ)|πi+k−1i = σ̃)|

= sup
σ̃∈AJ1,kK

∣∣µ(πj−i−1j∗−i−k = πj−i−1j∗−i−k(σ)
∣∣π−1−k = σ

)
− µ

(
πj−i−1j∗−i−k = πj−i−1j∗−i−k(σ)

∣∣π−1−k = σ̃
)∣∣

≤ sup
x,y∈X−

∣∣P x(πj−i−1j∗−i−k = πj−i−1j∗−i−k(σ)
)
− P y

(
πj−i−1j∗−i−k = πj−i−1j∗−i−k(σ)

)∣∣
≤ sup
x,y∈X−

Px,y
(
ηj−i−1j∗−i−k 6= ωj−i−1j∗−i−k

)
≤ sup
x,y∈X−

j−i−1∑
`=j∗−i−k

Px,y
(
η` 6= ω`

)
where Px,y is the one-step maximal coupling between P x and P y. Observe that j∗ − i − k =
max{j − i− k, 0}. Coming back to the estimation of Eµ

[
ρ̂n,k(σ)2

]
, we have

Eµ
[
ρ̂n,k(σ)2

]
≤ ρ(σ)

n− k + 2
+

2

(n− k + 2)2

n−k+1∑
j=1

j−1∑
i=0

ρ(σ)

(
ρ(σ) + sup

x,y∈X−

j−i−1∑
`=max{j−i−k,0}

Px,y(η` 6= ω`)

)

≤ ρ(σ)

n− k + 2
+ ρ(σ)2 +

2ρ(σ)(n− k + 1)

(n− k + 2)2

n−k∑
i=0

n−k−i∑
`=max{n−2k−i+1,0}

sup
x,y∈X−

Px,y(η` 6= ω`)
)

≤ ρ(σ)

n− k + 2
+ ρ(σ)2 +

2ρ(σ) k

n− k + 2

n−k∑
i=0

sup
x,y∈X−

Px,y(ηi 6= ωi)

≤ ρ(σ)

n− k + 2
+ ρ(σ)2 +

2ρ(σ) k

n− k + 2

∞∑
i=0

sup
x,y∈X−

Px,y(ηi 6= ωi)

≤ ρ(σ)2 +
2ρ(σ) k

(n− k + 2)Γ(g)

where we used Proposition 5.2 in the last inequality. Finally, we obtain from (5.11) that

Eµ[‖ρ̂n,k − ρ‖∞] ≤

√
2k

(n− k + 2)Γ(g)

which is the desired bound. Combining this bound with (5.10) and rescaling u in an obvious way,
we finally obtain (4.1).

5.11 Proof of Theorems 4.2

Recall the definition (5.8) of the Hamming distance between ω, σ ∈ AJ0,nK. The d̄-distance between
two probability measures µn, νn on AJ0,nK is

d̄(µn, νn) = inf
∑

σ,σ̃∈An+1

d̄n(σ, σ̃)Pn(σ, σ̃)
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where the infimum is taken over all couplings Pn of µn and νn.
Consider functions f : An+1 → R such that, for j ∈ J0, nK, δj(f) ≤ 1/(n + 1). Such functions

are 1-Lipschitz with respect to the Hamming distance because for all σ, η ∈ An+1

|f(σ)− f(η)| ≤
n∑
j=0

δj(f)1{σj 6=ηj} ≤
1

n+ 1

n∑
j=0

1{σj 6=ηj} = d̄n(σ, η).

Let g be a kernel and µ a compatible measure satisfying the conditions of the theorem. Then,
Theorems 3.2 and 3.4 state that, for such functions, for all θ ∈ R and n ≥ 0,

Eµ
[
eθ(f−Eµ[f ])

]
≤ exp

(
C−2(n+ 1)−1θ2

8

)
.

The main observation is that this is equivalent, according to [2, Theorem 3.1], to having

d̄n(νn, µn) ≤ 1

C

√
1

2(n+ 1)
Eνn

[
log

νn
µn

]
where µn = µ|Fn and νn is any probability measure on An+1. Consider now the measure ν
compatible with h as given in the statement of the theorem and let νn be ν|Fn . We have by
stationarity [51] that

d̄(µ, ν) = lim
n
d̄n(µn, νn).

So the proof of the proposition is concluded since we have that (recall the proof of Theorem 3.5
above)

lim
n

1

n+ 1
Eνn

[
log

νn
µn

]
= Eν

[
log

h

g

]
.
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