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Abstract

In this paper, an optimal input design framework for continuous-time system

identification is proposed. The problem is formulated in a convex finite dimen-

sional form. For that purpose, input spectrum is decomposed onto a Laguerre

basis and an LMI-problem is solved. The proposed solution is used to compute

the optimal spectrum for a fractional system identification.

Key words: Optimal input design, Experiment planning, Continuous-time

system identification, Fractional systems, Basis functions decomposition,

Laguerre functions.

1. Introduction

Nowadays, most identification experiments and models are treated in discrete-

time. However, some systems are naturally described by C-T differential equa-

tions in order to keep the physical meaning of their parameters. Several identifi-

cation methods are developed for C-T system identification using either rational

or fractional models [1, 2, 3, 4, 5, 6]. It can be useful to optimize their exper-

iment in order to improve the estimation quality or to reduce the experiment

cost. For these reasons, it is necessary to obtain a framework permitting to

apply optimal input design when C-T models are involved.
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The question of optimal experiment design appeared in the early 1970’s.

In [7, 8] first interesting results were presented, based on maximization of the

information obtained from the system when the input signal is a multi-sine

function. These results set up a basis for more complex approaches. The most

well-known ones are subjected to Ljung’s asymptotic variance formula [9, 10].

Many efforts were made for closed-loop experiment design analysis [11, 12].

Meanwhile, different optimization methods were applied to solve the problems

arising in this context [13]. There exists other approaches based on projection

in noise-free space, time-domain optimization or moving horizon, rather than

variance estimation [14, 15]. Experiment design for system identification using

fractional models has recently been treated in [16, 17]. The proposed method

is based on finding the optimal sine input signal in the case where one, two or

three parameters are unknown by minimizing the D-optimality criterion of the

covariance matrix. Up to authors knowledge, experiment design in the C-T case

was not much investigated. This paper attempts to fill this gap and provides

an extension for authors previous work [18] by formalizing the main result as

theorem 4, providing a rigorous proof, and extending the examples to include a

comparison with a multi-sine solution.

The paper is organized as follows: at first, main definitions and problem

formulation are presented in section 2. Input spectrum parametrization by C-

T Laguerre functions is described in section 3. The problem is then solved

via spectrum optimization in section 4. Finally, numerical illustration on a

fractional system is presented in section 5, before concluding.

2. Problem formulation

Consider a single-input-single-output (SISO) C-T system operating in open-

loop, corrupted by a white noise:

y(t) = G(p,Θ)u(t) + e(t) (1)

where G(p,Θ) is a real strictly proper stable transfer function describing the sys-

tem dynamics, Θ is the vector of unknown parameters to identify corresponding
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to the minimal parametrization, y(t) is the output, u(t) the input, p = d
dt the

differentiation operator and e(t) a zero mean Gaussian noise with a constant

spectrum equal to σ2. The parameters covariance matrix depends on the input

signal spectrum Φu(ω) and is given by [19]:

P−1(Θ0) =
1

σ4

∫ ∞
−∞

F (jω,Θ0)Φu(ω)F ∗(jω,Θ0)dω +R0, (2)

with F (jω,Θ) = dG(jω,Θ)
dΘ , Θ0 is the true parameter vector, P (Θ0) is a covari-

ance matrix, and R0 is a constant, independent of Φu(ω). The true system

transfer function is denoted by G0(s) = G(s,Θ0).

It is clear from (2) that it is possible to change the parameters estimation

variance by shaping the input spectrum. Different estimation quality criteria

could be proposed, for example D-optimality (det(P )), A-optimality (trace(P )),

E-optimality (λmax(P )) etc. It is shown in [8] that, for these criteria, the optimal

solution can be expressed as a finite number of sine-functions, which depends on

the number of parameters to estimate. However, for control system applications,

it is useful to formulate the problem in terms of transfer function variance at

each frequency. The relative error on frequency function estimation is given by

[13]:

ε(jω,Θ) =
G0(jω)−G(jω,Θ)

G0(jω)
. (3)

The first term of the Taylor series expansion of the variance of this error

estimation is given by [13]:

∆(ω) = Var(ε(jω,Θ)) =

∣∣∣∣ 1

G0(jω)

∣∣∣∣2 1

N

dG∗(jω,Θ)

dΘ
P (Θ)

dG(jω,Θ)

dΘ
. (4)

The value maxω ∆(ω) will be referred to later as estimation quality.

If the number of unknown parameters is big, asymptotic variance formula

[20], can be applied. However, in parametric system identification, the unknown

parameters are usually limited to a small number. So, it is necessary to use the

Taylor expansion of non-asymptotic error variance (4).

It is evident from (2) and (4) that increasing the input signal power reduces

the estimation variance. Consequently, evaluating the estimation quality due to

the input signal must be done at a fixed input power:
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minΦu
maxω ∆(ω), ∀ω ∈ R+;∫∞

−∞ Φudω = α, Φu(ω) ≥ 0.

(5)

Otherwise, a minimum total input power can be computed for a fixed estimation

quality:

minΦu
α =

∫∞
−∞ Φudω, Φu(ω) ≥ 0;

∆(ω) ≤ γ, γ > 0, ∀ω ∈ R+.

(6)

Whatever the formulation, the posed problem has two main disadvantages:

(i) it is of infinite dimension, as ω ranges from −∞ to +∞ and the input

spectrum Φu is defined in the frequency space;

(ii) it is non-convex, due to the inverse of the covariance matrix P .

The way to overcome these disadvantages is described in the next section.

3. Spectrum decomposition in Laguerre polynomial basis

It is necessary to define a finite dimensional parametrization of the input

spectrum. In [13], Jansson and Hjalmarsson propose to represent the spectrum

using FIR filters which could be extended to any discrete-time orthogonal basis

function. Here, a C-T version is considered:

Φu(ω) =
∞∑

k=−∞

r|k|Bk(jω) (7)

where r|k| are the coefficients associated to the orthogonal basis functions

{Bk(jω)}∞k=0 which are proper, stable and rational with B−k(jω) = Bk(−jω).

The choice of basis functions is necessary for the realization of corresponding

input signal by spectrum factorization. This aspect, as well as other possible

choices of basis functions, will be discussed in the next sections. A limited

parametrization of the positive part of Φu(ω) is usually chosen:

Ψu(s) =

M−1∑
k=0

rkBk(s) (8)
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Φu(ω) = Ψu(jω) + Ψ∗u(jω) (9)

where M is the desired number of basis functions and (∗) stands for conjugate

transpose. For Φu(ω) to be a spectrum, it is necessary that:

Φu(ω) ≥ 0, ∀ω ∈ R. (10)

To satisfy (10) with parametrization (8), a basic idea is to define a frequency-

by-frequency positivity constraint for a certain number of frequencies. However,

this approach is not always consistent, as it cannot insure the positivity of the

spectrum for intermediate frequencies. Another approach, coming from discrete-

time filter design, discussed in [21] can be used. It is based on the real positive

lemma which states in the C-T case as follows.

Lemma 3.1 ([22]). Let {A,B,C,D} be a minimal controllable state space re-

alization of Ψu(s) =
∑M−1
k=0 rkBk(s). Then Φu(ω) = Ψu(jω) + Ψ∗u(jω) > 0, if

and only if there exists a symmetric definite positive matrix Q = QT � 0 such

that:  ATQ+QA QB − CT

(QB − CT )T −(D +DT )

 � 0.� (11)

The Lemma 3.1 is not restricted to Laguerre basis, but to any fixed realisation

of generalized orthonormal basis functions.

To check the positivity, it is only necessary to choose suitable basis functions

Bk and to obtain their state-space representation. The C-T Laguerre basis

functions are used in the remainder of the paper:

Bk(s) =
√

2λ
(s− λ)k

(s+ λ)k+1
. (12)

The properties of Laguerre basis are described more in details in [23] and the

choice of M and λ is discussed in the illustration section.

Substituting (12) in (8) yields:

Ψu(s) =
√

2λ
1

(s+ λ)
×
M−1∑
k=0

rk

(
s− λ
s+ λ

)k
. (13)
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Using such a decomposition of the spectrum, a low-pass filter appears ex-

plicitly as a factorized term. The second term of the product corresponds to the

bilinear transform. It can be noticed, that λ is a cut-off frequency. In a zone

much higher than λ the low-pass behavior is dominating. In a zone much lower

than λ a decomposition corresponds to a static gain value. Consequently, only

for frequencies around λ the spectrum varies significantly, so the choice of λ is

very important. It must be close enough to system highest proper frequency.

This parametrization is linear in parameters rk. To satisfy the positivity

constraint (10), it is necessary to obtain a state-space model of (13) with known

A and B matrices.

State-space parametrization of Ψu(s)

Eq. (13) can be reformulated in the following expanded form:

Ψu(s) =
√

2λ

∑M−1
i=0 nis

i∑M
j=0 djs

j
. (14)

To obtain the state-space representation it is necessary to determine dj and ni

terms which is done in [18]:

ni=λM−1−i
M−1∑
k=0

rk min(i,k)∑
j=max(0,i+k−(M−1))

(−1)jCkj C
M−1−k
i−j

 , (15)

dj = λM−jCMj , (16)

where Cki = k!
i!(k−i)! is Newton binomial coefficient.

Using (14)-(16) the minimal state-space representation {A,B,C,D} of Ψu(s)

can be formulated:

A =

−[dM−1, dM−2, . . . , d0]

[IM−1×M−1 0M−1×1]

 , (17)

B = [1, 01×M−1]T , (18)

C =
√

2λ[nM−1, nM−2, . . . , n0], (19)

D = 0. (20)
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where Im×m is the identity matrix of size m and 0m×n a matrix of zeros of size

m× n.

Now, using (17-20) in lemma 3.1, spectrum positivity constraint can be

formulated.

4. Input spectrum optimization

The two problems described in (5) and (6) are quite similar. Hence, only the

problem described in (6) is treated in the remainder of the paper. The following

theorem allows to overcome the disadvantage (ii) p.2 and to provide a convex

formulation of the problem.

Theorem 4.1. Consider the C-T linear system defined in (1). Then, the prob-

lem formulated in (6) can be solved by minimizing:

min
rk

α =

M−1∑
k=0

rk

∫ ∞
−∞

[Bk(jω) + B∗k(jω)]dω, (21)

under the following linear matrix inequality (LMI) constraints: ATQ+QA QB − CT

(QB − CT )T −(D +DT )

 � 0, (22)

 γ V ∗(ωi)

V (ωi) P (Θ)−1

 � 0, i = 0 . . . N − 1. (23)

where Bk(s) are the Laguerre functions defined in (12), {A,B,C,D} is the state-

space representation of basis decomposition defined in (17)-(20), Θ is the vector

of unknown parameters, P (Θ) is the parameter covariance matrix and V (ω) =

1
G0(jω)

√
N

dG(jω)
dΘ . �

Proof First, the total input signal power that appears in the objective function

of problem (6) is obtained using (8):

α =

∫ ∞
−∞

Φudω =

M−1∑
k=0

rk

∫ ∞
−∞

[Bk(jω) + B∗k(jω)]dω. (24)
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The next step is to obtain a convex formulation of the problem (6). From (4),

it is possible to rewrite (6) as:

γ − V ∗(ω)P (Θ)V (ω) ≥ 0, ∀ω ∈ R+. (25)

Inequality (25) can be expressed as an LMI on P−1(Θ0) using Schur’s com-

plement:  γ V ∗(ω)

V (ω) P−1(Θ0)

 � 0,∀ω ∈ R+. (26)

The only unknown term in the LMI (26) is the inverse covariance matrix P−1(Θ0).

It can be expressed as a linear equation, using the input spectrum parametriza-

tion (13) in the covariance matrix expression (2):

P−1(Θ0) =
1

σ4

M−1∑
k=0

rk

∫ ∞
−∞

F (jω,Θ0)[Bk(jω)+B∗k(jω)]F ∗(jω,Θ0)dω+R0.

(27)

Using (27), the problem becomes convex and linear with only parameters

rk, k = 0 . . .M − 1 being unknown. However, it is still infinite-dimensional

with respect to ω. The most simple solution consists in replacing condition

(26) with a finite number of identical conditions for some prescribed frequencies

ωi, i = 0...N − 1 which yields (23) and completes the proof �

The problem formulated in theorem 4.1 can be solved for any C-T system.

The only unknown parameters are the coefficients rk. The obtained optimal

spectrum can be realized in time-domain using spectral factorization method,

described in [24].

5. Exemple: experiment planning for a C-T fractionnal system

Consider a fractional system of the first kind [25, 26]

G(s) =
K

(τs)ν + 1
, (28)

with the true system parameters K = 10, τ = 1 and ν = 1.4. The system output

is corrupted by an additive white noise as in (1). The objective is to design an
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Figure 1: Optimal input power versus the number of basis functions M for λ = 1.5

experiment with a minimum total power of the input signal, so that parameters

τ,K and ν are estimated and the precision on the frequency error estimation

(4) is ∆(ω) ≤ 1,∀ω ∈ R+. The estimation quality is assessed through (4) by the

maximum of criterion ∆(ω) and the complete problem is formulated in the form

(6). Parameters are estimated using “Output Error” fractional model [5, 6]. As

a consequence, the problem can be formulated in the LMI form (21)-(23) and

solved numerically.

To apply the proposed method, it is necessary to choose the basis functions

parameter λ and the number of basis functions M . Fig.1 shows optimal in-

put spectrum power, required to have ∆(ω) ≤ 1, for different number of basis

functions and for λ = 1.5. Increasing the number of basis functions increases

the accuracy of the computed spectrum. Indeed, the higher the decomposition

order, the better the precision. However, beyond M = 15 the numerical burden

is significantly increased and causes numerical problems while solving the LMI.
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Figure 2: Optimal input power versus λ for M = 15

The choice of λ seems to be more complicated. System cut-off frequency equals

1
τ . It is rather reasonable to choose λ in some range close to 1

τ . Fig. 2 shows

the optimal input spectrum power α versus λ for M = 15.

It is evident that λ influences the precision of the estimation. The parameter

λ can also be estimated by any non-linear optimization method.

Now the influence of error bound is studied. Fig. 3 shows the optimal input

power α versus γ for λ = 1.5 and M = 15. The total power decreases if the error

bound is relaxed, since more power is necessary to obtain a better evaluation

quality.

In Fig. 4, optimal spectrum is plotted for λ = 1.5 and M = 15. It is worth

noting that a similar problem is treated in [16] with an input signal composed

of a sum of two sine functions having a unit amplitude. The D-optimality

criterion of the inverse covariance matrix is optimized and the obtained optimal

frequencies, at 0.54 rad/s and 1.1 rad/s, are very close to the ones plotted in
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Figure 3: Optimal input power versus γ for M = 15 and λ = 1.5

Fig.4.

Monte Carlo analysis is now used to confirm the results of the paper. The

criterion (5) is evaluated for three different input signals, having the same power

density:

- pseudo-random binary sequence (PRBS), generated using 8 registers, such that

the signal remains constant at least over intervals of 10 samples;

- optimal multi-sine signal presented in [16] with two components of the same

amplitude with frequencies 0.54 rad/s and 1.1 rad/s;

- the signal with the optimal spectrum plotted in Fig.4.

It is worth mentionning that solutions to problems (5) and (6) give spectra of

the same form. Hence, it is possible to use the results of (6) by a simple scaling

of the total power . The input signals have the same power and the sampling

period equals 0.02 s. The sampling period is chosen to be sufficiently low for the

simulation error to be negligible. The output signal is corrupted by a centered
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Figure 4: Normalized optimal spectrum for Laguerre basis decomposition

white noise with a gaussian distribution and a unity variance. For each input

signal, 50 runs of Monte-Carlo simulations with different noise realizations are

carried out. Spectral factorization is used for generating the signal with optimal

form of spectrum. For each realization the system is identified using an output

error fractional model [27, 28]. Finally, “frequency-by-frequency” variance is

computed using (3) and (4). Results are presented in Fig. 6, which shows

that using the PRBS leads to a higher frequency-by-frequency variance than

the optimal spectrum. The presented result compares the criterion of problem

(5) for three input signals.

The multi-sine input and the optimal signal have similar performances with

maximum error of the same order. However, for multi-sine signal the error

slightly increases for higher frequencies and for optimal signal it remains con-

stant. The advantage of the proposed approach is that it allows, by solving an

LMI and using linear programming, to determine the optimal spectrum.
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6. Conclusion

The paper describes a framework for optimal input design for C-T system

identification. The problem is formulated in convex form and can be solved

numerically. The input spectrum is parametrized by Laguerre functions, which

require to choose a tuning parameter λ. The provided example shows the efficacy

of the computed optimal spectrum as compared to the classical PRBS and

optimal multi-sine signal.
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