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Model Based Approach for Online Monitoring of
Aluminum Production Process

Lucas José da Silva Moreira, Gildas Besançon, Francesco Ferrante, Mirko

Fiacchini, Hervé Roustan

Abstract In Hall-Heroult process for aluminium production, estimating the alumina

concentration and the anode-cathode distance (ACD) remains a challenge. One of

the difficulties arises from the fact that it is not possible to measure those quantities

continuously during the pot operation. This article presents a novel approach for on

line estimating alumina concentration and ACD in a regular aluminum-reduction pot

cell using a Linear Kalman Filter. This is done by using an appropriate dynamical

model for the pot, which is obtained by combining the first principle modeling

and experimental identification of alumina concentration behavior from irregularly

sampled data. Moreover, a dynamical model for the pot resistance is identified as

a function of the alumina concentration and ACD data. The proposed approach is

validated on an industrial platform.
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1 Introduction

Aluminum manufacturing is a challenging industrial area based on the Hall-Heroult

process [1, 2]. In this setting, model and control challenges arise from the limitations

in the process information continuously available, which can lead to inaccurate
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results [3]. Moreover, this restrains the process production efficiency since it is risky

to work with uncertainties or imprecise data [4].

During the electrolysis reaction which is the basis of the process, the anode-

cathode distance (ACD) is continuously affected by liquid aluminum production,

carbon consumption. Other aspects affect the ACD as the electric perturbations and

changes in the composition of the bath. An inappropriate ACD can impact in the

efficiency of the process and safety conditions. In fact, a large ACD decreases the

pot cell production and a small value can cause a short-circuit between the produced

aluminum and the anode [5]. Unfortunately, it is not possible to measure it during

the process operation, and its dynamical behaviors is very difficult to represent in

full details. See [3, 6] for more details.

Another essential variable in aluminum production is the dissolved alumina con-

centration (wAl2O3). Generally, it is required to keep it in a specific range to avoid

the formation of sludge or the onset of anode effect [7]. Although monitoring im-

portance, measurements this quantity continuously is costly. In common operation,

just a few samples per week are manually taken, which makes it difficult to obtain

an experimental model.

In practice, to monitor and regulate aluminum production, an indirect measure-

ment is used: the pseudo-resistance. This signal is computed using the line current

and pot voltage direct measurements. Other important variables for the Hall-Heroult

process like aluminum fluoride concentration, bath temperature, metal height, etc.

are only sporadically measured. The pseudo-resistance is used to determine the alu-

mina feed rate injected in the system. The alumina feeding rate is based on the

alternation of slower (underfeeding) and faster (overfeeding) periods than the rate

corresponding to normal consumption of the cell [8]. The feeding periods alter-

nation occurs when the rate of variation of pseudo-resistance exceeds a set value.

Moreover, it is usually defined a setpoint resistance and thermal balance to ensure

control stability and obtain a good current efficiency. This value is adjusted by the

ACD regulation [8]. Many authors indicate that the pseudo-resistance could not be a

good indicator for the operation [9, 10].

Because of this lack of continuous measurements, nonlinear estimators have been

developed by a few researchers [11, 3, 12]. All of them are focused on a two-step

procedure: Obtain a nonlinear model and apply an estimator strategy. However, an

imprecise model can generate inaccurate results. As the Hall-Heroult process has a

complex dynamics, it is not easy to find a proper model that reproduces its behavior.

Moreover, it is necessary to have an initial ACD measurement which is not possible

during operation. To overcome these limitations, some authors have been working

on iterative filtering procedures yet, these require more computation effort [4].

In this paper, an online monitoring technique based on Linear Kalman filtering

state-estimation is proposed. It uses a model that combines physical-chemical pre-

liminary knowledge and experimental identified aspects. This system representation

enables a real-time overall alumina concentration and ACD monitoring which can be

used to avoid anode effects and improve the production. This procedure is validated

with operational collected data and tested for different conditions in APXe50 pot
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cell localized in Laboratoire de Recherches de Fabrications (LRF) in Saint Jean de

Maurienne, France.

The paper is organized as follows: The modeling approach and validation are

presented in Section 2. The online monitoring and experimental results are explained

in Section 3. The conclusions are discussed in Section 4.

2 Modeling

The process description of this paper is based on dynamical equations using the

manipulated and process variables available in modern aluminum reduction cells.

Initially, the ACD modeling is explained based on a chemical balance. Moreover,

some simplified models for the alumina concentration and the pot resistance are

developed. At the end of this section, an overall state-space model for the aluminum

process is given. It is assumed that the pot is always in regular operation. In particular,

it is assumed that line current and alumina pot feeding do not undergo on a significant

overshoot.

2.1 Anode-Cathode Distance

The ACD is defined as the difference between the heights of aluminum produced

(AlHeight ) and carbon consumed (CHeight). Its dynamics depends on the anodes

busbar beam movement (BM) and the initial distance (ACDini ) as follows:

ACD(t) = AlHeight (t) − CHeight (t) + BM(t) + ACDini (1)

The beam movement derivative is considered as one of the system inputs (u1):

u1(t) =
d

dt
BM(t) (2)

Using the electrochemical relations of chemical balance it is possible to compute

the ACD and its variation in discrete-time for computer implementation by the

following equation structure:

ACD[n + 1] = ACD[n] + Ts(u1[n] + βI[n]) (3)

whereTs is the sampling time, β is a combination of pot physical-chemical parameters

and I is the line current applied to the system. As it is not possible to measure the

ACD during the operation, the value of β is computed using theoretical values for a

regular pot operation. Moreover, during the metal tapping, it is not considered that

the beam is moving.
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2.2 Alumina Concentration

The variation of the alumina concentration ( d
dt
wAl2O3) is given by the difference

between the concentration amount of dissolved alumina (wAl2O3in) that is resulted

from the alumina injected in the pot by the feeders and the amount of alumina that

is consumed by the chemical equation (wAl2O3cons). Hence the following chemical

balance can be considered:

d

dt
wAl2O3(t) = wAl2O3in(t) − wAl2O3cons(t) (4)

It can be assumed a quick alumina solving [13]. This approach does not consider

any agglomeration of the alumina powder since the dissolution constant is 0.099s−1

and the sampling rate is 1 minute.

The frequency of the feeders (F) is considered as one of the system inputs (u2):

u2[n] = F[n − D] (5)

where D is a constant time-delay due to alumina diffusion lag.

Therefore, equation (4) can be rewritten in discrete-time as:

wAl2O3[n + 1] = wAl2O3[n] + Ts(α1u2[n] − α2I[n]) (6)

where α1 and α2 are a combination of pot physical-chemical parameters.

As in LRF pots the aluminum concentration is measured a few times a day and

in the same pot position, it is possible to identify an experimental model from the

collected data and obtain values of α1 and α2 for regular operation.

Initially, the time delay D is estimated using unconstrainednonlinear optimization

techniques and validated for different data set. Equation (6) needs a previous value

of wAl2O3 to calculate the next concentration. Then, the model is initialized with a

measurement and the simulation is started using the signals of u2 and I . Every time

that there is a new alumina concentration data collection, the model is reinitialized

to improve the simulation results.

In Fig. 1, it is shown a comparisonbetween the model simulation using parameters

α1 and α2 estimated with the collected alumina concentration and the respective

inputs. It is possible to verify that the model provides a very good prediction of

the plant behavior. The mean absolute relative error between the model and the

measurements is 3.5176 %. Hence, this model can be considered validated and used

to simulate and predict alumina concentration over long time horizons.

2.3 Pot Resistance

The pot resistance is an indirect measurement calculated via the pot voltage and line

current. The pot voltage is modeled by a complex relation that uses ACD and alumina
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Fig. 1 Alumina Concentration Model Validation

concentration [14]. Besides that, it is taken into account other system operational

parameters that cannot be measured continuously or that are not measured. Therefore,

this makes it difficult to obtain a precise model. Aiming to obtain a simpler resistance

model, it is assumed that all these unknown factors are constant during the pot

operation . Moreover, it is not necessary to know any information about them, only

the ACD and wAl2O3 values are required.

It is known that the resistance model generates curves as shown in Fig. 2 for

different ACD and wAl2O3. During the regular operational specification, the low and

high alumina concentrations plot regions i.e. the anode effect and sludge formation

areas are avoided. Then, the curves shown in Fig. 2 can be parameterized by the

following equation:

(7)R(t) = c × wAl2O2
3(t) + (d + e × ACD(t))wAl2O3(t) + ( f + g × ACD(t))

where c, d, e, f and g are constant parameters to be determined.

Equation (7) can be derived to compute the resistance variation in discrete-time

by the following relation:

R[n + 1] = R[n] + (e × ∆wAl2O3[n]ACD[n]

+ (2c × ∆wAl2O3[n] + e × ∆ACD[n])wAl2O3[n] + d × ∆wAl2O3[n] + g

× ∆ACD[n])

(8)

where:

∆ACD[n] =
ACD[n] − ACD[n − 1]

Ts

(9)

∆wAl2O3[n] =
wAl2O3[n] − wAl2O3[n − 1]

Ts

(10)

Notice that equation (8) needs an initial ACD value and this values is not mea-

surable. Only the ACD variation is calculated by equation (3). This problem can
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Fig. 2 Typical pot resistance curve as function of alumina concentration and ACD

be solved by re-arranging equation (8) to set as the identifiable parameter the initial

ACD combined by the other unknown variables.

In Fig. 3, a comparison between the model output simulation and real mea-

surements is shown. The mean absolute error index computed for this data set is

2.2054%. However, it can be seen a small drift in Fig. 3. This happens because the

model structure from equation (8) reproduces the resistance variation and needs an

initial value.

700 800 900 1000 1100 1200
Time (min)

 

Pot Resistance

Measured
Simulation

Fig. 3 Resistance Model Validation
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2.4 State-Space Model

From the results described in previous sections, it is possible to obtain a discrete-time

state-space model of the plant, with state vector defined by:

x[n] =



x1[n]

x2[n]

x3[n]


=



R[n]

ACD[n]

wAl2O3[n]


(11)

The current intensity is not considered as a control input because, due to the

operational constraints, it cannot be manipulated. Hence, this signal is considered as

a measured disturbance in the system.

Organizing equations (3), (6) and (8) results in the following description:

(12)




x[n + 1] =



1 a12[n] a13[n]

0 1 0

0 0 1



x[n] +



b1[n]

b2[n]

b3[n]


R[n] =

[
1 0 0

]
x[n]

where:

a12[n] = e(α1u2[n] − α2I[n]) (13)

a13[n] = (2c(α1u2[n] − α2I[n]) + e(u1[n] + βI[n]) (14)

b1[n] = (d(α1u2[n] − α2I[n]) + g(u1[n] + βI[n])) (15)

b2[n] = (u1[n] + βI[n]) (16)

b3[n] = (α1u2[n] − α2I[n]) (17)

which all the parameters known.

This model representation permits to design a Linear Kalman filter usage [15],

even with a nonlinear model. This is justified because equation (12) is affine in the

state. Hence, it is possible to recover the state vector for a given input set. This makes

it possible to use the valid model for online ACD and wAl2O3 monitoring.

3 Online Monitoring

As the model is valid and it is possible also to organize it in a state-space form, the

states can be estimated using a linear observer fed with the plant inputs and outputs.

The schematic implementation is shown in Fig. 4. The estimation of the state signals

for pot resistance (R̂), alumina concentration ( ˆwAl2O3), and anode-cathode distance

( ˆACD) are calculated in real-time from inputs and output signals. Therefore, this

makes it possible an online state monitoring.
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Fig. 4 Schematic Observer Implementation

The observer selected is a Kalman Filter. It requires first to tune the noise matrices

to perform the estimations. As the chosen sampling time is 1 minute, the noise

covariance level is set in small value for the process and measurement matrices. The

covariance matrix has to be tuned as well. According to the chosen matrix values,

the convergence can be faster or slower. In this case, it is recommended a higher

value for the ACD covariance than other states since it is not possible to measure it.

Further details in Kalman Filter can be found in [16].

To ensure the performance, the filter was tested using different initial values of

ACD and wAl2O3. The resulting estimations for each of them, labeled as 1, 2, 3 and

4, are compared with real measurements of R and values computed by the model for

all states, as shown in Fig. 5. Notice the fast convergence for all state estimations,

less than 1 hour, even with different initial conditions. As R is measured, it converges

faster than other states variables. The other signals estimations take more time to

converge to a value closer to those computed by the model. Therefore, the efficiency

of the state estimations can be guaranteed and they can be used for online monitoring

of a regular pot cell.

This online monitoring can be used to predict local anode effects as well, around

the alumina collection area. This is done by monitoring a small concentration of

alumina. In Fig. 6, it is shown the alumina concentration model simulation between

to measurements and the surrounding anodes currents measurements labeled with the

respective position number. It is possible to verify that after alumina concentration

reaches small values, the currents start in anode 21 to have a disturbance behavior.

After some time, it is verified in the individual current anodes measurements many

peaks. This characterizes an anode effect in the pot cell that was noticed by model

based monitoring model based system.

4 Conclusion

In this article, a novel approach for online monitoring of aluminum reduction cells

based on the model is proposed. This approach combines the available signals in
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the pot cell, physical-chemical knowledge, and system identification methods to

obtain a state-space model. This representation captures only the regular operation

dynamics. Then, it is possible to obtain a simple model that captures the desired

operational dynamics, neglecting complex relations. This model structure can be

applied to a Linear Kalman Filter and used it to estimate two important signals for

the pot operation: ACD and wAl2O3.

The estimation results were tested using experimental data, which showed good

accuracy for ACD, and alumina concentration estimation, as well as resistance
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Fig. 6 Anode Effect Monitoring

prediction. Moreover, it can allow to detect local anode effects based on the alumina

concentration monitoring. In conclusion, the proposed method seems to provide

promisingly efficient results without knowing much about the pot dynamics. Then,

it can be used for pot monitoring during regular operation.
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