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Abstract: Richards equation models the water flow in a partially saturated underground porous
medium. When it rains on the surface, boundary conditions of Signorini type may be considered on
this part of the boundary. We recall the well-posedness of this problem together with its discretiza-
tion by an implicit Euler’s scheme in time and finite elements in space. We establish quasi-optimal
a posteriori estimates for the solution of the discrete problem. Some numerical experiments confirm
the interest of this discretization.

1. Introduction

The following
∂tΘ(ψ)−∇ · Kw

(
Θ(ψ)

)
∇(ψ + z) = 0, (1.1)

models the flow of a wetting fluid, mainly water, in the underground medium located just under
the surface, hence in an unsaturated medium, see L.A. Richards [16] for the introduction of this
type of models. In opposite to Darcy’s or Brinkman’s systems (see [15] for all these models), this
equation which is derived by combining Darcy’s generalized equation with the mass conservation
law is highly nonlinear: This follows from the fact that, due to the presence of air above the surface,
the porous medium is only partially saturated with water. The unknown ψ is the difference between
the pressure of water and the atmospherical pressure.

This equation is usually provided with Dirichlet or Neuman type boundary conditions. Indeed,
Neumann boundary conditions on the underground part of the boundary are linked to the draining of
water outside of the domain and Dirichlet boundary conditions on the surface are introduced to take
into account the rain. However, when it is raining cats and dogs, the part of the domain saturated
with water reaches the boundary. Then the Dirichlet boundary conditions must be replaced by
variational inequalities of the following type:

−ψ ≥ 0, v(ψ) · n ≥ vr · n, ψ
(
v(ψ) · n− vr · n

)
= 0, (1.2)
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where v(ψ) is the flux

v(ψ) = −Kw

(
Θ(ψ)

)
∇(ψ + z). (1.3)

Here, n stands for the unit normal vector to the surface and vr is a given rain fall rate. We refer to
the thesis of H. Berninger [7] for the full derivation of this model from hydrology laws.

It is not so easy to give a mathematical sense to the system (1.1) − (1.2). As standard, the key
argument for the analysis of problem (1.1) is to use Kirchhoff’s change of unknowns. Indeed, after
this transformation, the new equation fits the general framework proposed in [2]. On the other
hand, the inequality in (1.2) can be handled by a variational formulation. In [4], we prove that
the corresponding variational problem is well-posed when the coefficients and the data are smooth
enough, but without any restriction on their maximal value.

The discretization of problem (1.1) has been studied in many papers when provided with standard
boundary conditions, see [1], [9], [14], [17], [18] and [20], however it seems that it has not been treated
when provided with the boundary inequality (1.2). As first proposed in [4]Section 3, we write here
a discretization of system (1.1)− (1.2), in two steps:
(i) We first use the Euler’s implicit scheme to build a time semi-discrete problem, where one of the
nonlinear terms is treated in an explicit way for simplicity;
(ii) We then construct a fully discrete problem that relies on the Galerkin method and finite elements
in the spatial domain.
We also recall the convergence properties of this discretization. We observe that the discrete problem
is unconditionally stable and that its convergence does not require any limitation on the time step
and mesh size. Indeed, these two properties are very important for performing adaptivity.

The aim of this paper is to prove a posteriori estimates for the discrete problem. We refer to [11]
for the first a posteriori analysis of a problem with Signorini type boundary conditions but in the
stationary case. Following the approach in [3], in this a posteriori analysis, we try to uncouple the
errors issued from the time and space discretizations as much as possible. This leads to a simple
adaptivity strategy, as first described in [6]. Some numerical experiments confirm the interest of the
discretization.

The outline of the paper is as follows.
• In Section 2, we present the variational formulation of the full system and recall its well-posedness.
• Section 3 is devoted to the description of the time semi-discrete problem and of the fully discrete
problem. There also, we recall their well-posedness and their convergence.
• The a posteriori analyses of the time semi-discretization and space discretization are performed
in Sections 4 and 5, respectively.
• In Section 6, we present a few numerical experiments.

2. The continuous problem and its well-posedness

Let Ω be a bounded connected open set in Rd, d = 2 or 3, with a Lipschitz-continuous boundary
∂Ω. From now on and for simplicity, we assume that Ω is a polygon (d = 2) or a polyhedron (d = 3),
and we denote by n the unit outward normal vector to Ω on ∂Ω. We assume that ∂Ω admits a
partition without overlap into three parts ΓB, ΓF , and ΓG (these indices mean “bottom”, “flux”
and “ground”, respectively) and that ΓB has a positive measure. We also assume that this partition
is smooth enough, i.e. ∂ΓB, ∂ΓF and ∂ΓG are Lipschitz submanifolds of ∂Ω.

In order to perform the Kirchhoff’s change of unknowns in problem (1.1), we observe that, since
the conductivity coefficient Kw is positive, the mapping:

x 7→ K(x) =

∫ x

0
Kw

(
Θ(ξ)

)
dξ,
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is one-to-one from R into itself. Thus, by setting u = K(ψ), we obtain an equivalent equation to
(1.1). Moreover, the Kirchhoff’s change of unknowns has the further property of preserving the
positivity, so that (1.2) can be written in terms of u. All this leads to the following system

α∂tu+ ∂tb(u)−∇ ·
(
∇u+ k ◦ b(u)ez

)
= 0 in Ω×]0, T [ (2.1)

u = uB on ΓB×]0, T [ (2.2)

−
(
∇u+ k ◦ b(u)ez

)
· n = fF on ΓF×]0, T [ (2.3)

u ≤ 0, −
(
∇u+ k ◦ b(u)ez

)
· n ≥ qr · n, u

(
∇u+ k ◦ b(u)ez + qr

)
· n = 0 on ΓG×]0, T [, (2.4)

u|t=0 = u0inΩ, (2.5)

where −ez stands for the unit vector in the direction of gravity. The unknown is now the quantity
u. The data are the Dirichlet boundary condition uB on ΓB and the initial condition u0 on Ω,
together with the boundary conditions fF and qr on the normal component of the flux, with fF
corresponding to the draining of water and qr corresponding to the rain. Finally, the coefficients
b and k are supposed to be nonnegative, while α is a positive constant. From now on, we assume
that the function b is continuously differentiable on R, with a nonnegative, bounded and Lipschitz-
continuous first derivative b′, and that the function k ◦ b is continuous, bounded, and uniformly
Lipschitz-continuous on R.

Remark It must be observed that the unknown u has no physical meaning. However, the pressure
ψ can easily be recovered from u, for instance by a dichotomy algorithm, see the definition of the
operator K.

In what follows, we use the whole scale of Sobolev spaces Wm,p(Ω), with m ≥ 0 and 1 ≤ p ≤ +∞,
equipped with the norm ‖ · ‖Wm,p(Ω) and seminorm | · |Wm,p(Ω), with the usual notation Hm(Ω)
when p = 2. For any separable Banach space E equipped with the norm ‖ · ‖E , we denote by
C0(0, T ;E) the space of continuous functions on [0, T ] with values in E. For each integer m ≥ 0, we
also introduce the space Hm(0, T ;E) as the space of measurable functions on ]0, T [ with values in
E such that the mappings: v 7→ ‖∂`tv‖E , 0 ≤ ` ≤ m, are square-integrable on ]0, T [.

To write a variational formulation for the problem, we introduce the time-dependent subset

V(t) =
{
v ∈ H1(Ω); v|ΓB

= uB(·, t) and v|ΓG
≤ 0
}
.

It is readily checked that each V(t) is closed and convex, see [7, Prop. 1.5.5], when uB belongs

to C0(0, T ;H
1
2 (ΓB)). Thus, we are led to consider the following variational problem (with obvious

notation for L2(0, T ;V) )

Find u in L2(0, T ;V) such that

u|t=0 = u0,

and that, for a.e. t in ]0, T [,

∀v ∈ V(t),

α

∫
Ω

(∂tu)(x, t)(v − u)(x, t) dx +

∫
Ω

(
∂tb(u)

)
(x, t)(v − u)(x, t) dx

+

∫
Ω

(
∇u+ k ◦ b(u)ez

)
(x, t) ·

(
∇(v − u)

)
(x, t) dx

≥ −
∫

ΓF

fF (τ, t)(v − u)(τ, t) dτ −
∫

ΓG

(qr · n)(τ, t)(v − u)(τ, t) dτ.

We refer to [4, Prop. 2.2] for the proof of the following statement.

Proposition 2.1. Problems (2.1) and (2.3)− (2.4) are equivalent, in the following sense:
(i) Any solution of problem (2.1) in L2(0, T ;H1(Ω))∩H1(0, T ;L2(Ω)) is a solution of (2.3)− (2.4);
(ii) Any solution of problem (2.3)− (2.4) is a solution of problem (2.1) in the distribution sense.
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Proving that problem (2.3)− (2.4) is well-posed is not at all obvious. Indeed, standard arguments
yield the uniqueness of the solution, and its existence only when a rather restrictive condition on
the function b is satisfied. In any case, we refer to [4, Prop. 2.3 and Thm 4.3] for the following
result. For brevity, we set:

X = L2(0, T ;V) ∩H1(0, T ;L2(Ω)).

Theorem 2.1. For any data uB, fF , qr and u0 satisfying

uB ∈ H1(0, T ;H
1
2
00(ΓB)), fF ∈ C0(0, T ;H

1
2 (ΓF )),

qr ∈ C0(0, T ;H
1
2 (ΓG)d), u0 ∈ H1(Ω),

together with the compatibility conditions

u0(x) = uB(x, 0) for a.e. x ∈ ΓB and u0(x) ≤ 0 for a.e. x ∈ ΓG, (2.6)

and for any positive parameter α, problem (2.3)− (2.4) has a unique solution in X.

Remark It is readily checked, see [4, Proof of Thm 4.3], that the norm in X of the solution
exhibited in Theorem 2.3 is bounded as a function of the norms of the data (see (2.6) for these
norms).

3. The discrete problems

We present successively the time semi-discrete problem constructed from the backward Euler’s
scheme, next a finite element discretization of this problem relying on standard, conforming, finite
element spaces.

3.1. The time semi-discrete problem. Since we intend to work with non uniform time steps,
we introduce a partition of the interval [0, T ] into subintervals [tn−1, tn], 1 ≤ n ≤ N , such that
0 = t0 < t1 < · · · < tN = T . We denote by τn the time step tn− tn−1, by τ the N -tuple (τ1, . . . , τN )
and by |τ | the maximum of the τn, 1 ≤ n ≤ N .

As already hinted in Section 1, the time discretization mainly relies on a backward Euler’s scheme,
where the nonlinear term k ◦b(u) is treated in an explicit way for simplicity. Thus, the semi-discrete
problem reads

Find (un)0≤n≤N in
∏N
n=0 V(tn) such that

u0 = u0 in Ω, (3.1)

and, for 1 ≤ n ≤ N , ∀v ∈ V(tn),

α

∫
Ω

(un − un−1

τn

)
(x)(v − un)(x) dx +

∫
Ω

(b(un)− b(un−1)

τn

)
(x)(v − un)(x) dx

+

∫
Ω

(
∇un + k ◦ b(un−1)ez

)
(x) · ∇(v − un)(x) dx (3.2)

≥ −
∫

ΓF

fF (τ, tn)(v − un)(τ) dτ −
∫

ΓG

(qr·n)(τ, tn)(v − un)(τ) dτ.

It can be noted that this problem makes sense when both fF and qr are continuous in time. On the
other hand, it is readily checked that the problem for each n is equivalent to the minimization of a
convex functional on the convex set V(tn), whence the following result.

Proposition 3.1. For any data uB, fF , qr and u0 satisfying

uB ∈ H1(0, T ;H
1
2
00(ΓB)), fF ∈ C0(0, T ;L2(ΓF )), qr ∈ C0(0, T ;L2(ΓG)d), u0 ∈ H1(Ω),

(3.3)

and (2.7), for any nonnegative coefficient α, problem (3.1)−(3.2) has a unique solution in
∏N
n=0 V(tn).
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3.2. The fully discrete problem. We recall that Ω is a polygon (d = 2) or a polyhedron (d = 3).
For 0 ≤ n ≤ N , let (T nh )h be a regular family of triangulations of Ω (by triangles or tetrahedra), in
the sense that, for each h:
• Ω is the union of all elements of T nh ;
• The intersection of two different elements of T nh , if not empty, is a vertex or a whole edge or a
whole face of both of them;
• The ratio of the diameter hK of any element K of T nh to the diameter of its inscribed circle or
sphere is smaller than a constant σ independent of h and n.
As usual, hn stands for the maximum of the diameters hK , K ∈ T nh . We make the further and non

restrictive assumption that, for all n, ΓB, ΓF and ΓG are the union of whole edges (d = 2) or whole
faces (d = 3) of elements of T nh .

We now introduce the finite element space

Vnh =
{
vh ∈ H1(Ω); ∀K ∈ T nh , vh|K ∈ P1(K)

}
,

where P1(K) is the space of restrictions to K of affine functions on Rd. Let Inh denote the Lagrange

interpolation operator at all the vertices of elements of T nh with values in Vnh and inBh the corre-
sponding interpolation operator on ΓB. Assuming that uB is continuous where needed, we then
define for each n, 0 ≤ n ≤ N , the subset of Vnh:

Vnh =
{
vh ∈ Vnh; vh|ΓB

= inBh uB(·, tn) and vh|ΓG
≤ 0
}
.

We are thus in a position to write the discrete problem, constructed from problem (3.1)-(3.2) by
the Galerkin method,

Find (unh)0≤n≤N in
∏N
n=0 V

n
h such that

u0
h = I0

hu0 in Ω, (3.4)

and, for 1 ≤ n ≤ N , ∀vh ∈ Vnh

α

∫
Ω

(unh − Inhun−1
h

τn

)
(x)(vh − unh)(x) dx +

∫
Ω

(b(unh)− Inh b(u
n−1
h )

τn

)
(x)(vh − unh)(x) dx (3.5)

+

∫
Ω

(
∇unh + Inhk ◦ b(un−1

h )ez
)
(x) · ∇(vh − unh)x) dx ≥ −

∫
ΓF

fF (τ, tn)(vh − unh)(τ) dτ (3.6)

−
∫

ΓG

(qr·n)(τ, tn)(vh − unh)(τ) dτ. (3.7)

We also recall the theorem below which is proved in [4].

Theorem 3.1. For any data uB, fF , qr and u0 satisfying 3.3, 2.6 and

uB ∈ C0(ΓB × [0, T ]), u0 ∈ C0(Ω),

for any nonnegative coefficient α, problem (3.4)-(3.5) has a unique solution.

3.3. Convergence of the discretization. We introduce a lifting u∗B of an extension of uB to ∂Ω
which belongs to H1(0, T ;V) and satisfies

for a.e. x ∈ Ω, u∗B(x, 0) = u0(x),

(this requires assumption ??) together with the stability property

‖u∗B‖H1(0,T ;H1(Ω)) ≤ c ‖uB‖
H1(0,T ;H

1
2
00(ΓB))

.

We thus write the problem satisfied by the function u∗ = u − u∗B. Similarly, when setting u∗nh =
unh −Inhu∗B(tn) (this requires a little more regularity on u∗B, hence on uB), we can write the discrete
problem satisfied by the u∗nh . Thus technical arguments, see [4, Lemma 4.2], lead to the following
result.
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Lemma 3.1. For any data uB, fF , qr and u0 satisfying 2.6 and

uB ∈ H1(0, T ;Hs(ΓB)), fF ∈ C0(0, T ;H
1
2 (ΓF )), qr ∈ C0(0, T ;H

1
2 (ΓG)d), u0 ∈ Hs+ 1

2 (Ω),
(3.8)

for some s > d−1
2 , the sequence (u∗nh )0≤n≤N satisfies the following bound, for 1 ≤ n ≤ N ,

α
n∑

m=1

τm ‖
u∗mh − u

∗m−1
h

τm
‖2L2(Ω) + |u∗nh |2H1(Ω) ≤ c

(
1 + ‖Inhu∗B‖2H1(0,T ;H1(Ω)) + ‖fF ‖2C0(0,T ;H

1
2 (ΓF ))

+‖qr‖2
C0(0,T ;H

1
2 (ΓG)d)

)
.

The following result is now easily derived from this boundedness. We denote by uτ and uhτ the
functions which are affine on each interval [tn−1, tn], 1 ≤ n ≤ N , and equal to the solutions un and
unh of problems (3.1)-(3.2) and (3.4)-(3.5), respectively, in tn, 0 ≤ n ≤ N .

Theorem 3.2. For any data uB, fF , qr and u0 satisfying (2.6) and (3.8), there exists a subsequence
of the (uhτ )τ,h which converges to the solution u of problem (2.1) weakly in X.

4. A posteriori analysis of the time semi-discretization

As already hinted, we wish to uncouple as much as possible the time and space errors. Equiva-
lently, we use the triangle inequality

‖u− uhτ‖X ≤ ‖u− uτ‖X + ‖uτ − uhτ‖X, (4.1)

and we evaluate successively the two terms in the right-hand side. In this section, we are interested
in the evaluation of the first term: We propose error indicators and establish their reliability (i.e.,
that they provide an upper bound for the error). Their efficiency (i.e. that they are bounded from
above by the error) is only hinted.

To go further, we introduce a lifting u∗B of an extension of uB to ∂Ω which belongs to H1(0, T ;V)
and satisfies

‖u∗B‖H1(0,T ;H1(Ω)) ≤ c ‖uB‖
H1(0,T ;H

1
2
00(ΓB))

.

Then it is readily checked that the function u∗ = u− u∗B is a solution of a problem very similar to
2.1, with a modified function b and an additional term in the right-hand side, namely the quantity
−
∫

Ω FB(x, t)(v − u)(x) dx defined by∫
Ω
FB(x, t)v(x) dx = α

∫
Ω

(∂tu
∗
B)(x, t)v(x) dx +

∫
Ω

(∇u∗B)(x, t) · (∇v)(x) dx.

An analogous property holds for the semi-discrete problem (3.1)-(3.2).

So, from now on and for simplicity, we assume that uB is equal to zero. In a first step, in order
to evaluate the norms of u− uτ , we compute the quantity, for a.e. t in [0, T ]

R(t) = α

∫
Ω

(
∂t(u− uτ )

)
(x, t)(u− uτ )(x, t) dx +

∫
Ω

(
∂tb(u)− ∂tb(uτ )

)
(x, t)(u− uτ )(x, t) dx

+

∫
Ω

(
∇(u− uτ )

)
(x, t) ·

(
∇(u− uτ )

)
(x, t) dx +

∫
Ω

(
k ◦ b(u)− k ◦ b(uτ )

)
(x, t)ez ·

(
∇(u− uτ )

)
(x, t) dx.

The interest of this quantity appears in the foliowing lemma. We refer to [4, Prop. 2.3] for the
arguments for proving it.

Lemma 4.1. Assume that the function b belongs to W 2,∞(R). The quantity R satisfies for all t in
[0, T ]∫ t

0
R(s) ds ≥ α

2
‖(u− uτ )(t)‖2L2(Ω) +

1

2

∫ t

0
|(u− uτ )(s)|2H1(Ω) ds− cD

∫ t

0
‖(u− uτ )(s)‖2L2(Ω) ds,
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where the constant cD only depends on the data.

Proof. Obviously, the first and third terms in R(t) lead to (note that u−uτ vanishes at time t = 0)∫ t

0

(
α

∫
Ω

(
∂t(u− uτ )

)
(x, s)(u− uτ )(x, s) dx +

∫
Ω

(
∇(u− uτ )

)
(x, s) ·

(
∇(u− uτ )

)
(x, s) dx

)
ds

=
α

2
‖(u− uτ )(t)‖2L2(Ω) +

∫ t

0
|(u− uτ )(s)|2H1(Ω).

So, we now investigate successively the two remaining terms.
1) We use the decomposition∫

Ω

(
∂tb(u)− ∂tb(uτ )

)
(x, t)(u− uτ )(x, t) dx =

∫
Ω
b′(u)(x, t)

(
∂t(u− uτ )

)
(x, t)(u− uτ )(x, t) dx

+

∫
Ω

(
b′(u)− b′(uτ )

)
(x, t)(∂tuτ )(x, t)(u− uτ )(x, t) dx,

and integrate the first term by parts with respect to t, which gives∫ t

0

∫
Ω

(
∂tb(u)− ∂tb(uτ )

)
(x, s)(u− uτ )(x, s) dx ds =

∫
Ω

b′(u)(x, t)

2
(u− uτ )2(x, t) dx

− 1

2

∫ t

0

∫
Ω
b′′(u)(x, s)(∂tu)(x, s)(u− uτ )2(x, s) dx ds

+

∫ t

0

∫
Ω

(
b′(u)− b′(uτ )

)
(x, s)(∂tuτ )(x, s)(u− uτ )(x, s) dx,

Next, the nonnegativity of b′, the boundedness of b′′ and the Lipschitz-continuity of b′ yields∫ t

0

∫
Ω

(
∂tb(u)− ∂tb(uτ )

)
(x, s)(u− uτ )(x, s) dx ds ≥ −c(u, uτ )

∫ t

0
‖(u− uτ )(·, s)‖4L4(Ω) ds,

where c(u, uτ ) > 0 depends on the norm of u and uτ in X. However, using a further decomposition
allows us to replace it by a constant only depending on ‖u‖X, and it follows from Remark ?? that
this norm is bounded as a function of the data. Next, we use an interpolation inequality (see [13,
Chap. 1, Prop. 2.3]) and the Poincaré–Friedrichs inequality: for any v in H1(Ω) vanishing on ΓB,

‖v‖L4(Ω) ≤ ‖v‖
1− d

4

L2(Ω)
(c|v|H1(Ω))

d
4 ≤ c′(1− d

4
)‖v‖L2(Ω) + c′

d

4
|v|H1(Ω),

and conclude by applying it with v = u− uτ and using a Young’s inequality.
2) Finally, to bound the last term, we combine the Lipschitz-continuity of k ◦ b together with a
Young’s inequality∫ t

0

∫
Ω

(
k ◦ b(u)− k ◦ b(uτ )

)
(x, s)ez ·

(
∇(u− uτ )

)
(x, s) dx ds ≥− 1

4

(∫ t

0
|(u− uτ )(·, s)|2H1(Ω) ds

)
− c

(∫ t

0
‖(u− uτ )(·, s)‖2L2(Ω) ds

)
.

Combining all this yields the desired estimate.

We introduce the subset V0:

V0 =
{
v ∈ H1(Ω); v|ΓB

= 0 and v|ΓG
≤ 0
}
. (4.2)
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Thus, applying problem (2.1) with v = uτ which now belongs to V0, we derive

R(t) ≤− α
∫

Ω
(∂tuτ )(x, t)(u− uτ )(x, t) dx−

∫
Ω

(
∂tb(uτ )

)
(x, t)(u− uτ )(x, t) dx

∫
Ω

(∇uτ )(x, t) ·
(
∇(u− uτ )

)
(x, t) dx

(4.3)

−
∫

Ω

((
k ◦ b(uτ )

)
ez
)
(x, t) ·

(
∇(u− uτ )

)
(x, t) dx−

∫
ΓF

fF (τ, t)(u− uτ )(τ, t) dτ (4.4)

−
∫

ΓG

(qr·n)(τ, t)(u− uτ )(τ, t) dτ. (4.5)

On the other hand, we define the space

W =
{
v ∈ H1(Ω); v|ΓB

= 0 and v|ΓG
= 0
}
. (4.6)

Using problem (3.2) with v = un ± w (which also belongs to V0 for any w in W), we obtain the
equation for all w ∈ W,

α

∫
Ω

(un − un−1

τn

)
(x)w(x) dx +

∫
Ω

(b(un)− b(un−1)

τn

)
(x)w(x) dx (4.7)

+

∫
Ω

(
∇un + k ◦ b(un−1)ez

)
(x) · ∇w(x) dx = −

∫
ΓF

fF (τ, tn)w(τ) dτ,

(4.8)

or, equivalently, by taking w successively in D(Ω) and in D(Ω ∪ ΓF ),

α
un − un−1

τn
+
b(un)− b(un−1)

τn
−∇ ·

(
∇un + k ◦ b(un−1)ez

)
= 0 in Ω, (4.9)

−
(
∇un + k ◦ b(un−1)ez

)
·n = fF (·, tn) on ΓF . (4.10)

Inserting these equations into (3.2) also yields

∀v ∈ V0,

∫
ΓG

(
∇un + k ◦ b(un−1)ez

)
·n(τ)(v − un)(τ) dτ ≤ −

∫
ΓG

(qr·n)(τ, tn)(v − un)(τ) dτ.

(4.11)

For any function f continuous on [0, T ], we agree to denote by πτf the piecewise constant function
equal to f(tn) on each interval ]tn−1, tn], 1 ≤ n ≤ N . Multiplying both equations in (4.9) by u− uτ
and adding them to (4.3) (note that ∂tuτ is equal to un−un−1

τn
) and also using (4.11) with v = u gives

on the interval ]tn−1, tn[

R(t) ≤
4∑
j=1

Rj(t) +D(t),

with

R1(t) =

∫
Ω

(b(un)− b(un−1)

τn
− ∂tb(uτ )

)
(x, t)(u− uτ )(x, t) dx,

R2(t) =

∫
Ω
∇(un − uτ )(x, t) · ∇(u− uτ )(x, t) dx,

R3(t) =

∫
Ω

(
k ◦ b(un−1)− k ◦ b(uτ )

)
(x, t)ez · ∇(u− uτ )(x, t) dx,

R4(t) = −
∫

ΓG

(
∇un + k ◦ b(un−1)ez + πτqr

)
·n(τ, t)(un − uτ )(τ, t) dτ,

while the data depending term D is given by

D(t) = −
∫

ΓF

(fF − πτfF )(τ, t)(u− uτ )(τ, t) dτ −
∫

ΓG

(qr − πτqr)·n(τ, t)(u− uτ )(τ, t) dτ.
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It also follows from (4.11) that the quantity R4(t) is nonpositive.

Despite its complexity, the first a posteriori bound for the error can easily be derived from the
last inequality. Indeed, we observe that, for all t in [tn−1, tn],

uτ = un − tn − t
τn

(un − un−1).

This leads to the following definition of the time error indicators:

ηnτ = τ
1
2
n ‖unh − un−1

h ‖H1(Ω) + τ
1
2
n ‖

b(unh)− b(un−1
h )

τn
−Bn

h

unh − u
n−1
h

τn
‖L2(Ω),

where the function Bn
h is defined as, for 1 ≤ n ≤ N ,

Bn
h =

b′(un−1
h ) + b′(unh)

2
.

Note that the first term in the indicator is fully standard for a parabolic equation, see [3, equa-
tion (3.1)] or [12], while the second one comes from the nonlinear term ∂tb(u) and is the same as
introduced in [5, equation (4.1)].

Theorem 4.1. Assume that the function b belongs to W 2,∞(R). The following a posteriori esti-
mate holds between the solution u of problem (2.1) and the function uτ associated with the solution
(un)0≤n≤N of problem (3.1)-(3.2).

sup
0≤t≤T

‖(u− uτ )(t)‖L2(Ω) + ‖u− uτ‖L2(0,T ;H1(Ω) ≤ c
(( N∑

n=1

(ηnτ )2
) 1

2 + ‖uτ − uhτ‖X + ε(D) + ε(b)
)
,

where the quantities ε(D) and ε(b) are given by (with obvious definition of u∗Bτ )

ε(D) = ‖fF − πτfF ‖L2(ΓF×]0,T [) + ‖qr − πτqr‖L2(ΓG×]0,T [)d + ‖u∗B − u∗Bτ‖X

ε(b) =
( N∑
n=1

(ε(b)n)2
) 1

2 , with ε(b)n = ‖
(
b′(uhτ )−Bn

h

)unh − un−1
h

τn
‖L2(tn−1,tn;L2(Ω)).

Proof. Using Cauchy–Schwarz and Young inequalities on each Rj(t) and D(t) together with a

triangle inequality to replace un by unh and un−1 by un−1
h leads to∫ t

0
R(s) ds ≤ c

(( N∑
n=1

(ηnτ )2
)

+ ‖uτ − uhτ‖2X + (ε(D))2 +
( N∑
n=1

(ε(b)n
)2)

+ c′
∫ t

0
‖(u− uτ )(s)‖2L2(Ω) ds.

We then apply Lemma 4.1 and use the Gronwall’s lemma, see [10, chap. V, lemma 1.8] for instance,
to derive the desired bound (the further term including u∗B comes from standard arguments).

Remark More complex arguments would also allow us to derive a bound for the term
‖u− uτ‖H1(0,T ;L2(Ω)), we prefer to skip them for brevity.

Proving the efficiency of these indicators, i.e. deriving an upper bound of them as a function of
the error apparently requires much more technical arguments than previously, so that we prefer to
skip them. Since this estimate holds (and is not simple to establish) for the heat equation [3, Prop.
3.6] and also for the Richards’s equations when ΓG = ∅, see [5, Prop. 4.10], both of them being
provided with the same time discretization, we only say that it is likely.

5. A posteriori analysis of the space discretization

We now evaluate the second term of (4.1), following the same steps as in Section 4: We exhibit
error indicators and prove first their reliability, second their efficiency.
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5.1. The indicators and their reliability. In order to write the residual equation applied to
uτ − uhτ , we compute the quantity, for 1 ≤ n ≤ N ,

Rnh =α

∫
Ω

((un − unh)− (un−1 − Inhu
n−1
h )

τn

)
(x)(un − unh)(x) dx

+

∫
Ω

((b(un)− b(unh))− (b(un−1)− Inh b(u
n−1
h ))

τn

)
(x)(un − unh)(x) dx

+

∫
Ω

(
∇(un − unh)

)
(x) ·

(
∇(un − unh)

)
(x) dx +

∫
Ω

(
k ◦ b(un−1)− Inhk ◦ b(un−1

h )
)
(x)ez ·

(
∇(un − unh)

)
(x) dx.

We now prove the analogue of Lemma 4.1 for this quantity.

Lemma 5.1. Assume that the function b is of class C2 with bounded derivatives. The quantities Rnh
satisfy for all n, 1 ≤ n ≤ N ,

n∑
m=1

τmR
m
h ≥

α

2
‖un − unh‖2L2(Ω) +

1

2

n∑
m=1

τm |um − umh |2H1(Ω) − c
n−1∑
m=1

τm ‖um − umh ‖2L2(Ω) −
n∑

m=1

(ε(I)m)2,

where the quantity ε(I)n is defined by

ε(I)n = τ
− 1

2
n ‖(Id− Inh )(unh − un−1

h )‖L2(Ω) + τ
− 1

2
n ‖(Id− Inh )b(un−1

h )‖L2(Ω) + τn ‖(Id− Inh )k ◦ b(un−1
h )‖L2(Ω).
(5.1)

Proof. For brevity, we denote by R1, . . . and R4 the four lines in Rnh. As for Lemma 4.1, the first
and third terms in Rnh can be handled obviously

τnR
1 ≥α

2

(
‖un − unh‖2L2(Ω) − ‖u

n−1 − un−1
h ‖2L2(Ω) + ‖(un − unh)− (un−1 − un−1

h )‖2L2(Ω)

)
− α‖(Id− Inh )(unh − un−1

h )‖L2(Ω)‖un − unh‖L2(Ω),

τnR
3 = τn |un − unh|2H1(Ω).

To estimate the second term in Rh(n), we use the Lipschitz-continuity of b and the fact that it is
not decreasing: if κ denotes its Lipschitz constant,

τnR2 ≥
κ

2

(
‖un − unh‖2L2(Ω) − ‖u

n−1 − un−1
h ‖2L2(Ω)

)
− c ‖(Id− Inh )b(un−1

h )‖2L2(Ω).

Finally evaluating the last term relies on the Lipschitz property of k ◦ b:

τnR4 ≥ −
τn
2
|un − unh|2H1(Ω) − c τn ‖u

n−1 − un−1
h ‖2L2(Ω).

We conclude by summing these 4 inequalities and then summing up on n.

As in Section 4, in order to avoid the technicality linked to the lifting of uB, we assume that uB
and thus its interpolate are zero. It follows from problem (3.1)-(3.2) that each Rnh satisfies

Rnh ≤− α
∫

Ω

(unh − Inhun−1
h

τn

)
(x)(un − unh)(x) dx

∫
Ω

(b(unh)− Inh b(u
n−1
h )

τn

)
(x)(un − unh)(x) dx

−
∫

Ω
(∇unh)(x) ·

(
∇(un − unh)

)
(x) dx−

∫
Ω

(
Inhk ◦ b(un−1

h )
)
(x)ez ·

(
∇(un − unh)

)
(x) dx

−
∫

ΓF

fF (τ, tn)(un − unh)(τ) dτ −
∫

ΓG

(qr · n)(τ, tn)(un − unh)(τ) dτ.

For the space W defined in (4.6), we set

Wh = Vnh ∩W.
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Indeed, taking vh = unh ± wh in problem (3.5) yields ∀wh ∈ Wh,

α

∫
Ω

(unh − Inhun−1
h

τn

)
(x)wh(x) dx +

∫
Ω

(b(unh)− Inh b(u
n−1
h )

τn

)
(x)wh(x) dx

+

∫
Ω

(
∇unh + Inhk ◦ b(un−1

h )ez
)
(x) · ∇wh(x) dx = −

∫
ΓF

fF (τ, tn)wh(τ) dτ.

We use this equation by taking wh equal to vh − unh, where vh is any element in Vnh which coincides
with unh on ΓG. This yields

Rnh ≤ −α
∫

Ω

(unh − Inhun−1
h

τn

)
(x)(un − vh)(x) dx−

∫
Ω

(b(unh))− Inh b(u
n−1
h ))

τn

)
(x)(un − vh)(x) dx

−
∫

Ω
(∇unh)(x) ·

(
∇(un − vh)

)
(x) dx−

∫
Ω

(
Inhk ◦ b(un−1

h )
)
(x)ez ·

(
∇(un − vh)

)
(x) dx

−
∫

ΓF

fF (τ, tn)(un − vh)(τ) dτ −
∫

ΓG

(qr · n)(τ, tn)(un − vh)(τ) dτ.

We need some further notation: For each K in T nh , let EnK , EnFK and EnGK denote the sets of edges

(d = 2) or faces (d = 3) of K that are not contained in ∂Ω or lie in ΓF or lie in ΓG, respectively. For
any edge or face e in any of these sets, he stands for the diameter of e. We also need the notation,
for any quantity a,

[a]+ = max{a, 0}, [a]− = min{a, 0}.

As standard, we introduce an approximation fnFh of fnF = fF (·, tn) in the space of piecewise
constant functions relying on the triangulation of ΓF by edges or faces of elements of T nh and an
approximation qnrh of qr(·, tn) in the space of piecewise constant functions on ΓG.

We are thus in a position to define the error indicators. Since we prefer to treat separately the
boundary term linked to the inequation, we define:
(i) For each K in T nh ,

ηnK = hK ‖α
unh − Inhu

n−1
h

τn
+
b(unh)− Inh b(u

n−1
h )

τn
−∇ ·

(
∇unh + Inhk ◦ b(un−1

h )ez
)
‖L2(K) (5.2)

+
∑
e∈EnK

h
1
2
e ‖[
(
∇unh +

(
Ihsnk ◦ b(un−1

h )ez
)
· n]e‖L2(e) +

∑
e∈EnFK

h
1
2
e ‖
(
∇unh + Inhk ◦ b(un−1

h )ez
)
· n + fnFh‖L2(e),

(5.3)

where [·]e stands for the jump through e (making its sign precise is not necessary).
(ii) For each e in EnGK ,

ηnGe = ηnGe1 + ηnGe2, with ηnGe1 = ‖
[
qnrh +

(
∇unh + Inhk ◦ b(un−1

h )ez) · n
]
+
‖L2(e), (5.4)

ηnGe2 =

∫
e

[(
qnrh +

(
∇unh + Inhk ◦ b(un−1

h )ez
)
(τ) · n

]
−
unh(τ) dτ. (5.5)

Despite their apparent complexity, these indicators only involve polynomials of low degree, so
they are easy to compute. Moreover, the indicators ηnGe are not zero only for the e contained in

ΓG, hence are not so many, and are the analogues of those proposed in [11] in a simpler case. With
each element K in T nh , we associate the real number sK , which is positive in dimension d = 2 if K

intersects ΓG and equal to zero otherwise. We are in a position to prove the next result.
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Theorem 5.1. The following a posteriori estimate holds between the solution (un)0≤n≤N of problem
(3.1)-(3.2) and the solution (unh)0≤n≤N of problem (3.4)-(3.5)

max
0≤n≤N

‖un − unh‖2L2(Ω) +
1

2

N∑
m=1

τm ‖um − umh ‖2H1(Ω) ≤ c
N∑
m=1

τm
∑

K∈T m
h

(
h−2sK
K ( ηmK)2 +

∑
e∈EmGK

ηmGe
)

(5.6)

+
N∑
m=1

(ε(I)m)2 + ε
(D)
h , (5.7)

where the quantity ε
(D)
h is given by

ε
(D)
h =

( n∑
m=1

∑
e∈EmKF

τmh
1−2sK
e ‖fmF − fmFh‖2L2(e)

) 1
2 +

( n∑
m=1

∑
e∈EmGK

τmh
−2
e ‖qmr − qmrh‖2L2(e)

) 1
2 ,

and the ε(I)m are defined in (5.1).

Proof. By integrating by parts on each K and using Cauchy–Schwarz inequalities, we derive

Rnh ≤
∑
K∈T n

h

(
‖α

unh − Inhu
n−1
h

τn
+
b(unh)− Inh b(u

n−1
h )

τn
−∇ ·

(
∇unh + Inhk ◦ b(un−1

h )
)
‖L2(K)‖un − vh‖L2(K)

+
∑
e∈EnK

‖[
(
∇unh +

(
Inhk ◦ b(un−1

h )
)
· n]e‖L2(e)‖un − vh‖L2(e)

+
∑
e∈EnFK

‖
(
∇unh + Inhk ◦ b(un−1

h )ez
)
· n + fn‖L2(e)‖un − vh‖L2(e)

−
∑
e∈EnGK

∫
e

(
qnr +

(
∇unh + Inhk ◦ b(un−1

h ez)
)
(τ) · n(τ)(un − unh)(τ) dτ.

We treat separately the first three lines of Rnh that we denote by Rn1 and the fourth line that we
denote by Rn2 .
1) We insert the approximation of the datum fn, use the trace inequality (obtained by schwitching
to the reference element and using [8, Thm 1.6.6])

‖un − vh‖L2(e) ≤ c
(
h

1
2
K |u

n − vh|H1(K) + h
− 1

2
K ‖u

n − vh‖L2(K)

)
,

and also triangle and Young’s inequalities. We also choose vh equal to unh + wh, where wh is the
function defined in Lemma A.1 of the Appendix with u raplaced by un − unh. All this gives

‖un − vh‖L2(K) ≤ c h
1−sK
K ‖un − unh‖H1(K), ‖un − vh‖H1(K) ≤ c h

−sK
K ‖un − unh‖H1(K).

Thus, we derive, with obvious definition of ε
(D)n
h ,

Rn1 ≤ c
( ∑
K∈T n

h

(h−2sK
K (ηnK)2 + (ε

(D)n
h )2)

) 1
2 ‖un − unh‖H1(Ω).

2) To evaluate Rn2 , we observe that, since both un and unh are nonpositive on ΓG,

Rn2 ≤−
∑
e∈EnGK

∫
e

[
qnr +

(
∇unh + Inhk ◦ b(un−1

h ez)
)
(τ) · n(τ)]+u

n(τ) dτ

+
∑
e∈EnGK

∫
e

[
qnr +

(
∇unh + Inhk ◦ b(un−1

h )
)
(τ) · n(τ)]−u

n
h(τ) dτ,
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whence, for a constant c that there also only depends on the data,

Rn2 ≤ c ηnGe1 + ηnGe2.

In a final step, we replace n by m, multiply this equation by τm and sum up on m. When combining
the result with Lemma 5.1 and taking h0 smaller than 1, we derive

α

2
‖un − unh‖2L2(Ω) +

1

2

n∑
m=1

τm ‖um − umh ‖2H1(Ω) ≤ c
n∑

m=1

τm ‖um − umh ‖2L2(Ω) +Rn,

where the quantity Rn is given by

Rn =
n∑

m=1

(
(ε(I)m)2 +

τm
2

∑
K∈T m

h

(
h−2sK
K (ηmK)2 + (ε

(D)m
h )2) +

∑
e∈EmGK

ηmGe
))
.

Thus, applying the discrete Gronwall’s lemma (see [10, Chap. V, Lemma 2.4]) and noting that∑n
m=1 τm is smaller than T , we obtain the desired result.

5.2. Efficiency of the indicators. We successively prove an upper bound first for the indicators
ηnK , next for the indicators ηnGe. For the set V0 defined in (4.2), we compute the residual term Rnh(w)
for any w in V0

Rnh(w) =α

∫
Ω

((un − unh)− (un−1 − Inhu
n−1
h )

τn

)
(x)w(x) dx

+

∫
Ω

((b(un)− b(unh))− (b(un−1)− Inh b(u
n−1
h ))

τn

)
(x)w(x) dx

+

∫
Ω

(
∇(un − unh) + (k ◦ b(un−1)− Inhk ◦ b(un−1

h )ez
)
(x) · ∇w(x) dx.

Indeed, the following result follows from Cauchy–Schwarz inequalities and the Lipschitz-continuity
of b and k ◦ b.

For brevity, we use the notation δun for the quantity un−un−1

τn
and its analogues δun, δ(u− uh)n.

Lemma 5.2. For all n, 1 ≤ n ≤ N , and for all w in W, the quantity Rnh(w)) satisfies

|Rnh(w)| ≤ |(‖δ(u− uh)n‖L2(ωw) + ε
(I)n
1

)
‖w‖L2(ωw) +

(
|un − unh|H1(ωw) + c ‖un−1 − un−1

h ‖L2(ωw) + ε
(I)n
2

)
|w|H1(ωw),

where ωw stands for the support of w and the quantities ε
(I)n
1 and ε

(I)n
2 are defined by

ε
(I)n
1 = τ−1

n ‖(Id− Inh )(unh − un−1
h )‖L2(ωw) + τ−1

n ‖(Id− Inh )b(un−1
h )‖L2(ωw), ε

(I)n
2 = ‖(Id− Inh )k ◦ b(un−1

h )‖L2(ωw).
(5.8)

To bound the indicators ηnK , we take w in the space W defined in (4.6). The residual equation
can easily be derived from (4.7):

Rnh(w) =− α
∫

Ω

(unh − Inhun−1
h

τn

)
(x)w(x) dx−

∫
Ω

(b(unh)− Inh b(u
n−1
h )

τn

)
(x)w(x) dx

+

∫
Ω

(
∇unh + Inhk ◦ b(un−1

h )ez
)
(x) · ∇w(x) dx +

∫
ΓF

fF (τ, tn)w(τ) dτ,
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or equivalently, by integrating by parts on each K,

Rnh(w) =
∑
K∈T n

h

(
−
∫
K

(
α
unh − Inhu

n−1
h

τn
+
b(unh)− Inh b(u

n−1
h )

τn
−∇ ·

(
∇unh + Inhk ◦ b(un−1

h )ez
)
(x)w(x) dx

− 1

2

∑
e∈EnK

∫
e
[∇unh +

(
Inhk ◦ b(un−1

h ) ez
)
· n]e(τ)w(τ) dτ −

∑
e∈EnFK

∫
e

((
∇unh + Inhk ◦ b(un−1

h )ez
)
(τ) · n(τ)

+ fnF (τ)
)
w(τ) dτ

)
.

The bound for ηnK can easily be derived from this equation thank to standard choices of the function
w.

Proposition 5.1. For 1 ≤ n ≤ N and for all K in T nh , the following bound holds for the indicators
ηnK defined in (5.2)

(??)ηnK ≤ c hK
(
‖δ(u− uh)n‖L2(K) + ε

(I)n
1

)
+
(
|un − unh|H1(K) + ‖un−1 − un−1

h ‖L2(K) + ε
(I)n
2 + ε(D)n

)
,

(5.9)

where ωK is the union of elements of T nh that share at least an edge (d = 2) or a face (d = 3) with

K, the quantities ε
(I)n
1 and ε

(I)n
2 are defined in (5.8), and the quantity ε(D)n is given by

ε(D)n =
∑
e∈EKF

h
1
2
e ‖fnF − fnFh‖L2(e).

Proof. We bound successively the three terms in ηnK .

1) The idea consists in taking in (??) w equal to the function wK defined by

wK = −
(
α
unh − Inhu

n−1
h

τn
+
b(unh)− Inh b(u

n−1
h )

τn
−∇ ·

(
∇unh + Inhk ◦ b(un−1

h )ez

)
ψK on K,

where ψK is the bubble function on K (equal to the product of the barycentric coordinates
associated with the vertices of K). Indeed, this yields

Rnh(wK) = ‖
(
α
unh − Inhu

n−1
h

τn
+
b(unh)− Inh b(u

n−1
h )

τn
−∇ ·

(
∇unh + Inhk ◦ b(un−1

h )ez

)
ψ

1
2
K‖

2
L2(K).

By combining this with the inverse inequalities, valid for any polynomial ϕ of fixed degree [19,
Prop. 3.37]

‖ϕ ‖L2(K) ≤ c ‖ϕψ
1
2
K‖L2(K), ‖ϕψK‖L2(K) ≤ ‖ϕ‖L2(K) |ϕψK |H1(K) ≤ c h−1

K ‖ϕ‖L2(K),

and using Lemma 5.3, we derive

hK ‖α
unh − Inhu

n−1
h

τn
+
b(unh)− Inh b(u

n−1
h )

τn
−∇ ·

(
∇unh + Inhk ◦ b(un−1

h )ez
)
‖L2(K) (5.10)

≤ c hK
(
‖δ(u− uh)n‖L2(K) + ε

(I)n
1

)
+
(
|un − unh|H1(K) + ‖un−1 − un−1

h ‖L2(K) + ε
(I)n
2

)
. (5.11)

2) For each edge or face e of an element K, we introduce a lifting operator Le,K which • maps
polynomials on e vanishing on ∂e into polynomials on K vanishing on ∂K\e, • and is constructed
from a fixed operator on the reference element. Next, for each edge or face e shared by two
elements K and K ′, we set

we = Le,κ
(
− [
(
∇unh +

(
Inhk ◦ b(u

n−1
h )ez

)
· n]e ψe

)
onκ ∈ {K,K ′},

= 0 on Ω \ (K ∪K ′),
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where ψe is now the buble function on e. By using the property of the operator Le,κ which is
easily derived by switching to the reference element (recall that ϕ is any polynomial of fixed
degree)

‖Le,κϕ‖L2(κ) + hκ |Le,κϕ|H1(κ) ≤ h
1
2
e ‖ϕ‖L2(e),

the new inverse inequalities [19, Prop. 3.37]

‖ϕ ‖L2(e) ≤ c ‖ϕψ
1
2
e ‖L2(e), ‖ϕψe‖L2(e) ≤ ‖ϕ‖L2(K),

and (5.10), we derive

h
1
2
e ‖[
(
∇unh +

(
Inhk ◦ b(un−1

h )
)
· n]e‖L2(e) ≤c

( ∑
κ∈{K,K′}

hκ
(
‖δ(u− uh)n‖L2(κ) + ε

(I)n
1

)
+ c′ (|un − unh|H1(K∪K′)

+ ‖un−1 − un−1
h ‖L2(K∪K′) + ε

(I)n
2

)
.

3) To bound the terms h
1
2
e ‖
(
∇unh + Inhk ◦ b(u

n−1
h )ez

)
· n + fnFh‖L2(e), if e is contained in K, we take

w equal to w̃e, with

w̃e =

{
Le,κ

(
−
((
∇unh + Inhk ◦ b(u

n−1
h )ez)

)
· n + fnFh

)
ψe

)
on K,

0 on Ω \K.
(5.12)

We use exactly the same arguments as in the previous step and obtain the same estimate only

with the further term h
1
2
e ‖fnF − fnFh‖L2(e) in the right-hand side. All these bounds give estimate

(??).

Finally, to bound the indicators ηnGe, we use the quantity Rnh(w) for w in V0. For simplicity, we
define the set Ωn

Gh as the domain made of ΓG and the interior of all triangles K in T nh having at
least an edge (d = 2) or a face (d = 3) lying on ΓG. We denote T nGh the set of triangles contained in

Ω
n
Gh and we assume (this is not restrictive) that two elements in T nGh share at most a vertex (d = 2)

or an edge (d = 3). Thus, using problem (3.2) and integrating by parts on each K yields for any w
having its support in Ωn

Gh

Rnh(w) ≥
∑

K∈T n
Gh

(
−
∫
K

(
α
unh − Inhu

n−1
h

τn
+
b(unh)− Inh b(u

n−1
h )

τn
−∇ ·

(
∇unh + Inhk ◦ b(un−1

h ez)
)
(x)w(x) dx

−
∑
e∈EnGK

∫
e

((
∇unh + Inhk ◦ b(un−1

h ez + qnr )
)
(τ) · n(τ)w(τ) dτ

)
.

Proposition 5.2. For 1 ≤ n ≤ N and for all K in T nh and each e in EnGK , the following bound
holds for the indicators ηnGe1 defined in (5.4)

ηnGe1 ≤c hK
(
‖δ(u− uh)n‖L2(K) + ε

(I)n
1

)
+
(
|un − unh|H1(K) + ‖un−1 − un−1

h ‖L2(K) + ε
(I)n
2 + ε(D)n

)
,

(5.13)

where the quantities ε
(I)n
1 and ε

(I)n
2 are defined in (5.1), and the quantity ε(D)n is given by

ε(D)n =
∑
e∈EGK

h
1
2
e ‖(qnr − qnrh) · n‖L2(e). (5.14)

Proof. With the same notation as in the previous proof, we take w equal to w̄e, with

w̄e =

{
Le,K

(
−
[(
qnrh +∇unh + Inhk ◦ b(u

n−1
h )ez

)
· n
]
+
ψe

)
on K,

0 on Ω \K.
(5.15)

It can be noted that w is nonpositive on e, so that it belongs to V0. By combining the same inverse
inequalities as previously together with a Cauchy-Schwarz inequality and Proposition 5.4, we obtain
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the estimate for ηnGe1.

A slightly different argument is needed to bound ηnGe2.

Proposition 5.3. For 1 ≤ n ≤ N and for all K in T nh and each e in EnGK , the following bound
holds for the indicators ηnGe2 defined in (5.4)

ηnGe2 ≤c hK
(
‖δ(u− uh)n‖L2(K) + ε

(I)n
1

)
+ c

(
‖un − unh‖H1(K) + ‖un−1 − un−1

h ‖H1(K) + ‖∂n(un − unh)‖
H−

1
2 (e)

(5.16)

+ ε
(I)n
2 + ε(D)n

)
, (5.17)

where the quantity ε
(I)n
2 is defined in (5.1), and the quantity ε(D)n is defined in (4.11).

Proof. We first bound the quantity

E =

∫
e

(
qnrh +

(
∇unh + Inhk ◦ b(un−1

h )ez
)
(τ) · n(τ)

)
unh(τ) dτ.

We deduce from (4.11) (with v = 2un)) that

E ≤
∫
e

(
qnrh +

(
∇unh + Inhk ◦ b(un−1

h )ez
)
(τ) · n(τ)unh(τ) dτ −

∫
e

(
qnr +

(
∇un + k ◦ b(un−1)ez

)
(τ) · n(τ)un(τ) dτ

≤
∫
e

(
qnrh +

(
∇unh + Inhk ◦ b(un−1

h )ez
)
(τ) · n(τ)(unh − un)(τ) dτ

+

∫
e

(
qnrh − qrn +∇(unh − un)− Inhk ◦ b(un−1

h + k ◦ b(un−1)ez
)
(τ) · n(τ)un(τ) dτ

Cauchy–Schwarz inequalities combined with the Lipschitz–continuity of k ◦ b yield

E ≤ c
(
‖un − unh‖H1(K) + ‖un−1 − un−1

h ‖H1(K) + ‖∂n(un−1 − un−1
h )‖

H−
1
2 (e)

+ ε
(I)n
2 + ε(D)n

)
,

(it can be noted from problem (3.2) that ∆un belongs to L2(Ω), so that the quantity ‖∂n(un−1 −
u
n−1)
h ‖

H−
1
2 (e)

is well-defined).

To conclude, we deduce from the formula a = [a]+ + [a]− that

ηnGe2 ≤ E + c ηnGe1,

and we use estimate (5.13).

Due to the presence of sK , estimate (5.6) is not fully optimal, but the lack of optimality seems
negligible (sK is equal to zero in dimension d = 3 and also in nearly all the triangles in dimension
d = 2 and is any positive number elsewhere). Estimate (5.16) is also not optimal because of the
term involving the normal derivative. However, estimates (??) (5.13) and (5.16) are local (i.e. only
involve the error in a neighborhood of K), so that they are an efficient tool for mesh adaptivity.

6. Numerical results

In this section we consider the well-known test case of Abdull and Gilham ([]). The experiment
consists in a Plexiglas trapezoidal sandbox filled with medium-fine sand. The domain is represented
at figure 6 where the dimension are indicated. Note that the surface slope is uniform equal to 14o.
The initial water table is assigned at the height of 0.78 m.

The volumetric water content given by the Van Genuchten formula

θ(ψ) =

{
θs(1 + (ε|h|)n)−m if h < 0,
θs if h ≥ 0,
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Figure 1. The computational domain

θs = 0.55, n = 1.9,m = 1− 1/n, ε = 0.036cm−1.

The conductivity is given by

K(h) =

{
Ks(1−(ε|h|)n−1)(1+(ε|h|)n)−m)2

(1+(ε|h|)n)m/2 if h < 0,

Ks if h ≥ 0,

with Ks = 5.10−4cm s−1. A constant rainfall rate of 0.1Ks is applied on the whole surface domain,
and no flow boundary is enforced on the bottom and on the side walls.

We denote by p the percentage of the underground porous media which is unsaturated and we
set P = {25%, 15%, 10%, 5%, 1%}.

The time-space adaptive algorithm we propose is the following.

Set T 0
h , τ0, u

0
h, n = 1. While t ≤ T :

i) Compute unh, η
n
τ , η

n, ηnK , η
n
Ge, η

n
Ge2 on T nh .

ii) if ηnτ ≥
∑

K∈T n
h
ηnK +

∑
e∈EnGK

ηnGe + ηnGe2, then τn+1 = 0.5τn else τn+1 = τn.

iii) if p ∈ P, T n+1
h is derived from T nh by 2 iterations of the standard space adaptive algorithm

based on an equirepartion of the error indicators. Else T n+1
h = T nh .

iv) t := t+ τn, n := n+ 1.

We present below the refined meshes obtained thanks to our time-mesh adaptive algorithm.
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Figure 2. Mesh at time t = 0, t = 200 and t = 500

Appendix

We prove here a technical lemma. Recall that the quantity sK is positive in dimension d = 2 if
K intersects ΓG and equal to zero otherwise.

Lemma A.1. For any function u in H1(Ω) vanishing on ΓB, there exists a function wh in Wh such
that, for any K in T nh ,

‖u− wh‖L2(K) ≤ c h
1−sK
K ‖u‖H1(∆K), ‖u− wh‖H1(K) ≤ c h

−sK
K ‖u‖H1(∆K), (A.1)

where ∆K is the union of all elements of T nh that intersect K.

Proof. We choose wn equal to w1
h + w2

h, where w1
h is the image of u by any type of Clément

regularization operator preserving the nullity on ΓB and w2
h has its support contained in the set

Ω̃n
Gh (made of ΓG and all triangles K in T nh having at least a corner in ΓG). Thus estimate (A.1)

holds (with sK = 0) on all triangles K that does not intersect ΓG and also on the other triangles
with wh replaced by w1

h.

On the other hand, let Cn be the set of the corners of elements of T nh which belong to ΓG. For each
c in Cn, we denote by Kc an element of T nh containing c and by ϕc the Lagrange function associated

with c (with values in Vnh). We assume without restriction that

w1
h|ΓG

=
∑
c∈Cn

αc ϕc, with αc =
1

meas(Kc)

∫
Kc

u(x) dx,

and we take

w2
h = −

∑
c∈Cn

αc ϕc.

Thus, wh belongs to Wh. To evaluate the norms of w2
h we first observe by switching to the reference

element that

‖ϕc‖L2(Ω) ≤ c h
d
2
Kc
, |ϕc|H1(Ω) ≤ c h

d
2
−1

Kc
.
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It also follows from a Hölder’s inequality that, with 1
q + 1

q′ = 1,

|αc| ≤ c h−dKc
h

d
q′
Kc
‖u‖Lq(Kc) = c h

− d
q

Kc
‖u‖Lq(Kc).

Using the imbedding of H1(Kc) into Lq(Kc) for all q < ∞ in dimension d = 2 and for q = 6 in
dimension 3 gives the desired result.
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