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In this paper, we present a new non-linear dispersive model for open channel and
river flows. These equations are the second order shallow water approximation of
the section-averaged (three-dimensional) incompressible and irrotational Euler system.
This new asymptotic model generalises the well-known one-dimensional Serre-Green-
Naghdi (SGN) equations for rectangular section on uneven bottom to arbitrary chan-
nel/river section.
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1 Introduction
The modelling of hydrology of catchment basins and rivers holds a central place in environmental
sciences, particularly in connection with water availability, urban sewer systems, flood risks and in
particular for tsunamis. Indeed, rivers are known to be the tsunami highways. Waves penetrate
through rivers much faster inland than the coastal inundation reaches over the ground, and may
lead flooding in low-lying areas located several km away from the coastline [33]. This is important
today in understanding and forecasting the impact of climate variability on the human and natural
environment. Modelling these processes and predicting the motion of water is a difficult task for
which substantial effort has been devoted [13, 16, 28, 33, 35, 37, 38].
One of the most widely used models to describe the channel and river motion of watercourses is

the section-averaged free surface model [4, 9, 11] which is a generalisation of the well-known Saint-
Venant system (introduced by Adhémar Jean Claude Barré de Saint-Venant in the 19th Century
[8, 14]): 

∂tA+ ∂xQ = 0 ,

∂tQ+ ∂x

(
Q2

A
+ I1(x,A)

)
= I2(x,A) .

(1)
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In these equations, A is the wet area of fluid cross-section, Q is the water discharge, I1 is the
hydrostatic pressure and I2 is the hydrostatic pressure source term which takes in account of the
variation of the section. The Model (1) reduces to the well-known one-dimensional Saint-Venant
equations for uniform rectangular section. The free surface model is the first order shallow water
approximation of the section-averaged Navier-Stokes or Euler equations under suitable assumptions
on the horizontal and the vertical scales (see, e.g., [4, 9, 11, 14, 15] and the reference therein).
Thanks to the hyperbolic structure of these equations, sharp transitions between two different

flow states result in a discontinuous solution, both in the water surface and in the velocity. These
discontinuous solutions (called shocks and also referred as bores) are well-suited to approximate
breaking waves with turbulent rollers for large transitions of the Froude’s number. However,
for small or moderate transitions, the advancing wave front can be followed by a train of free-
surface undulations, sometimes called "whelps". This phenomenon, called undular bore (also often
called dispersive shock waves), is induced by a non hydrostatic pressure distribution [24]. As a
consequence, wave solutions spread out in space as they evolve in time, i.e. waves of different
wavelengths travel with different speeds. This is the so-called dispersive effect. Consequently,
undular bores are not reproductible with the non-dispersive free surface system and non hydrostatic
pressure is required.
Dispersive equations were first introduced by Boussinesq [5] in 1872 to mathematically justify

the existence of solitary waves observed by Russell’s experiments in 1834. These equations enters
in the framework of shallow water equations. They can be obtained as the second order asymptotic

approximation in µ2, with µ =

(
H

L

)2

, of the depth-averaged Euler equations where H represents a

characteristic water depth and L is a characteristic horizontal scale. The Boussinesq type equations,
which are weakly non-linear and weakly dispersive, are defined by an additional small non-linearity
parameter ε =

a

H
= O(µ)� 1 where a is the order of the free surface amplitude. These equations

for a flat bottom, for instance in 1D, are given by{
∂tξ + ∂x(hu) = O(µ2)
∂tu+ εu∂xu+∇ξ + µD = O(µ2)

(2)

where h is the water depth, ξ is the free surface elevation and u is the depth-averaged velocity. The
term D represents the dispersive term. In 1877, the KdV equation was discovered by Boussinesq [5]
and was later derived by Korteweg and Gustav de Vries (KdV) [18]. This equation approximately
describes the evolution of long, one-dimensional waves in many physical settings, including shallow-
water waves with weakly non-linear behaviour. This equation can also be obtained in the case of
unidirectional waves for which the theoretical framework allows to compute an analytical solution
such as 1D solitary wave propagation on flat bottom (see e.g. Boussinesq [2, 5, 18]). We have also
the Benjamin, Bona, and Mahony (BBM) equation which is an improvement of the KdV equation
[3]. However, in practice and especially in coastal engineering applications, the nearshore wave
dynamics being often varying-bottom dependent, dispersive and non-linear, the Boussinesq type
equations are not appropriate. In 1967, Peregrine [25] introduced the first weakly non-linear two
dimensional Boussinesq type equations for non flat bottom. Witting [36] proposed a method based
on Padé expansion to improve the frequency dispersion of the Boussinesq-type equations. From
this method, several equations of order O(µ2) with improved dispersion characteristic have been
proposed, see for instance [22, 23, 29]. In 1953, a one-dimensional, fully non-linear (ε = O(1)) and
weakly dispersive equations for flat bottom were derived by Serre [31], independently of Su and
Gardner [32] with

D(v) =
1

h
∂x

(
h3

3
D(v)

)
(3)

where
D(v) = (∂xv)

2 − ∂x∂tv − v∂2
xv . (4)
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This model was then extended to non flat bottom by Seabra-Santos et al. [30], see also [6]. Finally,
Green and Naghdi [17] derived the two dimensional fully nonlinear dispersive equations for uneven
bottom which are the extension of Serre equations. In the literature, this system is often called
SGN equations. Further interesting extensions are also presented in [7, 20, 21, 26, 27, 34] based
on either Euler equations, water waves equations or variational principles.
All of the previous dispersive models are obtained either from 3D-2D or 2D-1D reduction, but, up

to our knowledge, the 3D-1D reduction has never been done before. Thus, our main goal is to derive
from the three-dimensional incompressible and irrotational Euler equations with suitable boundary
conditions, a model akin to (2)–(4) via section averaging under the shallow water assumption. The
section averaged model that we obtain extends the section-averaged free surface model (1) and the
SGN equations (2)–(4):

∂tA+ ∂xQ = 0

∂tQ+ ∂x

(
Q2

A
+ I1(x,A)

)
+ µ2∂x(G(x,A)D(u)) = I2(x,A) + G(x,A,Q) +O(µ2

2)

where A is the wet area, Q = Au is the water discharge, u is the section-averaged velocity, I1

(resp. I2) is the hydrostatic pressure (resp. source) term, G(x,A) generalises
h3

3
in (3), the

term G(x,A,Q) extends the uneven bottom source term, D is the term given by (4) and therefore
D = ∂x(G(x,A)D(u)) represents the dispersive term.
The paper is organised as follows: in §2 we present the geometrical settings of the physical domain

and the governing equations. In §3, we obtain the key asymptotic approximation of the horizontal
velocity u and the pressure P is decomposed into a hydrostatic Ph and a non-hydrostatic part Pnh.
Finally, we present in §4 the derivation of the new section-averaged non-linear dispersive model
for arbitrary varying non rectangular open channel/river flows in §4.3 and for varying rectangular
channel in §4.4.

Notations concerning the physical settings

• σ(x, z) = β(x, z) − α(x, z): width of the section at z with β(x, z) (resp. α(x, z)) is the right (resp.
left) boundary point at elevation z

• d(x, y): definition of the boundary of the channel/river cross-section as a function of y

• d∗(x) = d(x, y∗(x)) = min
y
d(x, y): z-coordinate of the deepest point of the cross-section

• ϕ(x, z) =

{
α(x, z) if ϕ(x, z) < y∗(x)

β(x, z) otherwise.
: definition of the boundary of the channel/river

cross-section as a function of z

• Ω(t, x) : fluid cross-section

• η(t, x, y): z-coordinate of the free surface level

• h(t, x, y) = η(t, x, y)− d(x, y) : local height of water in Ω(t, x)

• A(t, x) = |Ω(t, x)| : wet area
• nfs: outward normal vector to the free surface boundary Γfs of Ω(t, x)

• nwb: outward normal vector to the wet boundary Γwb of Ω(t, x)

Notations concerning the asymptotic parameters

• H2: characteristic water depth

• H1: characteristic scale of the channel width

• h1 : characteristic wave-length in the transversal direction.

• L: characteristic wave-length in the longitudinal direction
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• µ1 =
h2
1

L2
: dispersive parameter in the transversal direction

• µ2 =
H2

2

L2
: usual dispersive parameter

Notations concerning the model

• Ωeq(t, x) : fluid cross-section (flat free surface approximation of Ω(t, x))

• ηeq(t, x) : z-coordinate of the free surface level

• heq : local height of water in Ωeq(t, x)

• Aeq : wet area of Ωeq(t, x)

• Qeq : discharge

• Ph : hydrostatic pressure

• Pnh: non hydrostatic pressure

Other notations

• 〈X〉(t, x, z) : width-average of the function (t, x, y, z) 7→ X(t, x, y, z)

• u(t, x) : Ω(t, x)-averaged velocity

• ūeq(t, x) : Ωeq(t, x)-averaged velocity

• Xq(t, x, z) := X (t, x, q(x, z), z) where q = α or q = β

• fb(t, x) = fα(t, x, d∗(x))

• S(x, z) =

∫ z

d∗(x)
σ(x, s) ds

• S(u, x, z) =
1

σ(x, z)

∂

∂x
(uS(x, z))

• ∇k1,k2 (X) : gradient of a function X with respect to the variable k1 and k2
• divk1,k2 [X] : divergence of a vector function X with respect to the variable k1 and k2

Bold characters are used for vectors notations.
For almost all computations, we assume that x and t are fixed.

2 The three-dimensional Incompressible Euler equations
We start in §2.1 by reviewing the irrotational and incompressible Euler equations in the special
geometric setting, describing the physics with a wet boundary on the bottom of the water course
and a free surface on the top. Boundary conditions are presented in §2.2.

2.1 Geometric set-up and the Euler equations
Let T > 0 be an arbitrary time. We consider an incompressible and irrotational fluid moving in
the time-space box [0, T ] × C with typical point (t, (x, y, z)) where C is the geometrical definition
of a convex (non-rectangular) channel/river

C =
{

(x, y, z) ∈ R3; x ∈ [0, Lc], α(x, z) ≤ y ≤ β(x, z) and d(x, y) ≤ z
}
.

Lc > 0 is the horizontal length of the domain and for z ≥ d(x, y), α(x, z) (respectively β(x, z)) is
the left (respectively right) boundary point at the elevation z as displayed in Fig. 1. The height
of the surface of the water level and the boundary of the section are modelled, respectively, by
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the functions η(t, x, y) and d(x, y) with respect to a reference horizontal height z = 0. For all
x ∈ [0, Lc], we assume that the function y 7→ d(x, y), has a global minimum at

y∗(x) i.e. d∗(x) = d(x, y∗(x)) = min
y
d(x, y)

where y∗ describes the transversal variation of the channel with respect to the main channel/river
direction.
We define the local height of the water by

h(t, x, y) := η(t, x, y)− d(x, y).

The boundary of the section can be also described as a function of y by

∀x ∈ [0, Lc], ϕ(x, z) =

{
α(x, z) if ϕ(x, z) < y∗(x)

β(x, z) otherwise.
(5)

The width of the section at the elevation z is given by an increasing function

z 7→ σ(x, z) = β(x, z)− α(x, z) .

The wet region is defined as the region in which the fluid resides at each time t ∈ [0, T ]

Ω(t) =
⋃

0≤x≤L

Ω(t, x)

with its global counterpart
Ω :=

⋃
0≤t≤T

Ω(t). (6)

Ω(t, x) is the cross-section of fluid at the position x of the channel C:

Ω(t, x) =
{

(y, z) ∈ R2; α(x, z) ≤ y ≤ β(x, z) and d(x, y) ≤ z ≤ η(t, x, y)
}

(7)

and A(t, x) = |Ω(t, x)| is the wet area of the cross-section of fluid:

A(t, x) =

∫
Ω(t,x)

dω =

∫ y+(t,x)

y−(t,x)

η(t, x, y)−d(x, y) dy =

∫ maxy η(t,x,y)

d∗(x)

∫ β(x,z)

α(x,z)

1{d(x,y)≤z≤η(t,x,y)} dydz

(8)
where

y−(t, x) := min{y ∈ R; η(t, x, y) = d(x, y)} and y+(t, x) := max{y ∈ R; η(t, x, y) = d(x, y)}

stands for the left and the right transversal limit at z = η as shown in Fig. 1.

Figure 1: Geometric set-up
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We assume that the flow is governed, on the space-time domain Ω, by the three-dimensional
irrotational and incompressible Euler equations

div [ρ0u] = 0,

∂

∂t
(ρ0u) + div [ρ0u⊗ u] +∇p− ρ0F = 0

(9)

where u = (u, v, w) is the velocity field, ρ0 is the density of the fluid (taken to be constant),
F = (0, 0,−g) is the external force of gravity with constant g and p is the pressure.
These equations are completed by the irrotational equation:

curl [u] = 0 . (10)

2.2 Boundary conditions
For a given time t ∈ [0, T ] and x ∈ [0, Lc], the boundary of the fluid cross-section Ω(t, x) is
composed of a free surface Γfs(t, x) = {(y, z) ∈ R2; z = η(t, x, y)} and a wet boundary (part of the
boundary in contact with water) Γwb(x) = {(y, z) ∈ R2; z = d(x, y)} such that

∂Ω(t, x) = Γfs(t, x) ∪ Γwb(x) .

We prescribe a kinematic boundary condition at the free surface boundary and a no-penetration
condition at the wet boundary as described below.

2.2.1 Free surface boundary conditions

Assuming a kinematic boundary condition, we set for all points m(t, x, y) = (x, y, η(t, x, y)) ∈
Γfs(t, x),

u · nfs = ∂tm · nfs

where

nfs(t, x, y) =
1√

1 + (∂xη(t, x, y))
2

+ (∂yη(t, x, y))
2

−∂xη(t, x, y)
−∂yη(t, x, y)

1


is the unit outward normal vector to the free surface. This leads to the following explicit form of
the kinematic boundary condition

∂tη + u∂xη + v∂yη = w on z = η . (11)

We also assume that the pressure at the free surface level is equal to the atmospheric pressure p0

p = p0 on z = η . (12)

In the sequel, without loss of generality, we set p0 = 0.

2.2.2 Wet boundary conditions

On the wet boundary, i.e., the part of the boundary in contact with water, prescribing a no-
penetration condition, we set for all points m(x, y) = (x, y, d(x, y)) ∈ Γwb(x),

u · nwb = 0

which leads to the following explicit form:

u∂xd+ v∂yd = w on z = d (13)
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where

nwb(x, y) =
1√

1 + (∂xd(x, y))
2

+ (∂yd(x, y))
2

∂xd(x, y)
∂yd(x, y)
−1


is the unit outward normal vector to the wet boundary. In view of the definition of the function
ϕ, see Eq. (5), the no-penetration condition can be also expressed as a function of (x, z) by

u∂xϕ+ w∂zϕ = v on y = ϕ (14)

where the unit outward normal vector to the wet boundary is

nwb(x, z) =
1√

1 + (∂xϕ(x, z))
2

+ (∂zϕ(x, z))
2

∂xϕ(x, z)
−1

∂zϕ(x, z)

 .

In this work, we neglect some physical process arising in river flows: sedimentation, exchange
between groundwater flows and subsurface flows, porosities, etc. However, these phenomena can
be easily integrated to this work, see for instance [10, 12], by considering the following boundary
condition u · nwb = (∂tm + I) · nwb where ∂tm models the evolution in time of the bed and I is
the infiltration function. I models the amount of water that leaves (I > 0) or enters (I < 0) the
flow per elementary boundary element.

3 Width-averaged and depth-averaged asymptotic expansions
In this section, we present the strategy to derive the section-averaged non-linear dispersive model
(see §4). To this end, we first introduce in §3.1 the dimensionless problem by introducing the clas-
sical dispersive parameter µ2. We also introduce a dispersive parameter µ1 but in the transversal
direction. In this work, we assume that µ1 < µ2 to obtain the section-averaged dispersive model
with respect to µ2 as usually done. Due to the structure of the equations, we cannot obtain the
model by a direct section-averaging. We need to develop first suitable asymptotic expansions in
two steps, briefly summarized below:

• in §3.2, the Euler equations (9)-(10) are width-averaged to get the following asymptotic
expansion of the horizontal fluid velocity

u(t, x, y, z) = 〈u〉(t, x, z) +O(µ1)

where 〈u〉 is the width-averaged velocity.

• in §3.3, the width-averaged Euler equations allows to obtain the asymptotic expansion of the
horizontal width-averaged fluid velocity

〈u〉(t, x, z) = u(t, x) + µ2f(u(t, x),Ω(t, x)) +O(µ2
2)

where ū is the section-averaged velocity for some function f given later on.

Thus, the asymptotic expansion of u up to order O(µ2
2), the so-called "motion by slices" (see

[14]), can be written as follows:

u(t, x, y, z) = u(t, x) + µ2f(u(t, x),Ω(t, x)) +O(µ2
2) .

Finally, using these asymptotic expansions, we are able in §4 to section-average the Euler equations
(9)-(10) to obtain the new one-dimensional non-linear dispersive equations.

7



3.1 Dimensionless Euler equations
Let us consider the following scales involved in the wave motion: L a characteristic wave-length in
the longitudinal direction, H2 a characteristic water depth, H1 a characteristic scale of the channel
width and h1 a characteristic wave-length in the transversal direction. We then define the classical
dispersive parameter µ2 (see e.g. [19])

µ2 =
H2

2

L2

and µ1 =
h2

1

L2
where µ1 is also a dispersive parameter but in the transversal direction.

In the following, we consider the asymptotic regime:

h1 < H1 = H2 � L

such that the following inequality holds
µ1 < µ2

2 .

Under these assumptions, we get the following ordering:

µ2
1 <

µ2
1

µ2
< min

(
µ2

1

µ2
2

, µ1µ2

)
< max

(
µ2

1

µ2
2

, µ1µ2

)
< µ1 < min

(
µ1

µ2
, µ2

2

)
< max

(
µ1

µ2
, µ2

2

)
< µ2 .

We also introduce U = (U, V =
√
µ1U,W =

√
µ2U) the scale of fluid velocity so that V < W <

U . The time scale is T =
L

U
. We set P =

p

ρ0
and we define P = U2.

This allows us to introduce the dimensionless quantities of time t̃, space (x̃, ỹ, z̃), pressure P̃ ,
depth d̃, water elevation η̃ and velocity field (Ũ , Ṽ , W̃ ), via the following scaling relation

x̃ =
x

L
, P̃ =

P

P
, ϕ̃ =

ϕ

h1
,

ỹ =
y

h1
, ũ =

u

U
, d̃ =

d

H2
,

z̃ =
z

H2
, ṽ =

v

V
, η̃ =

η

H2
,

t̃ =
t

T
, w̃ =

w

W
.

(15)

Finally, we define the non-dimensional Froude’s number

Fr =
U√
gH2

.

For the sake of clarity and simplicity dropping ·̃, dividing the Euler equations (9) by ρ0, using the
dimensionless variables (15), and reordering the terms with respect to the powers of µ1 and µ2,
the dimensionless incompressible Euler system (9) reads as follows:

∂xu+ ∂yv + ∂zw = 0 (16)
∂tu+ u∂xu+ v∂yu+ w∂zu+ ∂xP = 0 (17)

µ1 (∂tv + u∂xv + v∂yv + w∂zv) + ∂yP = 0 (18)

µ2 (∂tw + u∂xw + v∂yw + w∂zw) + ∂zP = − 1

Fr
2 (19)
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The boundary conditions (11), (12), (13) and (14) read

∂tη + u∂xη + v∂yη = w and P = 0 on z = η (20)
u∂xd+ v∂yd = w on z = d (21)

or u∂xϕ+ w∂zϕ = v on y = ϕ (22)

and the irrotational equation (10) becomes

∂yu = µ1∂xv, µ1∂zv = µ2∂yw, ∂zu = µ2∂xw . (23)

3.2 3D-2D model reduction and asymptotic expansions
In this first step, we focus on the width-averaging of System (16)–(19). In particular, we compute
the asymptotic expansions of the velocity (u, v) and the pressure P of System (16)–(19) as a function
of their width-averages. We obtain what we call "flat free surface approximation" property which
means that the variations of the free surface following y can be neglected in the three-dimensional
Euler system (16)–(19). Finally, the asymptotic approximation of the width-averaged Euler system
is obtained. This averaged model is the starting point for the second step (see §3.3).

3.2.1 Asymptotic expansions of the fluid velocity

Given a function (t, x, y, z) 7→ X(t, x, y, z) and (x, z) 7→ q(x, z), we define Xq as follows

Xq(t, x, z) := X (t, x, q(x, z), z)

and we use the notations

w =

(
u
w

)
, divx,z [w] = ∂xu+ ∂zw and ∇x,z(u) =

(
∂xu
∂zu

)
to represent the vector w, the two dimensional divergence operator and the gradient operator with
respect to the variable x and z.
Integrating the two first equations of the irrotational equations (23) for s ∈ [α(x, z), y], we get

u(t, x, y, z) = uα (t, x, z) + µ1

∫ y

α(x,z)

∂xv ds (24)

and
w(t, x, y, z) = wα (t, x, z) +

µ1

µ2

∫ y

α(x,z)

∂zv ds . (25)

Then, integrating the divergence equation (16) for s ∈ [α(x, z), y], we obtain∫ y

α(x,z)

∂yv dy = −
∫ y

α(x,z)

divx,z [w] dy . (26)

Thanks to Eqs. (24), (25) and (26) and the wet boundary condition (22) for ϕ = α the fluid
velocity v is approximated by

v(t, x, y, z) = −divx,z [wα(t, x, z)(y − α(x, z))] +O

(
µ1

µ2

)
. (27)

Coming back to Eqs. (24) and (25) together with Eq. (27), the fluid velocity (u,w) can be written
as

u(t, x, y, z) = uα(t, x, z)− µ1

2
∂xdivx,z

[
wα(t, x, z)(y − α(x, z))2

]
+O

(
µ2

1

µ2

)
(28)

and

w(t, x, y, z) = wα(t, x, z)− µ1

2µ2
∂zdivx,z

[
wα(t, x, z)(y − α(x, z))2

]
+O

(
µ2

1

µ2
2

)
. (29)
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3.2.2 Width-averaged Euler equations

Given a function (t, x, y, z) 7→ X(t, x, y, z), we define the width-average of X by the quantity

〈X〉(t, x, z) :=
1

σ(x, z)

∫ β(x,z)

α(x,z)

X(t, x, y, z) dy

where σ(x, z) = β(x, z)− α(x, z) is the width of the section at the elevation z.
We average the equations (16)–(19) for y ∈ [α(x, z), β(x, z)] using Leibniz integral rule, to get

the width-averaged Euler system:

∂

∂x
(σ〈u〉) +

∂

∂z
(σ〈w〉) = 0

∂

∂t
(σ〈u〉) +

∂

∂x
(σ〈u2〉) +

∂

∂z
(σ〈uw〉) +

∂

∂x
(σ〈P 〉) = Pβ

∂β

∂x
− Pα

∂α

∂x

µ2

(
∂

∂t
(σ〈w〉) +

∂

∂x
(σ〈uw〉) +

∂

∂z
(σ〈w2〉)

)
+

∂

∂z
(σ〈P 〉) = − σ

Fr
2 + Pβ

∂β

∂z
− Pα

∂α

∂z

Pβ = Pα − µ1

〈
Dv

Dt

〉
(30)

where
Dv

Dt
stands for the material derivative

Dv

Dt
:= ∂tv + u∂xv + v∂yv + w∂zv .

Asymptotic expansions of the width-averaged terms in System (30).
Thanks to the expressions (28) and (29), the average of the terms in System (30) can be written

σ(x, z)〈u〉(t, x, z) = σ(x, z)uα(t, x, z)− µ1

6
∂xdivx,z

[
wα(t, x, z)σ(x, z)3

]
+O

(
µ2

1

µ2

)
, (31)

σ(x, z)〈w〉(t, x, z) = σ(x, z)wα(t, x, z)− µ1

6µ2
∂zdivx,z

[
wα(t, x, z)σ(x, z)3

]
+O

(
µ2

1

µ2
2

)
,(32)

σ(x, z)〈u2〉(t, x, z) = σ(x, z)u2
α(t, x, z) +O

(
µ2

1

µ2

)
, (33)

σ(x, z)〈w2〉(t, x, z) = σ(x, z)w2
α(t, x, z) +O

(
µ2

1

µ2
2

)
, (34)

σ(x, z)〈uw〉(t, x, z) = σ(x, z)uα(t, x, z)wα(t, x, z)

−uα(t, x, z)
µ1

6µ2
∂zdivx,z

[
wα(t, x, z)σ(x, z)3

]
+O

(
µ2

1

µ2
2

)
. (35)

Irrotationality.
We lose the irrotational condition (23) by width-averaging, since we get

∂

∂z
(σ〈u〉) = µ2

∂

∂x
(σ〈w〉) + (uβ∂zβ − wβ∂xβ − uα∂zα+ wα∂xα) .

However, using the last equation in (23) together with Eqs. (28) and (29), we obtain

∂uα
∂z

= µ2
∂wα
∂x

+O(µ1) . (36)

The approximated irrotational condition can be also written as a function of (〈u〉, 〈w〉) by means
of Eqs. (31) and (32).
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Asymptotic expansion of the pressure.
The last equation in System (30) allows to write

Pβ = Pα +O(µ1) . (37)

Thanks to (37), on one hand, the terms in the right hand side of the second and third equations
of System (30) can be simplified in

Pβ∇x,z (β)− Pα∇x,z (α) = Pα∇x,z (σ) +O(µ1) .

On the other hand, coming back to System (16)–(19) together with Eq. (37), integrating Eq. (18)
for s ∈ [α(x, z), y], we show that

P (t, x, y, z) = Pα(t, x, z)− µ1

∫ y

α(x,z)

Dv

Dt
ds = Pα(t, x, z) +O(µ1) . (38)

As a consequence, the width-averaged pressure 〈P 〉 can be approximated by Pα at order O(µ1),
i.e.

〈P 〉(t, x, z) = Pα(t, x, z) +O(µ1) .

Asymptotic expansion of the free surface.
Using Eqs. (29) and (38) in Eq. (19), we can write the z-gradient of the pressure as

∂

∂z
Pα(t, x, z) = − 1

Fr
2 − µ2

D

Dt
wα(t, x, z) +O(µ1) .

Next, integrating this equation for s ∈ [z, η(t, x, y)] using the boundary condition (20) with Eq.
(38) lead to

Pα(t, x, z) =
η(t, x, y)− z

Fr
2 + µ2

∫ η(t,x,y)

z

D

Dt
wα(t, x, s) ds+O(µ1) .

Thus, taking the y-derivative of this expression yields to

0 = ∂yη

(
1

F 2
r

+ µ2
D

Dt
wα|z=η

)
+O(µ1) = −∂yη ∂zP|z=η +O(µ1) .

Consequently, since ∂zP|z=η 6= 0, we get ∂yη = O(µ1), i.e., we obtain the flat surface approximation

η(t, x, y) = ηeq(t, x) +O(µ1) (39)

for some function ηeq defined hereafter. It means that one can neglect the y-variations of the free
surface of the three-dimensional model (16)–(19) (see Fig. 2). In other words, the fluid cross-section
Ω(t, x) (7) and the wet area A(t, x) (8) can be simplified in

Ωeq(t, x) =
{

(y, z) ∈ R2; α(x, z) ≤ y ≤ β(x, z) and d∗(x) ≤ z ≤ ηeq(t, x)
}

(40)

with
Aeq = |Ωeq(t, x)| (41)

11



thanks to
A(t, x) =

∫
Ω(t,x)

dy dz

=

∫ y+(t,x)

y−(t,x)

η(t, x, y)− d(x, y) dy

=

∫ y+(t,x)

y−(t,x)

ηeq(t, x)− d(x, y) dy +O(µ1)

=

∫ ηeq(t,x)

d∗(x)

σ(x, z) dz +O(µ1)

=

∫
Ωeq(t,x)

dy dz +O(µ1)

= Aeq(t, x) +O(µ1)

(42)

Therefore, in the following, we consider the fluid cross-section Ωeq instead of Ω for which compu-
tations are easier. In the following, we set ηeq as

ηeq(t, x) = η(t, x, y∗(x)) .

Figure 2: Equivalent geometric set-up

Width-averaged equations.
Using all the previous equations (31)–(35) and (38)–(39) in System (30), we obtain the width-

averaged Euler equations expressed as the couple of unknown (wα, Pα):

divx,z [σwα] +O

(
µ2

1

µ2
2

)
=

µ1

6µ2

∂

∂z

(
σ∂z

(
divx,z

[
wασ

3
]))

∂

∂t
(σuα) + divx,z [σuαwα] +

∂

∂x
(σPα) +O

(
µ2

1

µ2
2

)
= Pα

∂σ

∂x
+

µ1

6µ2
∂x
(
uα∂zdivx,z

[
wασ

3
])

µ2

(
∂

∂t
(σwα) + divx,z [σwαwα]

)
+

∂

∂z
(σPα) = − σ

Fr
2 + Pα

∂σ

∂z
+O(µ1)

(43)
where the fluid domain is now defined (see Eqs. (39)-(40) and Fig. 3) by

〈Ω〉(t, x) = {z ∈ R; d∗(x) ≤ z ≤ ηeq(t, x)} .

For a given time t ∈ [0, T ] and x ∈ [0, Lc], the boundary of the fluid cross-section ∂〈Ω〉(t, x) is
composed of a free surface 〈Γfs〉(t, x) = {z ∈ R; z = ηeq(t, x)} and a wet boundary 〈Γwb〉(x) =
{z ∈ R; z = d∗(x)} such that

∂〈Ω〉(t, x) = 〈Γfs〉(t, x) ∪ 〈Γwb〉(x)

12



The unit outward normal vector to the free surface is

〈nfs〉(t, x) =
1√

1 + (∂xηeq(t, x))
2

(
−∂xηeq(t, x)

1

)

and the unit outward normal vector to the wet boundary is

〈nwb〉(x) =
1√

1 + (∂xd∗(x))
2

(
∂xd
∗(x)
−1

)
.

Figure 3: Width-averaged geometric set-up

These equations are completed with the irrotational condition (36) and the following boundary
conditions

∂ηeq

∂t
+ uα

∂ηeq

∂x
= wα +O

(
µ1

µ2

)
and Pα = O(µ1) on z = ηeq (44)

uα∂xd = wα +O

(
µ1

µ2

)
on z = d (45)

which are obtained through Eqs. (20) and (21) using Eqs. (27), (28), (29).
These end the first step.

3.3 2D-1D like model reduction and asymptotic expansions
In what follows, we note fb(t, x) = fα(t, x, d∗(x)) for a given function f and S

S(x, z) =

∫ z

d∗(x)

σ(x, s) ds

the wet area of water between d∗(x) and z.
In the sequel, we consider the fluid cross-section (40) Ωeq(t, x) instead of Ω(t, x) thanks to (42)

(see also (7)). Thus, we define the local height of the water in Ωeq(t, x) by

heq(t, x, y) = ηeq(t, x)− d(x, y) .

In this new setting, the section-average f̄eq of a function f can be defined by

f̄eq =
1

Aeq(t, x)

∫ ηeq(t,x)

d∗(x)

∫ β(x,z)

α(x,z)

f(t, x, y, z) dydz .
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3.3.1 Asymptotic expansion of the fluid velocity

Let us first integrate Eq. (36) for s ∈ [d∗(x), z], to get

uα(t, x, z) = ub(t, x) + µ2

∫ z

d∗(x)

∂wα
∂x

ds+O(µ1) . (46)

Then, dropping all the lower terms in O
(
µ1

µ2

)
in the first equation of System (43):

∂

∂z
(σwα) = − ∂

∂x
(σuα) +O

(
µ1

µ2

)
and integrating the above equation for s ∈ [d∗(x), z], keeping in mind the boundary condition (45),
we obtain

σ(x, z)wα(t, x, z) = − ∂

∂x

(∫ z

d∗(x)

σuα ds

)
+O

(
µ1

µ2

)
.

By means of Eq. (46), the previous equation becomes:

wα(t, x, z) = − 1

σ(x, z)

∂

∂x
(ub(t, x)S(x, z)) +O(µ2) . (47)

By injecting Eq. (47) in (46), we get

uα(t, x, z) = ub(t, x)− µ2

∫ z

d∗(x)

∂xS(ub, x, s) ds+O(µ2
2) (48)

where
S(u, x, z) =

1

σ(x, z)

∂

∂x
(uS(x, z)) . (49)

As a consequence, we have

ūeq =
1

Aeq(t, x)

∫ ηeq(t,x)

d∗(x)

∫ β(x,z)

α(x,z)

u(t, x, y, z) dy dz

=
1

Aeq(t, x)

∫ ηeq(t,x)

d∗(x)

σ(x, z)〈u〉(t, x, z)dz

=
1

Aeq(t, x)

∫ ηeq(t,x)

d∗(x)

σ(x, z)uα(t, x, z) dz +O(µ1)

and through Eq. (48), we obtain

ūeq(t, x) =
1

Aeq(t, x)

∫ ηeq(t,x)

d∗(x)

σ(x, z)

(
ub(t, x)− µ2

∫ z

d∗(x)

∂xS(ub, x, s) ds

)
dz +O(µ2

2)

= ub(t, x)− µ2

Aeq(t, x)

∫ ηeq(t,x)

d∗(x)

σ(x, z)

(∫ z

d∗(x)

∂xS(ub, x, s) ds

)
dz +O(µ2

2)

i.e.

ub(t, x) = ūeq(t, x) +
µ2

Aeq(t, x)

∫ ηeq(t,x)

d∗(x)

σ(x, z)

(∫ z

d∗(x)

∂xS(ub, x, s) ds

)
dz +O(µ2

2) . (50)

Using the fact that
ub(t, x) = ūeq(t, x) +O(µ2)
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in Eq. (50) allows to write ub(t, x) as a function of ūeq:

ub(t, x) = ūeq(t, x) +
µ2

Aeq(t, x)

∫ ηeq(t,x)

d∗(x)

σ(x, z)

(∫ z

d∗(x)

∂xS(ūeq, x, s) ds

)
dz +O(µ2

2) . (51)

Finally, thanks to (24), (48), (51), by linearity of S (49), we obtain

u(t, x, y, z) = uα(t, x, z) +O(µ1)

= ub(t, x)− µ2

∫ z

d∗(x)

∂xS(ub, x, s) ds+O(µ2
2)

= ūeq(t, x) + µ2B0(ūeq, x, z) +O(µ2
2)

(52)

where

B0(ūeq, x, z) =
1

Aeq(t, x)

∫ ηeq(t,x)

d∗(x)

(
σ(x, z)

∫ z

d∗(x)

∂xS(ūeq, x, s) ds

)
dz −

∫ z

d∗(x)

∂xS(ūeq, x, s) ds .

(53)
Repeating the computations with Eqs. (29), (47) and (52), we find

w(t, x, y, z) = −S(ūeq, x, z) +O

(
µ1

µ2

)
. (54)

3.3.2 Pressure decomposition

Integrating for s ∈ [z, ηeq], the third equation of System (43), we get

Pα(t, x, z) =
(ηeq(t, x)− z)

Fr
2 +

∫ ηeq(t,x)

z

µ2

σ

(
∂

∂t
(σwα) + divx,z [σwαwα]

)
ds+O(µ1) .

Thanks to the free surface boundary condition (44), Eq. (52) and Eq. (54), we obtain the asymp-
totic expansion of the pressure P at order O(µ2

2)

P (t, x, y, z) = Ph(t, x, z) + µ2Pnh(t, x, z) +O(µ2
2)

where
Ph(t, x, z) =

(ηeq(t, x)− z)
Fr

2 (55)

is the usual hydrostatic pressure and

Pnh(t, x, z) =

∫ ηeq(t,x)

z

1

2σ(x, s)2
∂z
(

(σ(x, s)S(ūeq, x, s))
2 )

ds

−
∫ ηeq(t,x)

z

∂tS(ūeq, x, s) +
ūeq(t, x)

σ(x, s)
∂x(σ(x, s)S(ūeq, x, s)) ds

is a non-hydrostatic pressure.
Handling the terms in the non-hydrostatic pressure differently, one can write

Pnh(t, x, z) = D(ūeq)

∫ ηeq

z

S(x, s)

σ(x, s)
ds+

∫ ηeq

z

Q(ūeq, S, σ) ds (56)

where
D(u) = (∂xu)

2 − ∂t∂xu− u∂2
xu , (57)

and

Q(u, S, σ) =
u2

σ(x, s)

(
∂xS(x, s)∂xσ(x, s)

σ(x, s)
− ∂2

xS(x, s)

)
+∂x

(
u2

2

)
S(x, s)∂xσ(x, s)

σ(x, s)2
− (∂tu+ u∂xu)

∂xS(x, s)

σ(x, s)

. (58)

The non-hydrostatic pressure (56) is more suitable to have a formulation akin to the SGN equations
(2)-(4).
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4 A new non-linear dispersive model

In this section,we assume that the flow is governed, on the space-time domain Ωeq =
⋃

0≤t≤1

Ωeq(t),

instead of Ω (see Def. (6)), by the three-dimensional incompressible and irrotational Euler equa-
tions (16)–(19), (23) where the wet region is defined as the region in which the fluid resides at each
time t ∈ [0, 1], Ωeq(t) =

⋃
0≤x≤1

Ωeq(t, x) with Ωeq(t, x) the fluid cross-section defined by (40).

These equations (16)–(19) are completed with the kinematic boundary condition at the free
surface (20) Γfs(t, x) = {z ∈ R; z = ηeq(t, x)}, and a no-penetration condition on the wet boundary
(21) Γwb(x) = {(y, z) ∈ R2; z = d(x, y)} where

∂Ωeq(t, x) = Γfs(t, x) ∪ Γwb(x) .

These boundary conditions can be written under the following form:∫
∂Ωeq(t,x)

(∂tm + u∂xm− v) · n ds = 0 on ∂Ωeq(t, x) (59)

where m(t, x, y, z) =

{
(y, ηeq(t, x)) if m ∈ Γfs(t, x)
(y, d(x, y)) if m ∈ Γwb(t, x)

is a boundary point,

n =

{
nfs if m ∈ Γfs(t, x)
nwb if m ∈ Γwb(t, x)

stands for the outward unit normal vector in the Ωeq(t, x)-plane

(see Fig. 2) and v =

(
v
w

)
.

To work with the wet region, we introduce its indicator function

Φ(t, x, y, z) := 1Ωeq(t,x) for all t, x, y, z ∈ R

where

1P :=

{
1 if P is true,
0 if P is false.

The function Φ is advected by the flow so its material derivative, with respect to the flow u, must
therefore be zero. Moreover, thanks to the incompressibility condition, Φ satisfies the following
indicator transport equation

∂tΦ + ∂x(Φu) + divy,z [Φv] = 0 on Ωeq(t) (60)

where divy,z [v] = ∂yv + ∂zw with v = (v, w).

4.1 Eq. of the conservation of the mass
Integrating Eq. (60) over the section Ωeq(t, x) and using Leibniz integral rule, we get the following
conservation of the mass equation∫

Ωeq(t,x)

∂tΦ + ∂x(Φu) + divy,z [Φv] dy dz = ∂tAeq + ∂xQeq = 0 (61)

where Qeq is the water discharge
Qeq = Aeqūeq (62)

and ūeq is Ωeq(t, x) section-averaged velocity given by

ūeq =
1

Aeq(t, x)

∫
Ωeq(t,x)

u(t, x, y, z) dydz .
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4.2 Eq. of the conservation of the momentum
In order to get the momentum equation of the section-averaged free surface model, we integrate
each terms of (17) along the section Ωeq(t, x) as follows:∫

Ωeq(t,x)

∂t(u)︸ ︷︷ ︸
a1

+ ∂x(u2)︸ ︷︷ ︸
a2

+ divy,z [uv]︸ ︷︷ ︸
a3

+ ∂xP︸︷︷︸
a4

dy dz = 0 .

4.2.1 Computation of the term
∫

Ωeq(t,x)

a1 dy dz

We have ∫
Ωeq(t,x)

∂t(u)dy dz = ∂t

∫
Ωeq(t,x)

u dy dz −
∫
∂Ωeq(t,x)

u∂tm · n ds . (63)

4.2.2 Computation of the term
∫

Ωeq(t,x)

a2 dy dz

Thanks to the asymptotic approximation of the term u (52) up to order O(µ2
2), the non-linear term

u2 can be written as:

u2(t, x, y, z) = ūeq(t, x)2 + 2µ2ūeqB0(ūeq, x, z) +O
(
µ2

2

)
.

Therefore, we have∫
Ωeq(t,x)

∂x(u2) dy dz = ∂x

∫
Ωeq(t,x)

u2 dy dz −
∫
∂Ωeq(t,x)

u2∂xm · n ds

i.e. ∫
Ωeq(t,x)

∂x(u2) dy dz = ∂x(Qeq
2/Aeq) + µ2∂x

(
QeqB(x,Qeq/Aeq)

Aeq

)
−
∫
∂Ωeq(t,x)

u2∂xm · n ds+O
(
µ2

2

) (64)

where B stands for the quadratic part of the fluid velocity, defined via B0 (53), and

B(x,Qeq/Aeq) =

∫
Ωeq(t,x)

2B0(Qeq/Aeq, x, z) dy dz = 2

∫ ηeq(t,x)

d∗(x)

σ(x, z)B0(Qeq/Aeq, x, z) dz = 0 .

4.2.3 Computation of the term
∫

Ωeq(t,x)

a3 dy dz

We have ∫
Ωeq(t,x)

divy,z [uv] dy dz =

∫
∂Ωeq(t,x)

uv · n ds . (65)

4.2.4 Computation of the term
∫

Ωeq(t,x)

a1 + a2 + a3 dy dz

Gathering the results of the computations (63), (64) and (65), using the boundary conditions (59),
we get∫

Ωeq(t,x)

a1 + a2 + a3dy dz = ∂tQeq + ∂x(Qeq
2/Aeq) + µ2∂x

(
QeqB(x,Qeq/Aeq)

Aeq

)
−
∫
∂Ωeq(t,x)

u (∂tm + u∂xm− v) · n ds+O
(
µ2

2

)
= ∂tQeq + ∂x(Qeq

2/Aeq) +O
(
µ2

2

)
.

(66)
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4.2.5 Computation of the term
∫

Ωeq(t,x)

a4dy dz

We apply the Leibniz rule to the gradient of the pressure and we obtain∫
Ωeq(t,x)

∂xP dy dz = ∂x

∫
Ωeq(t,x)

P dy dz −
∫
∂Ωeq(t,x)

P∂xm · n ds (67)

where ∫
∂Ωeq(t,x)

P∂xm · n ds =

∫
Γwb(x)

P∂xm · n ds

thanks to the free surface boundary condition (12).
To compute the above boundary integral, we consider the parametrisation

z ∈ [d∗(x), ηeq(t, x)] 7→m(x, z) =

(
ϕ(x, z)
z

)
where ϕ is given by (5). The unit speed curve parameterisation is

‖∂ym(x, z)‖ =

√
1 + (∂yϕ(x, z))

2
.

The outward unit normal is given by

n =


1

‖n‖

(
−1
∂zα

)
if ϕ(x, z) < y∗(x)

1

‖n‖

(
1
∂zβ

)
otherwise

where
‖n(x, z)‖ = ‖∂ym(x, z)‖ .

Thus, we obtain ∫
Γwb(x)

P∂xm · n ds =

∫ ηeq(t,x)

d∗(x)

P (t, x, z)∂xσ(x, z) dz .

Hydrostatic part: (see Eq. (55)) Using P = Ph in Eq. (67), we get:∫
Ωeq(t,x)

∂xPh(t, x, z) dy dz = ∂x(I1(t, x))− I2(t, x) (68)

where

I1(t, x) =

∫
Ωeq(t,x)

Ph(t, x, z) dy dz =

∫ ηeq(t,x)

d∗(x)

(ηeq(t, x)− z)
Fr

2 σ(x, z) dz (69)

and

I2(t, x) =

∫ ηeq(t,x)

d∗(x)

(ηeq(t, x)− z)
Fr

2 ∂xσ(x, z) dz (70)

are respectively the hydrostatic pressure term and the hydrostatic pressure source term.

Non-hydrostatic part: (see Eq. (56)) Using P = Pnh in Eq. (67), we get∫
Ωeq(t,x)

∂xPnh(t, x, z) dy dz = ∂x(DI1(t, x))−DI2(t, x) (71)
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where

DI1(t, x) =

∫ ηeq(t,x)

d∗(x)

Pnh(t, x, z)σ(x, z) dz

= G(x,Aeq(t, x))D(ūeq(t, x))

+

∫ ηeq

d∗(x)

σ(x, z)

∫ ηeq

z

Q(ūeq(t, x), S(x, s), σ) ds dz

where
G(x,Aeq) =

∫ ηeq

d∗(x)

σ(x, z)

∫ ηeq

z

S(x, s)

σ(x, s)
ds dz . (72)

The quantities D and Q are given by (57), (58), and

DI2(t, x) =

∫ ηeq(t,x)

d∗(x)

Pnh(t, x, z)∂xσ(x, z) dz . (73)

Each term DIj for j = 1, 2 is the non-hydrostatic counterpart of the term Ij for j = 1, 2.

Remark 1. The terms Ij(t, x) and DIj(t, x), respectively, can be written Ij(x,Aeq(t, x)) and
DIj(x,Aeq(t, x), Qeq(t, x) for j = 1 and j = 2. In what follows, we make use of these notations.

Finally, gathering Eq. (68) and Eq. (71), noting

G(x,Aeq, Qeq) = −∂x

(∫ ηeq

d∗(x)

σ(x, z)

∫ ηeq

z

Q
(
Qeq

Aeq
, S, σ

)
ds dz

)
+DI2 , (74)

we obtain ∫
Ωeq(t,x)

∂xP dy dz = ∂x(I1(x,Aeq))− I2(x,Aeq)

+µ2

(
∂x(G(x,Aeq)D(ūeq))− G(x,Aeq, Qeq)

) (75)

Gathering results (66) and (75), we get the equation of the conservation of the momentum.

4.3 The dispersive model for arbitrary non rectangular channel/river
From now on, we omit the notations Xeq and X for the sake of readability.
Gathering Eqs. (61),(66) and (75), we present the new one-dimensional dispersive model for

open channel/river flows
∂tA+ ∂xQ = 0

∂tQ+ ∂x

(
Q2

A
+ I1(x,A)

)
+ µ2∂x(G(x,A)D(u)) = I2(x,A) + µ2G(x,A,Q) +O(µ2

2)
(76)

where A is the wet area (41), Q is the water discharge (62), I1 (resp. I2) is the hydrostatic pressure

(resp. source) terms (69) (resp. (70)), G(x,A) (72) generalises
h3

3
in the classical SGN equations

(see (3)), G(x,A,Q) (74) extends the uneven bottom source term in the classical SGN equations
and ∂x(G(x,A)D(u)) is the dispersive term where D is given by (57).
The new section-averaged model extends the section-averaged free surface model for open channel

flows [4, 10] by taking µ2 = 0 and extends the SGN equations for uneven bottom [1, 17, 30, 31] to
arbitrary channel/river section.
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4.4 The dispersive model for rectangular section
For the specific case of the rectangular section, almost all the previous computations are the same.
The changes are mainly in the geometrical definition and the boundaries of the channel.
We consider the motion of an incompressible and irrotational fluid with constant density ρ0 > 0

in a three dimensional domain (see Fig. 4)

Ω(t) =
{

(x, y, z) ∈ R3; x ∈ [0, Lc], α(x) ≤ y − y∗(x) ≤ β(x), d(x) ≤ z ≤ η(t, x)
}

where y∗(x) describes the transversal variation of the channel with respect to the main channel
direction, defined by

y∗(x) =
α(x) + β(x)

2

where α and β are the transversal limit of the channel. Here the bottom d is now a function of
x only and d∗(x) = d(x) by definition. Thus, in view of the definition of the fluid domain, since
σ = σ(x) = β(x)− α(x) and y−(x) = α(x) and y+(x) = β(x), the wet-area can be simply defined
by

A(t, x) = σ(x)〈h(t, x)〉

where 〈h(t, x)〉 is width-averaged of the local height of the water h(t, x, y) := η(t, x, y)− d(x), i.e.,
〈h(t, x)〉 = 〈η(t, x)〉 − d(x).
The boundary of the domain Ω(t) is defined by ∂Ω(t) and is decomposed into four parts: the

free surface Γfs(t), the wet boundary Γwb(t), the inflow boundary Γi(t) and the ouflow boundary
Γo(t). The wet boundary can be decomposed itself in three parts: the bottom Γb(t), the left lateral
boundary Γlb(t) and the right one Γrb(t).

Figure 4: Geometric set-up

The kinematic free surface condition and the wet boundary condition are the same, except the
definition of the outward unit normal vector which is now

nwb =



1√
1 + (∂xd)

2
(∂xd, 0, −1)

T if nwb = nb

1√
1 + (∂xα)

2
(∂xα, −1, 0)

T if nwb = nlb

1√
1 + (∂xβ)

2
(∂xβ, 1, 0)

T if nwb = nrb

Thus, we have now
u∂xd− w = 0 on Γb(t) ,
u∂xα− v = 0 on Γlb(t) ,
u∂xβ + v = 0 on Γrb(t) .
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Almost all the computations are the same to the exception of the computation of the
∫

Ωeq(t,x)

a4dy dz

which yields to different expression of the hydrostatic pressure source term (70) and the non hy-
drostatic pressure source term (73). Indeed, since we have now d∗(x) = d(x) and σ = σ(x), thus
Aeq(t, x) = σ(x)heq(t, x). Applying successively the one-dimensional Leibniz integral rule in the
y-direction and in the z-direction, we obtain∫

Ωeq(t,x)

∂xP dy dz = ∂x

(∫ ηeq(t,x)

d(x)

σ(x)P (t, x, z) dz

)

−
∫ ηeq(t,x)

d(x)

P (t, x, z)σ′(x) dz + σ(x)P (t, x, d(x))d′(x) .

Thus, in contrast with the non-rectangular case, the hydrostatic (70) and the non-hydrostatic (73)
pressure source terms read

I2(t, x) = σ′(x)
heq(t, x)2

2Fr
2 − σ(x)

heq(t, x)

Fr
2 d′(x) (77)

and

DI2(t, x) =

∫ ηeq(t,x)

d(x)

Pnh(t, x, z)σ′(x) dz − σ(x)Pnh(t, x, d(x))d′(x) . (78)

Thus, the model (76) is the same as before but with the formula (77) and (78) instead of (70) and
(73).

5 Conclusion
In this paper, we have proposed to derive the first section-averaged non-linear dispersive model for
open channel and river flows. These equations generalise both the classical section-averaged free
surface model and the well-known SGN equations to arbitrary section. The next steps will concern
the study of theoretical properties of the model and the numerical approximation for practical
applications.
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