
HAL Id: hal-02444350
https://hal.science/hal-02444350v1

Submitted on 17 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Testing a non-deterministic robot in simulation - How
many repeated runs ?

Clément Robert, Jérémie Guiochet, Hélène Waeselynck

To cite this version:
Clément Robert, Jérémie Guiochet, Hélène Waeselynck. Testing a non-deterministic robot in simula-
tion - How many repeated runs ?. The fourth IEEE International Conference on Robotic Computing
(IRC 2020), Mar 2020, Taichung, Taiwan. 8p., �10.1109/IRC.2020.00048�. �hal-02444350�

https://hal.science/hal-02444350v1
https://hal.archives-ouvertes.fr

Testing a non-deterministic robot in simulation -
How many repeated runs ?
Clément Robert, Jérémie Guiochet and Hélène Waeselynck
LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France

Email: firstname.lastname@laas.fr

Abstract—Testing autonomous robots requires test campaigns
in the field that could be expensive, risky for the system and
its environment, or even impossible to set up. To cope with
these limits, an expanding approach is to perform tests in virtual
environments using simulators. Due to the non-determinism of
the robot control and simulation execution, a test might fail or
pass with exactly the same inputs (same world and mission).
An important question is thus: how many runs are required
to activate a fault? We particularly focus in this paper on the
efficiency of repeated runs and world diversity in the context
of functional testing. We address this research question with an
industrial case study – an agricultural weeding robot developed
by Naı̈o Technologies. We conclude that, in this case study, test
input diversity is more efficient than repeated runs in order to
activate faults. More importantly, we propose an experimental
approach to assess the impact of the non-determinism, which
may be reused in other case studies.

Index Terms—testing, autonomous robot, non-determinism,
simulation, Software in the Loop (SiL) testing.

I. INTRODUCTION

The validation of an autonomous robot involves mission-
level tests, which may be done partly in the real world
(field testing) and partly in virtual worlds (simulation-based
testing). In both cases, a concern is that the robot may
not behave in the same way for repeated runs with similar
environmental conditions. It is true for field tests, not only
because reproducing identical inputs and environmental con-
ditions is actually impossible, but also because the system
itself is non-deterministic. The embedded software typically
has concurrent threads and processes executed at the same
time, yielding execution non-determinism. This execution non-
determinism is still observed in simulation where identical test
environments can be fully reproduced. It may have a strong
impact on the Pass/Fail outcome of a test case. Indeed, a single
pass observation does not mean that the test case would pass
for all possible executions. Now, suppose we adopt a repeated
execution scheme where each test case is run n times. On
the one hand, the repetition allows us to possibly catch non-
deterministic fails of the test case, that did not occur at the
first time. But on the other hand, we may end up spending
the test budget on the repetition of tests that pass n times,
instead of exploring new tests that would fail. This raises the
question of how many runs of a test case are to be performed
to efficiently uncover faults.

We address this question in the context of simulation-based
testing, where at least identical environment conditions can
be repeated for several runs. We consider an industrial case

study, an agricultural robot for autonomous weeding. The
system is tested in a Software-in-the loop (SIL) configuration,
that is, the real software is immersed in virtual worlds and
challenged with missions. The test platform includes several
components that we developed around the robot simulator: a
world generation facility, a test harness to automatically run
many simulations (400 in this case study) and a test oracle (i.e.,
the mechanism determining the Pass/Fail verdict) that checks a
set of expected properties. We use this platform to empirically
study the variability of the test verdicts over repeated runs, and
to experiment with various repeated execution schemes.

The structure of the paper is as follows. Section II discusses
related work. Section III introduces the case study: the Oz
robot. The experimental design is detailed in Section IV.
Section V presents the results and Section VI concludes.

II. RELATED WORK

A deterministic program produces identical output se-
quences when fed with identical input sequences. This is the
case for purely sequential program. In autonomous robotics,
the embedded software is generally composed of multiple
threads to interact with the environment, one for each subsys-
tem. In such systems, inter-process communication is generally
done at best effort, resulting in an asynchronous and non-
deterministic behavior. For example, ROS [17], a robotic mid-
dleware widely use in the research community, provides basic
services for the development of robot software. It relies on
a concurrent programming paradigm where nodes encapsulate
subsystems. Moreover, the decisional functions of autonomous
systems commonly use algorithms involving randomness (e.g.
heuristics for mission or trajectory planning), which also
induces non-determinism [8].

The problem of non-determinism is particularly relevant in
the context of testing cyber physical system in simulation. The
use of simulation for testing is increasing, mainly pushed by
automotive, with high fidelity simulators (e.g., see [26], [16]
or [15]). They provide specific virtual road environments
and have proved useful to thoroughly test advanced driver
assistance systems in simulation (see e.g., [1], [10]). On the
other hand, robots are as various as their applications and each
simulator must be built specifically. They are developed based
on simulation platforms that are more generic (Gazebo [9],
MORSE [6]) or also based on game engines like Unreal [25]
and Unity [24]. Such simulators can then be used for testing
the robots, like a rough terrain robot tested in [21], a rescue

robot in [2] or a drone in [12]. Generally speaking, a simulator
may be a complex system in its own right, introducing extra
sources of non-determinism into the simulation: concurrency
of the simulator’s components, use of remote services, time
(few things are more non-deterministic than a call to the
system clock), resource leaks, etc.

With the non-determinism effect – from the tested system
and possibly also the simulator – come difficulties for testing.
Automatic testing relies on a component that can determine
if a test has passed or failed: the oracle. Testing autonomous
systems is already hard as there is no ground truth about the
decisions to take during a mission. For example, as noted
by Tain and al. [22], specifying what an autonomous driving
system should do would essentially involve recreating the
logic of a human driver. Adding non-determinism makes the
task even harder as the same test inputs can yield different
oracle verdicts: test failures are seemingly random. The non-
determinism results in two main issues for testing: the confi-
dence in the oracle verdict to draw conclusions, and the ability
to reproduce the fail for diagnosis purposes (the same sequence
of events that previously led to a failure may not fail again). In
this paper, we focus on the first issue and study the variability
of the verdict for different runs of the same test case.

To remove or reduce non-determinism inside a system, an
idea is to come back to a temporal deterministic approach,
using for instance synchronous programming languages like
Esterel [4], Signal [3] or Lustre [7]. Examples of application
of synchronous languages to robotic architectures can be
found in [5] and [11]. Esterel (version 3) translates concurrent
program into equivalent sequential automata. It relies on the
synchrony hypothesis that states that every process is instan-
taneous (the system and the environment states do not change
during a process execution). However, some systems cannot
be split into atomic processes, thus cannot be fully converted
to a deterministic version. Autonomous systems typically
involve asynchronous communication between subprocesses
on several processors. Such is the case for the weeding robot
studied in this paper.

From the simulation side, Reymann and al. [18] propose
a framework to manage non-determinism induced by time
in distributed simulations. The approach consists in adding
a software layer that synchronizes the system by handling the
interprocess communication by batch. To ensure that there
is no deadlock, the method assumes that there is an upper
bound time value for subprocesses to produce a message. This
method is well-suited to make multiple simulators run together
deterministically, but does not address the non-determinism
inside each simulator or system.

Previous solutions focus on removing or reducing the non-
determinism. Another approach for testing is to take the
non-determinism explicitly into account. A classical way is
to repeat the same test several times in order to obtain
various execution patterns. The authors of [21] used repeated
runs to evaluate the difficulty level of generated navigation
missions for Mana, an outdoor robot developed at LAAS-
CNRS. They also studied the impact of non-determinism by

Fig. 1. Oz in operation (source: Naı̈o Technologies)

comparing the trajectories of the robot for a given mission in
the same 3D environment. The differences in the trajectories
were significant among the runs, in the order of meters or
even tens of meters. The authors of [14] used repeated runs
for the evolutionary testing of an autonomous cleaner agent.
The evolutionary approach requires a fitness function that
quantifies the adequacy of the generated test and guides the
generation of new ones. The evaluation of the fitness function
required multiple executions of the test cases to take the
non-determinism into account. A statistical analysis showed
that, for that specific case study, 5 executions were enough
to represent the overall result and for the fitness function to
converge.

Repeating the same test case may be necessary but is time
consuming. For a given test budget, it forces us to reduce
the number of test cases executed and therefore it reduces
the exploration of diverse test cases. In this paper we provide
a statistical study of repetition versus exploration to uncover
faults.

III. CASE STUDY: THE OZ ROBOT

Oz is an autonomous robot developed by Naı̈o Technolo-
gies [13] and aims at weeding crop fields (Figure 1). The
base frame is mounted over 2 by 2 powered wheels for tank
like movement. It is considered harmless for humans as it is
small (75 cm × 45 cm × 55 cm) and it can only reach a
maximum speed of 0.4 m.s−1. On the other hand, it can still
be dangerous: a faulty navigation function could send the robot
outside of the crop field (e.g., a road). Moreover, it would
be highly undesirable that the robot causes damages to the
crop plants. To complete its mission, the robot must navigate
inside the field while pulling a specific weeding tool. A field
is usually composed of multiple rows of vegetables. Thus, Oz
has to make U-turns when it exits a row and needs to enter the
next one. When the row interspace is considered too large by
the robot, it can decide that it needs a second pass to complete
the weeding. Figure 2 shows an example of a mission where
the robot performs one pass in the first interrow and two in
the second one.

A mission can be divided in 4 main phases that loops until
the mission is completed (See the letters on Figure 2): The

Fig. 2. Oz in simulation. Top: virtual crop field using Gazebo. Bottom: expected mission.

Approach (entering an interrow), the Cruise (while between
two rows), the Exit (exiting an interrow) and the U-turn. To
help the robot performing its mission, landmarks (red stakes)
must be placed at the extremities of each row. Oz is equipped
with several sensors that are used according to the mission
phase: a laser sensor (LiDAR 2D) and two cameras at the front.
It also has contact sensors around it to trigger an emergency
stop in the event of collision. The software version presented
in this paper is an R&D version that only uses the laser data to
perform the line tracking during the cruise phase. Cameras are
used to detect the red stakes, evaluate the robot position in the
field and consequently trigger a change in the mission phase.
The cameras also allow the use of stereo visual odometry
techniques to detect possible skidding of the robot during U-
turns.

IV. EXPERIMENTAL DESIGN

Naı̈o developed a SiL simulation platform for testing the
navigation of Oz. Naı̈o engineers and us have independently
tested an R&D version of the Oz controller (respectively by
field tests and by virtual tests) to compare the results and
evaluate the potential of simulation-based testing. In another
paper [19], we showed that many of the software issues found
by field tests are also found in simulation. The virtual tests
even found a new issue that was missed in the field. This
paper uses the same test platform and the same virtual tests as
in [19], but for a different purpose: here, our aim is to study
the impact of the non-determinism on the test results. We first
present the research questions addressed by our study and then
the test platform used by our experiments.

A. Research questions

The first question concerns the variability of test verdicts in
repeated runs of the same test case:

RQ1 - Does non-determinism strongly impact the verdict
assigned to a given test case?

Note that it could be the case that the detailed behavior
is not exactly the same, but the overall Pass/Fail verdict is
consistent from one run to the next. To study this question,
we consider 5 repeated runs of a sample of 80 test cases, and
measure the proportion of test cases that inconsistently fail.
Five runs correspond to the number of repetitions considered
in the original experiment [19], mainly for pragmatic reasons:
each run takes minutes, and it seemed reasonable to keep the
total test time (80x5 runs) around 24H. For our study of non-
determinism, we chose not to increase the number of runs.
We focus on large variation effects that make the inconsistent
verdicts likely, rather than on small effects that could surface
only after an unrealistically high number of repetitions.

The second question concerns the trade-off between the
exploration of new test cases and the repetition of previous
ones.

RQ2 - Repetition vs exploration: For this case study, what
would be the most efficient repetition strategy in order to
reveal the faults?

Overall, the original test campaign with 5 repeated runs
proved effective at revealing faults, but it is not clear what
the added value of the repetitions was. From the complete set
of runs, we extract different subsets to mimic strategies with
a lower number of repetitions per test case. Then, we assess
their efficiency by considering both the first detection and the
relative frequency distribution of the various failure types. The
first detection allows us to determine how repetition speeds

System Under Test
Oz Controller

Test case

Robot Simulator
Gazebo

Présentation du Simulateur
● ROS - Gazebo : description du robot, des actionneurs et des capteurs :

2

○ Moteurs
○ Vérin pour l’outil

○ Lidar
○ caméra
○ GPS
○ IMU

Traces

World

Mission

Test case
generator

Python scripts

Analyzer
Python scripts

Fig. 3. Simulation architecture.

up or slows down the detection of new failure types. The
frequency distribution reflects the relative importance of each
failure type, and we study how it is impacted when varying
the number of different test cases and the number of runs per
test cases.

B. Experimental platform

The test platform used for our experiments is described in
Figure 3. It is composed of four components: The System
Under Test (SUT), the robot simulator, the test case generator,
and the analyzer.

1) The system under test. The SUT, i.e., the Oz Controller
developed by Naı̈o Technologies, is written in C and
C++ for total of about 151 KLOC. It consists of sensors
processing modules, the navigation module and several
mission-specific modules. The navigation module needs
some information about the crop field and the robot
initial position (e.g., the number of rows, the direction
of the first U-turn) that are contained in the mission
file (a json file). The Oz controller receives simulated
sensors data and produces speed commands sent to the
simulator.

2) The robot simulator. The simulator is based on Gazebo,
a simulator widely used in robotics research [9]. It has
been developed by Naı̈o.
To instantiate a virtual world, the simulator requires two
main files: a heightmap which is a grayscale jpg file
that encodes the terrain elevation and a world file (sdf)
that describes the initial position of every object in the
scene. Figure 2 illustrates a simulated environment. Note
that the virtual crop field is quite small compared to the
real-world ones. The virtual example only contains 3
crop rows of 15 meters whereas a real world field can
contain tens of rows that can be as long as a hundred

meters. The difference is due to simulation performance
and time constraints. Although the simulation seems
simple, it is very demanding regarding resources. Our
available computing power resources consists of: a PC
with 2 Quad core Intel Xeon E5-2623 v3s CPU at
3.5GHz, and 64GB of RAM. To ensure tractability of the
simulation, we choose to restrict the size of the generated
crop field. The second issue is the testing time: the robot
is pretty slow and there is no way to accelerate the
simulation. Hence, each individual run can take minutes.
As an example, a run on the virtual field in Figure 2
takes about five minutes. Even if it was possible in term
of resources, running a test campaign on a real-world-
sized crop field would obviously be too time consuming.
Despite these constraints, the Gazebo-based simulation
proved effective to reveal issues in the Oz Controller
[19].

3) The test case generator. A test case consists of a
mission in a virtual crop field. As already explained,
the mission file is read by the SUT, while the crop field
description (the virtual world) is fed into the simulator.
To automatically produce a sample of diverse test cases,
we implemented techniques derived from the Procedural
Content Generation of worlds [23]. These techniques
aim to create randomly generated environments within
a structured framework. The basic idea of PCG is to use
a set of high-level parameters to control the production
of concrete world contents. In our test input generator,
the generation parameters are modelled using Object
Oriented Modeling. Then, a Python script randomly
generates the mission and world files in the appropriate
formats. For that particular case study, 15 high level
parameters have been chosen to model a test case. The
main generation parameters are the number of rows,
the type of vegetable, the space between the rows,
the space between the vegetables, the magnitude and
the granularity of the ground deformation. In the other
paper on the same case study [19], we provide a fully
detailed explanation on the generation process. While
the random generation gives no guarantee on the input
domain coverage, we performed a check (a posteriori) of
the sample of 80 generated test cases. It shows that every
generation parameter is well covered by considering a
subdivision of its range in tenth. That is to say, for a
parameter p ∈ [0; 1], there is at least one test case with
p ∈ [0; 0.1], one with p ∈ [0.1; 0.2], etc.

4) The analyzer. The analyzer is in charge of reading the
traces of the run tests, and of checking for unwanted
behavior of the robot (test oracle). This component is
really important because it produces the failure reports
that are being used to study the non-determinism in this
paper.
Table I displays the timestamped data collected by the
test platform and made available for the implementation
of the checks. The robot logs are collected at the SUT
interface. They include error or success reports sent by

the robot at the end of a run, as well as some debug
data logged by the robot during cruise phases (perceived
position and yaw). The simulator logs provide the actual
– rather than perceived – positions and attitudes of the
robot during the run.
The Pass or Fail verdict is based on a set of required
properties. If at least one property failed, the entire run
is considered failed. Initially, there was no specification
from which to extract possible failure definitions for
Oz. The list of properties had to be specified from
scratch in collaboration with Naı̈o engineers. To do so,
we followed guidelines from our previous work [20],
and structured the discussion of candidate properties
according to five broad categories of requirements:

a) Requirements attached to mission phases. The
focus is on how to perform a mission. A mission
typically consists of a series of phases, with some
expectations on what the robot should or should
not do in each phase.

b) Thresholds related to robot movement. Here, the
aim is to detect abnormal values of kinematic or
kinetic variables.

c) Critical events, like collisions.
d) Requirements attached to error reports. A robot

has capabilities to monitor its operation and report
errors. Requirements can be attached to the han-
dling of these errors.

e) Perception requirements, focusing on unaccept-
able mismatches between the ground truth and its
perception by the robot.

It resulted in the elaboration of 8 properties listed in
Table II. Further discussion with Naı̈o engineers led
us to consider P2 and P7 as performance-related prop-
erties that should not yield a Fail verdict. Moreover,
preliminary runs to debug the checks revealed many
transient violations of property P4. Looking further into
the matter, we could determine that this was an artifact of
the simulation. Indeed, the simulation ignores the engine
braking force and overestimates velocity on downward
slopes arising from terrain irregularities. We decided
to de-activate the P4 check to get rid of the spurious
violations. The results presented in the next section are
thus for test verdicts based on P1, P3, P5, P6 and P8.

V. EXPERIMENTAL RESULTS

In this section, we present the results of the tests in
simulation and we particularly focus on the impact of non-

Robot logs Simulator logs
Perceived position x, y Position x, y, z
Perceived yaw Quaternion X, Y, Z, W
Mission success report
Error report
Wheel commands

TABLE I
TIMESTAMPED DATA LOGGED DURING THE TESTS

Fig. 4. Visualization of a run with multiple failure types (P6, P5)

determinism using oracle properties violations.

A. Variability of the test verdicts (RQ1)

The generated set of tests consists of 80 different virtual
crop fields along with their corresponding weeding mission.
we perform 5 runs in each case to study the non-determinism
of test executions.

Our generated environments are very stressful for the robot
as a Fail verdict occurs in as much as 48% of the runs
(192/400). All properties but P1 (U-turn in 5-7 maneuvers) are
violated by some runs. Table III provide the number of failing
runs per property. Since a run may violate several properties,
the counts sum up to a number greater than 192. Figure 4
illustrates a run with multiple failures. Its view uses a test
data visualization facility we developed. The robot (shown as
a black rectangle) starts at the external side of the field, along
a row of leeks represented by green circles. While performing
the U-turn at the end of the row, the robot crosses the specified
limits of the field (indicated by a dotted line) and later collides
with the red stake and three leeks. This run counts for both P6
(outside of the crop field) and P5 (collision). Overall, collision
is the most frequent failure type, observed in 35.5% of the test
runs.

Table IV gives the proportion of test cases yielding from
n = 0 to 5 Fail verdicts over the five repeated runs (A verdict
is ”fail” when at least one property Px is violated). A test
case has an inconsistent outcome when at least one (but not
all) of its repeated runs fails, i.e., n ∈ {1, 2, 3, 4}. About 29%
of the test cases (23 out of 80) have such an inconsistent
verdict from one run to the other. Moreover, consistent Fail
verdicts (n = 5) do not mean that the detected misbehavior is
the same across all runs. Figure 5 illustrates different failures
of the same test case. The upper part of the figure visualizes
the run also presented in Figure 4. As previously discussed,
the first U-turn yields multiple failures: one of the maneuvers
exceeds the limits of the field, and there are collisions upon
entering the next crop row. The rest of the mission is correctly
performed. The bottom part of Figure 5 visualizes another run
of exactly the same test case. This time, a new failure adds
up to the others: the U-turn misses the next row and goes
back to an already weeded area (P3 violation). At the end of
its return trip, the robot detects that something is wrong and
stops with an error report. Clearly, those two runs in Figure 5
consistently yield a Fail verdict but have different property
violation patterns.

We thus conclude that the non-determinism strongly impacts
the verdict assigned to a given test case.

Mission Phases P1 U-turn in 5-7 maneuvers
P2 Robot maintains reference distance to the vegetables
P3 Sequence of weeded rows is correct

Movement thresholds P4 V elocity < Vmax

Catastrophic events P5 No collision with vegetables or red stakes
P6 Robot does not go outside of the crop field

Perception P7 Self-localization with a certain precision
Error reports P8 Stopping distance < dmax after reporting an error

TABLE II
ORACLE CHECKS FOR OZ

P1 P3 P5 P6 P8
0 70 142 57 14

TABLE III
FAILURE TYPE COUNTS

#Test cases #Fails
(total: 80) (over 5 runs)

32 0
5 1
4 2
2 3
12 4
25 5

TABLE IV
PROPORTION OF TEST CASES WITH n FAIL VERDICTS OVER THE FIVE

REPEATED RUNS.

B. Repetition vs exploration (RQ2) ?

Performing repeated runs is a classical way to account for
execution non-determinism. Since each run takes minutes, one
may wonder whether less than five repetitions would penalize
effectiveness. Starting from the complete set of runs X80,5 (80
test cases x 5 repeated runs) that are already performed and
analyzed, we randomly extract subsets Xt,r to mimic strategies
with t test cases repeated r times, t ∈ {1, 80} and r ∈ {1, 5}.

We first study the test size to observe at least one failure
of each type (P3, P5, P6, P8). Suppose we consider r runs per
test case. We keep adding new test cases, and select a subset

Fig. 5. Two different results with the same test case. On the top: Oz weeds
the correct rows but has collisions (P5) and exceeds the field limits (P6). On
the bottom: a wrong row failure (P3) adds up to the previous ones.

1 2 3 4 5

0
50

10
0

15
0

20
0

25
0

30
0

Repeated runs

To
ta

l n
um

be
r

of
 r

un
s

(#
re

pe
at

ed
 r

un
s

*
#t

es
t c

as
es

)

Fig. 6. Total number of runs to observe every failure type (P3P5P6P8) at
least once

of r runs for each of them, until we observe every property
violation. The size of the test, i.e., the total number of runs, is
then r ∗ t. We evaluate the test size 10,000 times for statistical
analysis. Figure 6 shows the result of this process in a boxplot.
With only one run per test case (the first box), the median test
size to violate every property is 20 (r=1; t=20). The size is
more than twice as much (46) if we choose 5 runs per test
case. It thus seems more efficient to favor test case diversity
over execution repetition: strategies with r > 1 slow down the
detection of new failure types.

We further study the relative frequencies of property vi-
olations. Figure 7 displays the histogram for the set X80,5.
The data is split into 16 bins, corresponding to every potential
combination of property violation: Bin 0 gives the percentage
of runs violating no property, and Bin 15 is for runs violating
all four properties. We use this histogram X80,5 as a reference
to study the impact of varying t and r. Dissimilarity between
X80,5 and a set Xt,r is measured by calculating the Manhattan
distance of the bin frequencies:

D = 0.5 ∗
∑15

i=0 |fi − fRefi|,

Fig. 7. Relative frequencies of property violation combinations for the 400
runs (X80,5)

where the 0.5 coefficient rescales the distance to [0, 1], 15
is the maximum index of bins, fRefi is the relative frequency
of bin i of X80,5 (e.g., fRef0 = 52% in Figure 7), and fi is
the relative frequency of bin i of the considered set Xr,t. The
objective is to assess for each subset the distance D to the
reference X80,5 in order to identify which Xr,t are sufficient
to obtain a close distribution with the reference. For each pair
(t, r), we randomly select 10,000 sets Xr,t and measure their
distance to the reference (X80,5). When there are less than
10,000 possibilities, as is the case for small values of t and r,
we exhaustively consider all the possible sets. Figure 8 shows
the median distances we obtain. Their value is encoded by
a tone on a linear grey scale, where white means D = 0
and black means D = 1. As can be seen for all repeated
runs schemes, the distributions of failure violation patterns
tend to become more similar as the number of test cases
grows (the tone becomes lighter). An interesting point is to
look at isodistances. For instance, the red lines in Figure 8
delimitates the (t, r) configurations with a distance D = 0.1
to the reference. One can observe that it takes much longer
to get within this distance with repeated runs than without:
the total test size ranges from 56 runs up to 165 (5 ∗ 33).
Intuitively, it suggests that the final frequencies observed for
X80,5 are more determined by the diverse test cases we execute
than by the repeated execution of each test case.

We thus come to a surprising conclusion. Although execu-
tion non-determinism has a high impact on the test verdict, it
seems cost-effective to simply ignore the issue and use the test
budget to execute diverse test cases without repetition. Cost-
effectiveness is of course relative to the specific case study.
More generally, an interesting outcome is to demonstrate that
repeated runs are not always the best approach to test non-
deterministic applications.

VI. CONCLUSION

The validation of autonomous robots strongly depends on
the resources available to perform test campaigns. Through

Fig. 8. Median distance to the histogram in Figure 7. In red: isodistance
lines for D = 0.1

simulation, more intensive campaign can be carried out but the
result of tests may be not relevant due to the non-determinism.
In this paper, we propose an approach to assess if repeated runs
are more efficient than diversity of test cases execution, in the
context of debugging. To do so, we use a complete testing
framework, from the test generation to the oracle analysis. We
then consider 400 runs (80 tests cases, executed 5 times), and
analyse the results. This analysis relies on two methods: the
first one shows the evolution of the number of run needed
so that every property violation occurs at least once. The
second one focuses on the evolution of the failure distribution
regarding the number of repeated runs and the number of
different test cases. Surprisingly, our study shows that for our
case study it would be more efficient to favor diversity over
repeated run. A future direction will be to apply the same
method to a new case study on another agricultural robot from
Naı̈o. This time we will use a custom simulator from Naı̈o with
a lower level of fidelity but far more performant. It will allow
us to generate and execute more test cases.

ACKNOWLEDGMENT

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No 644400 (CPSE Labs project). The authors want
to acknowledge the help of colleagues at Naı̈o Technologies
during the study: Simon Vernhes, Gaëtan Séverac, Pascal
Schmidt, Marc Jambert.

REFERENCES

[1] Raja Ben Abdessalem, Shiva Nejati, Lionel C. Briand,
and Thomas Stifter. Testing advanced driver assistance
systems using multi-objective search and neural net-
works. In 31st IEEE/ACM International Conference
on Automated Software Engineering (ASE), Singapore,
Singapore, pages 63–74, 2016.

[2] Anneliese Amschler Andrews, Mahmoud Abdelgawad,
and Ahmed Gario. World model for testing urban search
and rescue (usar) robots using petri nets. In 4th Inter-
national Conference on Model-Driven Engineering and
Software Development (MODELSWARD), Rome, Italy,
pages 663–670, 2016.

[3] Albert Benveniste, Paul Le Guernic, and Christian
Jacquemot. Synchronous programming with events and
relations: the signal language and its semantics. Science
of Computer Programming, 16(2):103 – 149, 1991.

[4] Gérard Berry and Georges Gonthier. The esterel syn-
chronous programming language: Design, semantics, im-
plementation. Sci. Comput. Program., 19-2:87–152,
1992.

[5] Jean-Jacques Borrelly, Eve Coste-Manière, Bernard Es-
piau, Konstantinos Kapellos, Roger Pissard-Gibollet,
Daniel Simon, and Nicolas Turro. The orccad architec-
ture. The International Journal of Robotics Research,
17(4):338–359, 1998.

[6] Gilberto Echeverria, Nicolas Lassabe, Arnaud Degroote,
and Séverin Lemaignan. Modular open robots simulation
engine: Morse. In IEEE International Conference on
Robotics and Automation (ICRA 2011), Shanghai, China,
pages 46–51, 2011.

[7] Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and
Daniel Pilaud. The synchronous data flow programming
language lustre. Proceedings of the IEEE, 79:1305 –
1320, 10 1991.

[8] Félix Ingrand and Malik Ghallab. Deliberation for
autonomous robots: A survey. Artificial Intelligence,
247:10–44, 2017.

[9] N. Koenig and A. Howard. Design and use paradigms for
gazebo, an open-source multi-robot simulator. In 2004
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2004), Sendai, Japan, volume 3,
pages 2149–2154, 2004.

[10] Yihao Li, Jianbo Tao, and Franz Wotawa. Ontology-
based test generation for automated and autonomous
driving functions. Information & Software Technology,
117, 2020.

[11] E. Marchand, E. Rutten, H. Marchand, and F. Chaumette.
Specifying and verifying active vision-based robotic sys-
tems with the signal environment. The International
Journal of Robotics Research, 17(4):418–432, 1998.

[12] Lindvall Mikael, Porter Adam, Magnusson Gudjon, and
Christoph Schulze. Metamorphic model-based testing
of autonomous systems. In Proceedings of the 2nd
International Workshop on Metamorphic Testing (MET),

Buenos Aires, Argentina, pages 35–41, 2017.
[13] https://www.naio-technologies.com/, 2018. Accessed:

2019-09-19.
[14] Cu D. Nguyen, Anna Perini, Paolo Tonella, Simon Miles,

Mark Harman, and Michael Luck. Evolutionary testing
of autonomous software agents. In Proceedings of The
8th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2009), Budapest, Hungary,
volume 1, pages 521–528, 2009.

[15] https://www.oktalsydac.com/, 2018. Accessed: 2019-09-
19.

[16] https://tass.plm.automation.siemens.com/prescan, 2018.
Accessed: 2019-09-19.

[17] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust,
Tully Foote, Jeremy Leibs, Rob Wheeler, and Andrew
Ng. Ros: an open-source robot operating system. In
ICRA Workshop on Open Source Software, Kobe, Japan,
volume 3, 2009.

[18] Christophe Reymann, Mohammed Foughali, and Simon
Lacroix. Repeatable decentralized simulations for cyber-
physical systems. In International Conference on Soft-
ware Quality, Reliability and Security (QRS 2019), Sofia,
Bulgaria, pages 240–247, 2019.

[19] C. Robert, T. Sotiropoulos, H. Waeselynck, J. Guiochet,
and S. Verhnes. The virtual lands of oz: testing an
agribot in simulation. in Empirical Software Engineer-
ing (EMSE), yet to appear. DOI: 10.1007/s10664-020-
09800-3.

[20] T. Sotiropoulos, H. Waeselynck, J. Guiochet, and F. In-
grand. Can robot navigation bugs be found in simulation?
an exploratory study. In 2017 IEEE International Confer-
ence on Software Quality, Reliability and Security (QRS
2017), Prague, Czech Republic, pages 150–159, 2017.

[21] Thierry Sotiropoulos, Jérémie Guiochet, Félix Ingrand,
and Hélène Weaselynck. Virtual worlds for testing robot
navigation: a study on the difficulty level. In IEEE 12th
European on Dependable Computing Conference (EDCC
2016), Iasi, Romania, pages 153–160, 2016.

[22] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray.
Deeptest: Automated testing of deep-neural-network-
driven autonomous cars. In Proceedings of the 40th
International Conference on Software Engineering (ICSE
2018), Gothenburg, Sweden, pages 303–314, 2018.

[23] J. Togelius, G. N. Yannakakis, K. O. Stanley, and
C. Browne. Search-based procedural content generation:
A taxonomy and survey. IEEE Transactions on Compu-
tational Intelligence and AI in Games, 3:172–186, 2011.

[24] https://unity.com/, 2019. Accessed: 2019-09-19.
[25] https://www.unrealengine.com/, 2018. Accessed: 2019-

09-19.
[26] http://www.mscsoftware.com/product/virtual-test-drive,

2018. Accessed: 2019-09-19.

https://www.naio-technologies.com/
https://www.oktalsydac.com/
https://tass.plm.automation.siemens.com/prescan
https://unity.com/
https://www.unrealengine.com/
http://www.mscsoftware.com/product/virtual-test-drive

	Introduction
	Related work
	Case study: The Oz robot
	Experimental design
	Research questions
	Experimental platform

	Experimental results
	Variability of the test verdicts (RQ1)
	Repetition vs exploration (RQ2) ?

	Conclusion

