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Notations

Mathematics

Proofs are ended by the � symbol.
Sets

• N: set of natural numbers.

• Z: set of integers.

• R: set of real numbers.

• C: set of complex numbers.

• N
∗ = {n ∈ N s.t. n > 1}.

• c
AB := A\B = {x ∈ A s.t. x /∈ B}: complement of B in A. The prescript A may be omitted
if the context makes it clear and obvious.

• ∂A: boundary of the topological space A.

• cl (A) = A ∪ ∂A: closure of the topological space A.

• B (x,R) = {y ∈ R
n s.t. ‖x− y‖2 6 R} (n ∈ N, x ∈ R

n, R > 0).

• supp(f) = cl ({x ∈ A s.t. f (x) 6= 0}): support of f : A→ R.

• supp(µ): support of the measure µ.

Functions and Measures

• id: identity function i.e. id : Rn → R
n, x 7→ x.

• 1B : indicator function of B.

• |.|: absolute value.

• ‖x‖2 =
[

x ∈ R
n 7→

√

∑n
i=1 x

2
i

]

: Euclidean norm.

• µ1 ⊗ µ2: product measure of the measures µ1 and µ2.

Derivatives and vector analysis

Let T ⊆ R, n ∈ N, m ∈ N, f : T ×R
n → R be a scalar field, and g : T ×R

n → R
n be a vector field.

• ∂xif = ∂f
∂xi

: partial derivative of f with respect to the variable xi (i = 1, · · · , n).

• ġ = ∂tg = (∂tg1, ∂tg2, . . . , ∂tgm): element-wise partial time derivative of g.

• ∇f = (∂tf, ∂x1f, ∂x2f, . . . )
T : gradient operator.

• div(g) = ∂x1g1 + ∂x2g2 + · · ·+ ∂xngn: divergence operator.

• J(g) = (∂x1g, ∂x2g, . . . ∂xng): Jacobian operator.
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• dtf = df
dt = ∂tf + (∇f) · g: total derivative of f under the vector field g.

Linear Algebra

• Mm,n (K): matrices with m ∈ N rows and n ∈ N columns, and which components are in the
field K (R or C).

• In: identity square matrix of dimension n.

• Let (A,B) ∈ (Mn,n (K))2 (n ∈ N). The notation "A � 0" means A is positive semidefinite.
"A � B" means "A−B � 0".

• u · v: scalar product between the vectors u and v.

• 〈A,B〉F = trace
(

ATB
)

=
∑

i,j

AijBij : Frobenius inner product of two matrices (A,B) ∈

(Mn,m (K))2 (n,m ∈ N).

• 0n,m is a matrix of zeros of dimensions n×m.

Probabilities and Statistics

• P (E): probability of the event E.

• x ∼ N (µ,Σ): x is a n-dimensional (n ∈ N) random vector following a multivariate Gaussian
distribution with mean vector µ ∈ R

n and with covariance matrix Σ ∈ Mn,n (R) (Σ � 0).

Orbital Model

Those notations describe what the adopted letters usually denote in this report, unless otherwise
stated.

• r⋆ = (r⋆1, r⋆2, r⋆3)
T : position vector of object ⋆ in some reference frame, (primary: ⋆ = p,

secondary: ⋆ = s, relative: ⋆ = r).

• v⋆ = (v⋆1, v⋆2, v⋆3)
T : velocity vector of object ⋆.

• x⋆ = (rT⋆ , v
T
⋆ )

T : state vector of object ⋆.

• X⋆♭ = (xT⋆ , x
T
♭ )
T : state vector of combined object composed of ⋆ and ♭.

• f (., .): system dynamics.

• X
(

.|X0
)

: trajectory, solution of the equations of motion starting from the initial condition
X0.

Abbreviations

• CSM: Conjunction Summary Report.

• CAR: Conjunction Assessment Report.

• TLE: Two-Line Elements.

• TCA: Time of Closest Approach.
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1 State of the Art of Collision Risk Assessment

Since the collision between the Russian satellite COSMOS 1934 and one debris of COSMOS 926 in
December 1991, no less than eight orbital collisions have been reported between operational satellites
(e.g. IRIDIUM 33 and COSMOS 2251 collision in February 2009, the 10th), or between satellites
and debris (e.g. the French satellite CERISE hit by a debris in July 1996, the 24th or the collision
between THOR BURNER and a debris of Long March in January 2005, the 17th). Collision risk
is particularly high in low orbits and the different space agencies (CNES, ESA, NASA) and the
operators of the field (Airbus Defense and Space (ADS), GMV) have established alert procedures
to assess the risks of collision for controlled satellites, and to authorize avoidance maneuvers if the
predicted risk exceeds some tolerance threshold. These procedures have undergone many changes
in recent years and the field of collision avoidance techniques is currently in full development. For
the different evolutions of these procedures, according to the agencies and the operators, we refer
to [19], [18] for ESA, [25, 24] for CNES and [9] for ADS.
At the origin of any procedure of collision avoidance between two objects controlled or not in orbit, is
the information of conjunction between the two objects. Since 2009, a Conjunction Message is sent
by the Combined Space Operations Center (CSpOC) (formerly the Joint Space Operations Center
(JSpOC)) to all spacecraft owners and operators, concerning approximately 15000 objects listed in
the Two-Line Elements (TLE) catalog provided by USSTRATCOM (US Strategic Command). The
information provided by the JSpOC consists of a Conjunction Assessment Report (CAR) containing
few information: the Time of Closest Approach (TCA), the miss distance between the two objects,
statistical and geometrical information on the position and the velocities of each object. These
messages are sent only three days before the date of the encounter. To obtain more accurate
information on the possible encounter, it is necessary to subscribe to a service which will in return
provide a Conjunction Summary Report (CSM) from which is extracted the information needed to
calculate the risk of collision between both objects.
The most general methods to accurately compute the global collision probability, without any
additional assumption, are based on Monte-Carlo simulations, see e.g. [5, 17] in the context of
a simple encounter or [21] in the context of a multiple encounter. These methods use a random
sampling of N vectors in the space of initial conditions. For each of them, the corresponding
trajectories are propagated according to the dynamical model adopted on the discretized time
interval [0, T ]. We count 1 if there is a collision, 0 otherwise. At the end, the collision probability
is given by the formula: Pc([0, T ]) = 1

N

∑N
i=1 δi. The number of trials to be made depends on the

requested precision as well as the value of the probability: a low value requires a lot of samples to be
correctly estimated, and simulations can be dramatically time-consuming. This is one of the major
disadvantages of Monte Carlo methods which makes them unsuitable for detecting low probability
events in high dimension such as multiple events [21]. Therefore alternative approaches had to be
explored to assess the risk of collision between two or more objects.
In the particular context of encounters between two objects, encounters are usually classified into
two families: the short-term encounters [1, 13, 14, 20] and the long-term encounters [13, 17] for
which many simplifying assumptions, enabling the computation of the collision probability can be
made. In the context of short-term encounters, conjunctions are assumed to be short and rare. The
relative velocity between the two objects is assumed to be very high (higher than the km/s) and
the relative motion is assumed rectilinear on the time interval of the encounter. Finally, it is also
assumed that the cross-correlations between the estimated states of the two objects are very small
and therefore negligible. Such encounters typically occur in low orbits where the orbital velocities
are high. Long-term encounters are characterized by relative velocities of the order of m/s, and
correspond to situations where both objects spend significant time in proximity to each other. The
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motion equations of both objects are linearized around the reference orbit. This type of encounter
is more common in the context of formation flying or proximity operations.
In the specific context of short-term encounters, several techniques for calculating the probability of
collision have been developed. In historical order, the main methods are identified as those of Foster
(1992) [20], Patera (2001) [27] and Alfano (2002) [2], based on numerical integration schemes and
the method of Chan (1997) [12, 13] based on an analytic formula of the probability of collision in the
form of a convergent series with positive terms. All these methods have already been the subject
of several comparative studies [4, 13]. A new method for calculating the collision probability in
short-term encounter and the instantaneous probability of collision under Gaussian uncertainty, has
been developed during the PhD thesis of R. Serra [31] and published in [33, 34, 32]. The first gives a
conservative estimate of the risk for a large part of actual encounters, those falling within the short-
term encounter framework, while the second provides, in a more general context, an instantaneous
information which then makes it possible to obtain lower bounds for the risk of collision over time
intervals. This new method has the advantage of being based on an exact analytical formula, in the
form of a convergent series with positive terms, and is the exact version of the approximate one by
Chan [12, 13]. Numerical examples are given and demonstrate the efficiency of the proposed formulas
compared to existing methods. In addition, analytical bounds are obtained for the probability of
collision: they represent a significant tool for mission analysis since their efficient evaluation, allows
in many real cases to rule on the importance of the risk.
In the general context of satellite flying formation or proximity operations, the hypothesis of short-
term encounters can no longer be considered valid for the calculation of the overall risk of collision
[21, 11]. The assumption of short-time spent in the encounter area is no longer verified when
considering a cluster of satellites and, even in the case of only two space objects, the encounter
could sometimes occur several times per orbit, for several consecutive orbits [21]. For such multiple
encounters, the cross-correlations between the estimated states are not negligible anymore, and
assessing the risk separately for each individual encounter as if they were independent events, is not
sufficient to characterize the real risk of such a conjunction.
The extension of the probability calculation in the case of long-term encounters, also called nonlinear
framework, represents a first generalization attempt for specific cases of configurations [28, 26, 13,
17]. Unfortunately, these approaches are relatively limited because of their characterization for
particular relative trajectories and are only imperfectly generalized to other cases [29]. In this
last reference or more recently in [16], different metrics are proposed: distribution sampling, the
Mahalanobis minimum distance and its upper bound on the collision probability, the Maximum
Instantaneous probability and its lower bound on the collision probability, a hybrid probability
combining the last two metrics for which the calculations can be shared or the symmetric Kullback-
Leibler (KL) divergence. Roughly, the Mahalanobis distance or the symmetric KL divergence can
be seen as a measure of similarity between two pdfs. The idea is to reduce the computational
complexity of the distribution sampling approach by improving the determination of an interval over
which two objects are in close proximity while accounting for the uncertainties of these objects. A
similar approach based on computational tools of increasing complexity and precision (approximate
ellipsoids for the probability density, probability density level curves, etc.) is also proposed in [10].
In [14], V. Coppola proposes a mathematical formalization and generalization of the short-term
encounter formula: the two objects are modeled with uncertainty in both position and velocity, and
their trajectories are not assumed to be rectilinear anymore. More recently, the Coppola’s formula
has been revisited and generalized to non-spherical objects [23]: instead of directly computing
the collision probability, G. Krier first computes the collision probability per time unit, called the
hazard function. The total probability of collision is the time integral of this hazard function, and
this integration is performed numerically. This method has been successfully validated by comparing
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the obtained results with Monte Carlo simulations.
The objective of this report is to give an exact and rigorous mathematical modelling of the problem
of the computation of the probability of collision as derived by V. Coppola in the reference [14].
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2 Preliminaries

2.1 Encounter Modeling and Problem Statement

Consider an operational spacecraft (called the primary) in orbit around the Earth and a space debris
(called the secondary). The state of each orbiting object is described by their position and velocity
in a reference frame R, and gathered in a global state vector Xps:

Xps = (rp, vp, rs, vs)
T ∈ R

n,

where n = 12.
Let [0, T ] be the time interval of the encounter. Consider now the dynamics of the 2 objects:

{

Ẋps(t) = f(t,Xps(t)), t ∈ [0, T ],
Xps(0) = X0

ps.
(1)

where f is a real vector field, which is supposed to be at least Lipschitz continuous, and T is a
given terminal time defining the time interval of the encounter. The initial conditions X0

ps ∈ R
n

(e.g. position and velocity) are usually subject to uncertainties, and so, they are supposed to be

distributed according to a given probability measure µI with its density function ρI =
dµI
dλ

(cf. the

notation defined in Appendix B). These equations include the Newtonian gravitational central field
and possible orbital perturbations (non spherical Earth, atmospheric drag, e.g.). Whatever model
is adopted, it is assumed that, for given initial conditions, the solutions of the system (1) exist and
are unique. For each fixed initial condition X0

ps ∈ R
n, a trajectory, or sample path, is then defined

as follows:

Definition 1 (Trajectory/Sample path). Given an initial condition X0
ps ∈ R

n, a trajectory, or
sample path, starting from X0

ps is the unique solution of:

Xps(t|X0
ps) = X0

ps +

∫ t

0
f(τ,Xps(τ |X0

ps))dτ. (2)

Classically the objects are assumed to be spherical [1, 28, 3, 13, 14]: this assumption enables one
to ignore the orientation of the objects, and to model conservatively the secondary object whose
geometry is often poorly known (see Figure 1).

Assumption 1.

The objects involved in the conjunction have a spherical shape.

x

x

x

x

R̂

vp
vs

rp rs

Figure 1: Encounter between two spherical objects.
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Let us now define the notion of a collision. Suppose that for any initial condition X0
ps ∈ R

n the
corresponding trajectory exists on the time interval [0, T ], then roughly speaking, a collision occurs
when a trajectory enters a certain forbidden region XR. For instance, in practice, this describes
the fact that the relative distance between two objects is less than a certain given radius threshold
R > 0.
If the state x is given by the positions and velocities of 2 objects, then the forbidden region is
expressed as

XR = {Xps = (rp, vp, rs, vs) ∈ R
12 | ‖rs − rp‖2 −R2 < 0}. (3)

Note that, in case of two objects, the forbidden region (which depends on R) XR is also called
the combined spherical object and let its complement, so-called safe/admissible region, be cXR :=
R
n\XR.

Definition 2 (Collision). Given an initial condition X0
ps ∈ R

n, a maximum time of interest T > 0,
and a forbidden region XR, a collision occurs if there exists t ∈ [0, T ] such that Xps(t|X0

ps) ∈ XR.

Definition 3 (Collision domain). The domain of collision X 0
T over the time interval [0, T ] is the

set of initial conditions leading to a collision between any pair of objects during [0, T ], namely:

X 0
T = {X0

ps ∈ R
n | ∃t ∈ [0, T ], Xps(t|X0

ps) ∈ XR}.

Remark 1. In Equation (3) and Definition 3, the sets XR and X 0
T have been defined based on the

combined object state vector Xps. Equivalent definitions could be given by using any combined state
vector such as Xrp for instance, as it is the case in the rest of this report.

Historically, the first criterion for collision risk assessment between two space objects was geometric:
it relies on checking whether or not the nominal trajectory enters a no-go zone [6, 15] (including
the forbidden region) whose size is either arbitrarily set or calculated with respect to uncertainties’
standard deviations. A more natural formulation of the problem of collision risk assessment consists
in computing the probability that a collision occurs:

Problem 1. Let the dynamics in (1), a maximum time of interest T > 0 and a safe region cXR.
Provided that the initial conditions X0

ps ∈ R
n are distributed according to a given probability measure

µI with its density function ρI , the probability that a collision occurs is computed simply by:

Pc([0, T ]) = Pc = P(X0
ps ∈ X 0

T ) = µI(X 0
T ) =

∫

X 0

T

dµI . (4)

The analytical calculation of the collision probability as defined in (4) is a very difficult problem: the
first issue is to determine the domain of integration, which strongly depends on the chosen model
for the dynamics when propagating the distribution of probability of the initial state. In addition,
the integration of the density of probability on this set may be very complex, even for a Gaussian
distribution [13].

2.2 Measures for the collision probability

As in [14], we define the set X 00
T of initial states for which a collision occurs at t = 0 and the set

X 0tc
T := X 0

T \X 00
T of the remaining initial states for which a collision occurs later. The collision

probability Pc := µI(X 0
T ) is thus, Pc = µI(X 00

T ) +µI(X 0tc
T ). Often, in practice, the probability that

a collision occurs at t = 0 is very small. However, the general computation of an instantaneous
collision probability for a fixed t = t0 (when the distribution of states at t0 is Gaussian) is of interest
and may be analyzed independently.
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We now focus on computing µI(X 0tc
T ). More precisely, we are given the distribution (measure)

of all initial states µI , the dynamics, as well as the forbidden region XR. The computation of
µI(X 0tc

T ) amounts in finding (in some sense) an unknown initial measure µ0 which can be seen as
the restriction of µI to initial points leading to a collision on the time interval (0, T ], denoted by
1
X

0tc
T

µI . Assume that trajectories Xps(·|X0
ps) starting at X0

ps ∈ cXR are continuous functions and

let (cXR)
◦ be the interior of cXR. Then, over the fixed period [0, T ], these trajectories either are

in (cXR)
◦ or will touch its topological boundary ∂ cXR := cXR\(cXR)

◦ at a so-called first hitting
time τ(X0

ps) ∈ (0, T ],

τ(X0
ps) := min{T, inf(t > 0 s.t. Xps(t|X0

ps) ∈ ∂ cXR)}.

Finally, one defines the final measure µF ∈M([0, T ] ×R
n)+ which captures the distribution of the

first hitting times τ(X0
ps) and the corresponding state Xps(t|X0

ps) after it has been propagated by
the dynamics starting at t = 0 from the initial measure µ0:

µF (A×B) :=

∫

[0,T ]×Rn

1A×B(τ(X
0
ps),Xps(τ(X

0
ps)|X0

ps))dµ0
(

X0
ps

)

, (5)

for all Borel measurable sets A×B ⊆ (0, T ]×R
n. The final measure µF is the pushforward measure

hτ⋆µ0 of µ0, via the mapping:

hτ : R
n → [0, T ] ×R

n,
X0
ps 7→ (τ(X0

ps),Xps(τ(X
0
ps)|X0

ps)),
(6)

that is:
µF (A×B) = µ0(h

−1
τ (A×B)), (7)

for any Borel measurable sets A×B ⊆ (0, T ]× R
n (cf. Figure 2).

XR

µF

µ
(1)
0

µ
(2)
0

τ2τ1 τ3

Given initial Gaussian measure µI

0 T

Xps

Figure 2: Yellow points: X0
ps ∈ X 00

T , red points: X0
ps ∈ X 0τi

T , blue points: X0
ps ∈ cX 0

T .
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3 Coppola’s formula revisited

The objective of this section is to derive the formula for the computation of the probability of
collision given in [14] and obtained in a general context. Our intention is to give a thorough and
rigorous treatment to the solution proposed in [14].
We assume that the dynamical model under consideration (regardless of how the state vector X∗∗

of the combined object is defined) Ẋ(t) = f(t,X(t)) gives rise to an invertible flow ϕt0, behaving as
a C1-diffeomorphism for t ∈ [0, T ]:

ϕt0 : R
12 → R

12

X0 7→ X(t|X0),

where ϕt0(·) is the map ϕ(t, t0, ·) for a given (t, t0) ∈ R × R. Assuming that the function ϕ(·, ·, ·) :
R × R × R

12 → R
12 remains unchanged under time translation, we can set t0 = 0 without loss of

generality [22]. The two parameter family of mappings satisfies:

∂

∂t
ϕt0(X

0) = f(t, ϕt0(X
0)).

Its inverse is given by:
(

ϕt0
)−1

= ϕ0
t : X(t|X0) 7→ X0.

When manipulating density functions and the change of variable formula in the calculations below,
we will also need the local linearization of the flow with respect to the initial conditions, denoted
by Dϕt0(X

0) ∈ R
12×12. Indeed, if X̃0 is close to X0, then:

ϕt0(X̃
0) ≈ ϕt0(X

0) + Dϕt0(X
0)(X̃0 −X0).

Note that the local linearization of the inverse flow ϕ0
t satisfies the relation:

Dϕ0
t (ϕ

t
0(X

0)) =
(

Dϕt0(X
0)
)−1

,

since by differentiating with respect to X0 the equation ϕ0
t ◦ ϕt0 = IdR12 , we get Dϕ0

t (ϕ
t
0(X

0)) ◦
Dϕt0(X

0) = IdR12 .

Example 1.

Under the assumption that the flow is linear, Ẋ(t) = A(t)X(t), the solution of the dynamics
equation via the state transition matrix Φ(t, 0), is such that

X(t|X0) = ϕt0(X
0) = Φ(t, 0)X0,

that is, the initial conditions are propagated from time 0 to time t via the matrix Φ(t, 0). One
has also X0 = Φ(t, 0)−1X(t) = Φ(0, t)X(t).

Also, suppose that there is a suitable surface parametrization of the whole or part of ∂ cXR given
by P : S → R

n, with S ⊆ R
n−1 and with P (s) = (p1(s), . . . , pn(s)) ∈ ∂ cXR.

Example 2.

(a) (Circle) The coordinates (x, y) ∈ R
2 of a point on the circle of radius R are parameterized
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on the circle via the change of coordinates:

(x, y)T := P (θ) = (R cos(θ), R sin(θ))T ,

with θ ∈ S = [0, 2π].

(b) (Sphere) The coordinates (x, y, z) ∈ R
3 of a point on the sphere of radius R are parame-

terized on the sphere via the change of coordinates:

(x, y, z)T := P (θ, φ) = (R cos(θ) sin(φ), R sin(θ) sin(φ), R cos(φ))T ,

with θ ∈ [0, 2π), φ ∈ [0, π] and S = [0, 2π) × [0, π].

(c) (Practical case in Coppola’s article)
For Xrp = (rr1, rr2, rr3, vr1, vr2, vr3, rp1, rp2, rp3, vp1, vp2, vp3)

T ∈ R
12 the surface rr1

2 +
rr2

2 + rr3
2 = R2, is parameterized on R

11 via the change of coordinates:

Xrp = (rr1, rr2, rr3, vr1, vr2, vr3, rp1, rp2, rp3, vp1, vp2, vp3)
T := P (θ, φ, vr1, . . . , vp3), (8)

= (R cos(θ) sin(φ), R sin(θ) sin(φ), R cos(φ), vr1, vr2, vr3, rp1, rp2, rp3, vp1, vp2, vp3)
T , (9)

with θ ∈ [0, 2π), φ ∈ [0, π] and S = [0, 2π)× [0, π]×R
9. Note that this parametrization is

based on spherical coordinates used in Mathematics and which convention is different (θ
and φ are swapped) from the one preferentially used in Physics and in [14].

y

x

z

R

0

P

θ

φ

Figure 3: Spherical coordinates for the parametrization of a sphere.

The a priori unknown and possibly complicated shape of X 0tc
T makes it difficult to get the probability

of collision by directly computing an integral over this set. The principle of Coppola’s formula is
to compute an equivalent integral over the set of collision states instead, via a change of variables
given by the function ψ : [0, T ]×S → X 0tc

T , ψ(t, s) = ϕ0
t (P (s)) (note that this definition is a partial

composition only, since ϕ0
t depends on the first argument t of ψ). For this substitution to be licit,

as stated by the following lemma, we need ψ to be 1-1 (more precisely, a C1-diffeomorphism). The
following assumption is sufficient for the bijectivity of ψ.
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Assumption 2.

For each trajectory leading to a collision, there is only one entering crossing in (or only one tangent
to) the forbidden region XR for all t ∈ (0, T ]. Therefore, the collision domain X 0tc

T and the surface
S are respectively defined by:

X 0tc
T =

{

X0 ∈ R
n | ∃!t ∈ (0, T ], X(t|X0) ∈ XR and vr(t)

T rr(t) 6 0
}

, (10)

and

S =
{

(θ, φ, vr, rp, vp) ∈ [0, 2π) × [0, π]× R
9 : vr1 cos(θ) + vr2 sin(θ) sin(φ) + vr3 cos(φ) 6 0

}

. (11)

In order to compute the part of the collision probability Pc given by µI(X 0tc
T ) := µ0(R

n), the next
derivations rely on the following lemma:

Lemma 1.

(i) µF = ((IdR × P ) ◦ ψ−1)⋆µ0;

(ii)
∫

Rn

dµ0 =

∫

X
0tc
T

ρI(X
0)dλ(X0) =

∫

[0,T ]×S
(ρI ◦ ψ)(t, s) |det(J(ψ)(t, s))| dλ(t, s), (12)

where J(ψ) is the Jacobian matrix of the mapping ψ.

Proof.

(i) One notices that since ψ is 1-1, each point which achieves a collision, X0 ∈ X 0tc
T ⊂ R

n is
transported via (IdR × P ) ◦ ψ−1 on the surface ∂ cXR at a certain time τ(X0) ∈ (0, T ] and
reciprocally since:

X 0tc
T ⊂ R

n ψ−1

−−→ [0, T ]× S
IdR×P−−−−→ [0, T ]× R

n,
X0 7−→ (τ(X0), s(X0)) 7−→ (τ(X0),X(τ(X0)|X0)).

Therefore, we have that hτ = ((IdR × P ) ◦ ψ−1) and by 2 in Appendix C,
∫

[0,T ]×Rn

1A×B(t,X)dµF =

∫

Rn

1A×B ◦ (IdR × P ) ◦ ψ−1(X0)dµ0.

(ii) One uses the Jacobi’s change of variables formula [30, Chapter 15], since ψ is a C1-diffeomorphism.
Note that this formula is obtained by applying (42) with X = [0, T ] × S, Y = X 0t

T , g(ψ) =
ρI(ψ) |det(J(ψ))|, µ = λ and noting that d(ψ⋆µ) = d(ψ⋆λ) =

∣

∣det(J(ψ−1))
∣

∣ dλ [30, Remark
15.10]. Indeed,
∫

[0,T ]×S
(ρI ◦ ψ)(t, s) |det(J(ψ)(t, s))| dλ(t, s) =

∫

X 0t
T

ρI(X
0)
∣

∣det(J(ψ)(ψ−1(X0)))
∣

∣ dψ⋆λ(X
0) =

∫

X 0t
T

ρI(X
0)
∣

∣det(J(ψ)(ψ−1(X0)))
∣

∣

∣

∣det(J(ψ−1)(X0))
∣

∣ dλ(X0) =
∫

X 0t
T

ρI(X
0)
∣

∣det(J(ψ)(ψ−1(X0)))
∣

∣

∣

∣det(J(ψ)(ψ−1(X0)))
∣

∣

−1
dλ(X0) =

∫

X 0t
T

ρI(X
0)dλ(X0) =

∫

X 0t
T

dµ(X0).

Note that J(ψ)(ψ−1(X0))J(ψ−1)(X0) = In.
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Example 3.

If the flow is linear, the function ψ is now defined as ψ : [0, T ] × S → X 0tc
T , ψ(t, s) =

Φ(t, 0)−1P (s).

Remark 2.

Assumption 2 is equivalent to the Assumptions (A1) and (A2) proposed in Coppola’s article and
reminded below.

(A1) Only one crossing.

(A2) Trajectories must cross.

For computing the Jacobian of ψ, one has:

∂ψ

∂t
(t, s) = −Dϕ0

t (P (s))f(t, P (s)) ∈ R
12.

This indeed follows from differentiating with respect to t the equality P (s) = ϕt0(ψ(t, s)) by applying
the chain rule:

0 =
∂

∂t

(

ϕt0(ψ(t, s))
)

=
∂ϕt0
∂t

(ψ(t, s)) + Dϕt0(ψ(t, s))
∂ψ

∂t
(t, s)

= f(t, ϕt0(ψ(t, s))) + Dϕt0(ψ(t, s))
∂ψ

∂t
(t, s)

= f(t, P (s)) +
(

Dϕ0
t (P (s))

)−1 ∂ψ

∂t
(t, s).

In addition, we have that:

∂ψ

∂s
(t, s) = Dϕ0

t (P (s))
∂P (s)

∂s
∈ R

12×11.

Hence

J(ψ)(t, s) = Dϕ0
t (P (s))

(

−f(t, P (s))
∣

∣

∣

∣

∂P (s)

∂s

)

∈ R
12×12. (13)

Example 4.

In the case of linear dynamics, the computations above become

∂ψ

∂t
= −Φ−1(t, 0)

∂Φ(t, 0)

∂t
Φ−1(t, 0)P (s) = −Φ−1(t, 0)A(t)P (s),

since ∂Φ(t,0)
∂t

= A(t)Φ(t, 0). Moreover, we have

∂ψ

∂s
= Φ(t, 0)−1 ∂P (s)

∂s
,

14



and (13) becomes

J(ψ) = Φ−1(t, 0)

(

−A(t)P (s)
∣

∣

∣

∣

∂P (s)

∂s

)

.

Practical computations for the Jacobian matrix in Coppola’s case (Example 2(c)), are as follows:

∂P (s)

∂s
=









−R sin (θ) sin (φ) R cos (θ) cos (φ)
R cos (θ) sin (φ) R sin (θ) cos (φ)

0 −R sin (φ)
03,9

09,2 I9









.

Due to 0 blocks in the above matrix, to compute the determinant of J(ψ), one only needs the first
three coordinates of the f(t, P (s)) vector, and since f(t, ·) is the dynamics, one has

f(t, P (s)) = (vr1, vr2, vr3, v̇r1, v̇r2, v̇r3, vp1, vp2, v̇p3, v̇p1, v̇p2, v̇p3)
T ∈ R

12.

This gives:

det(J(ψ)(t, s)) =

∣

∣

∣

∣

∣

∣

−vr1 −R sin (θ) sin (φ) R cos (θ) cos (φ)
−vr2 R cos (θ) sin (φ) R sin (θ) cos (φ)
−vr3 0 −R sin (φ)

∣

∣

∣

∣

∣

∣

det
(

Dϕ0
t (P (s))

)

,

which amounts to:

det(J(ψ)) = R2 sin (φ) (cos (θ) sin (φ) vr1 + sin (φ) sin (θ) vr2 + cos (φ) vr3) det
(

Dϕ0
t (P (s))

)

= R2 sin (φ) vr · n̂ det
(

Dϕ0
t (P (s))

)

,
(14)

where n̂ = [cos (θ) sin (φ) sin (φ) sin (θ) cos (φ)]T is the unit vector normal to the sphere.

Example 5.

For linear dynamics, one may easily deduce that

det(J(ψ)) =

∣

∣

∣

∣

∣

∣

−vr1 −R sin (θ) sin (φ) R cos (θ) cos (φ)
−vr2 R cos (θ) sin (φ) R sin (θ) cos (φ)
−vr3 0 −R sin (φ)

∣

∣

∣

∣

∣

∣

det(Φ−1(t, 0)),

and finally

det(J(ψ)) = R2 sin (φ) (cos (θ) sin (φ) vr1 + sin (φ) sin (θ) vr2 + cos (φ) vr3) det(Φ
−1(t, 0))

= R2 sin (φ) vr · n̂ det(Φ−1(t, 0)).
(15)

Now, since ψ is 1− 1, one can apply Equation (12) and get:

∫

Rn

dµ0 =

∫ T

0

∫ 2π

0

∫ π

0

∫

∞

−∞

∫

∞

−∞

∫

∞

−∞

ρI(ψ(t, θ, φ, vr , rp, vp))
∣

∣det
(

Dϕ0
t (P (t, θ, φ, vr, rp, vp))

)∣

∣

1vr ·n̂60(vr)
∣

∣R2 sin (φ) vr · n̂
∣

∣dvpdrpdvrdφdθdt (16)
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Example 6.

For linear dynamics, we have

∫

Rn

dµ0 =

∫ T

t=0

∫ 2π

0

∫ π

0

∫

∞

−∞

∫

∞

−∞

∫

∞

−∞

ρI(ψ(t, θ, φ, vr , rp, vp))
∣

∣det(Φ−1(t, 0))
∣

∣ 1vr ·n̂60(vr)

∣

∣R2 sin (φ) vr · n̂
∣

∣ dvpdrpdvrdφdθdt (17)

Lemma 2. Let a given random vector X with probability density ρX and another random vector Y
related to X by the equation y = g(x), and g bijective. The probability density ρY for Y is:

ρY (y) = ρX(g
−1(y))

∣

∣det(J(g−1)(y))
∣

∣ . (18)

Proof. Let P(Y ∈ S) be the probability that Y takes a value in some particular subset S, so that
we get:

P(Y ∈ S) =

∫

S

ρY (y) dy.

Since Y takes a value in S whenever X takes a value in g−1(S), one has:

P(Y ∈ S) =

∫

g−1(S)
ρX(x) dx.

Now, changing from variable x to y gives:

P(Y ∈ S) =

∫

g−1(S)
ρX(x) dx =

∫

S

ρX(g
−1(y))

∣

∣det(J(g−1)(y))
∣

∣ dy.

In our case, let g be the flow ϕt0, and ρI be the probability density of the initial random state
X0, one obtains the probability density ρt(X) of the random state X at a given fixed time t from
Equation (18):

ρt(X) = ρI(ϕ
0
t (X))

∣

∣det
(

Dϕt0(X)
)∣

∣ . (19)

Example 7.

In the linear case, the flow is given by X0 7→ Φ(t, 0)X0 and then, we have that the probability
density ρt(X) of the random state X at a given fixed time t is given by

ρt(X) = ρI(Φ
−1(t, 0)X)

∣

∣det(Φ−1(t, 0))
∣

∣ . (20)

From Equations (19) and (16), one has:

PI =

∫

Rn

dµ0 =

∫ T

t=0

∫ 2π

θ=0

∫ π

φ=0

∫

∞

vr=−∞

∫

∞

rp=−∞

∫

∞

vp=−∞

ρt(P (θ, φ, vr, rp, vp))1vr ·n̂60(vr)

∣

∣R2 sin (φ) vr · n̂
∣

∣dvpdrpdvrdφdθdt. (21)
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Remark 3. Equation (21) is similar to formula (15) in Coppola’s article, with two differences.
Firstly, the parametrization in spherical coordinates is different, but this does not affect the result
in any way. Secondly, there is a slight abuse of notation in formula (15) of Coppola’s article,
concerning the probability density function ρt(X) which appears instead of ours ρt(P (s)). More
precisely, this means that ρt is the probability density of the state random variable X at each fixed
time t, but this function should be applied to P (s) (after the reparametrization).
There is also a slight abuse of notations in this document regarding the definition of a probability
density function ρt(P (s)) as shown in Lemma 2 since the random vector and the variable of the
density function coincide.

We move on to the next assumption made in [14]:

Assumption 3. Independence of the two random vectors xp and xs.
The dynamic model and probability distribution function for one object are independent from the
dynamic model and probability distribution function of the other object.

Keeping in mind the slight abuse of notations mentioned in Remark 3 and if ρtps(xp, xs), ρtp(xp),
ρts(xs) denote respectively the joint density functions of the random vectors XT =

[

xTp x
T
s

]

, xp and
xs then Assumption 3 means that:

ρtps(xp, xs) = ρtp(xp)ρts(xs). (22)

This implies that the density ρt(P (s)) = ρt(xr(θ, φ, vr), xp) satisfies:

ρt(xr, xp) = ρtps(xp, xs) = ρtp(xp)ρts(xp + xr), (23)

where xr = xp − xs is the relative state on the sphere of radius R. This may be proved by noting

that Xrp =

[

xr
xp

]

=

[

−I6 I6
I6 06,6

] [

xp
xs

]

and by applying Lemma 2. Therefore, Equation (16)

becomes:

PI =

∫ T

0

∫ 2π

0

∫ π

0
|sin (φ)|

∫

∞

−∞

R2 |vr · n̂| 1vr ·n̂60(vr)

∫

∞

−∞

∫

∞

−∞

ρtp(xp)ρts(xp + xr)dvpdrpdvrdφdθdt.(24)

The next assumption from [14] is related to the Gaussian nature of the two density functions of the
random vectors xp and xs.

Assumption 4. Gaussian distributions.
The probability distribution functions ρtp ∼ N (mp(t), Pp(t)) and ρts ∼ N (ms(t), Ps(t)) remain
Gaussian at each time t.

It may be deduced that xr = xs − xp ∼ N (ms(t)−mp(t), Pp(t) + Ps(t)

Pr(t)

).

Let us define the following matrices:

G−1 = P−1
p + P−1

s , T = GP−1
s , (25)

where G is a symmetric positive semidefinite matrix. Keeping in mind that:

ρtp(xp) =
1

√

(2π)6
√

det(Pp)
e
−
1

2
(xp−mp)TP

−1
p (xp−mp)

,

ρts(xs) =
1

√

(2π)6
√

det(Ps)
e
−
1

2
(xs−ms)TP

−1
s (xs−ms)

,

(26)
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then
ρt(xr, xp) = ρtp(xp)ρts(xp + xr) = ρt(w, xr) = ρtw(w)ρtr(xr), (27)

is obtained after tedious algebraic manipulations for which the following identities are used:

TPsT
T + (I6 − T )Pp(I6 − T )T = GT T +G(I6 − T )T = G,

det(Pp) det(Ps) = det(PpPs) = det(GP ) = det(G) det(P ),
(28)

and:
ρtw ∼ N (mp(t) + T (ms(t)−mp(t))

mr(t)

, G(t)),

ρtr ∼ N (mr(t), Pr(t)).

(29)

Equation (27) shows that the random vectors w = xp+Txr and xr are independent. Therefore, we
get that:

PI =

∫ T

0

∫ 2π

0

∫ π

0
|sin (φ)|

∫

∞

−∞

R2 |vr · n̂| 1vr ·n̂60(vr)ρtr(xr)

∫

∞

−∞

ρtw(w)dw

=1

dvrdφdθdt

=

∫ T

0

∫ 2π

0

∫ π

0
|sin (φ)|

∫

∞

−∞

R2 |vr · n̂| 1vr ·n̂60(vr)ρtr(xr(θ, φ, vr))dvrdφdθdt.

(30)

The next step consists in partitioning the mean vector mr(t) =

[

mrr(t)
mvr(t)

]

and the covariance

matrix Pr(t) as Pr(t) =

[

P11(t) P12(t)
P T12(t) P22(t)

]

leading to:

P−1
r (t) =

[

P−1
11 (t) + P−1

11 (t)P12(t)∆
−1(t)P T12(t)P

−1
11 (t) −P−1

11 (t)P12(t)∆
−1(t)

−∆−1(t)P T12(t)P
−1
11 (t) ∆−1(t)

]

,

∆(t) = P22(t)− P T12(t)P
−1
11 (t)P12(t).

Consequently, we get that:

−1

2
(xr −mr)

TP−1
r (xr −mr) = −1

2
(rr −mrr)

TP−1
11 (rr −mrr) · · ·

−1

2
(·)T∆−1 (

v′

vr − P T12P
−1
11 rr−

m′

v

(mvr − P T12P
−1
11 mrr))

v′−m′

v

,

= −1

2
(rr −mrr)

TP−1
11 (rr −mrr)−

1

2
(v′ −m′

v)
T∆−1(v′ −m′

v),

and ρtr(xr) = ρtr(rr)ρtv′(v
′) with:

ρtr ∼ N (mrr(t), P11(t)),

ρtv′ ∼ N (m′
v(t),∆(t)).

(31)
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Moreover, |vr · n̂| =
∣

∣v′(t) · n̂+Rn̂TP−1
11 (t)P12(t)n̂

∣

∣ = |v′(t) · n̂+ ǫ0(n̂, t)| and we get:

PI =

∫ T

0

∫ 2π

0

∫ π

0
R2 |sin (φ)| ρtr(rr)·

∫

∞

−∞

∣

∣v′(t) · n̂+ ǫ0(n̂, t)
∣

∣ 1v′(t)·n̂+ǫ0(n̂,t)60(v
′)ρtv′(v

′)dv′

I(n̂,t)

dφdθdt. (32)

The unit vector normal to the sphere n̂ is defined by n̂ = [cos (θ) sin (φ) sin (φ) sin (θ) cos (φ)]T

and the orthogonal matrix T defined by:

T =





cos(θ) sin(φ) sin(φ) cos(θ) cos(φ)
− sin(θ) cos(θ) 0

− cos(θ) cos(φ) − sin(θ) cos(φ) sin(φ)



 , (33)

is such that ~i =
[

1 0 0
]T

= Tn̂. With the notations:

v′′(t) = Tv′(t) =

[

ǫ(t)
ζ(t)

]

,

m′′
v(t) = Tm′

v(t) =

[

mǫ(t)
mζ(t)

]

,

∆(θ, φ, t) = T∆(t)T
T
=

[

σ2(θ, φ, t) ∆12(t)

∆
T
12(t) ∆22(t)

]

,

σ2(θ, φ, t) = n̂T (P22(t)− P T12(t)P11(t)
−1P T12(t))n̂,

(34)

we have that ρtv′(v
′) = ρtv′′(v

′′) with v′′ ∼ N (m′′
v(t),∆(t)) and simple algebraic computations lead

to ρtv′′(v
′′) = ρtǫ(ǫ)ρtζ(ζ) with:

ǫ ∼ N (mǫ, σ
2),

ζ = ζ − ǫ∆
T
12

σ2
∼ N

(

mζ −
mǫ∆

T
12

σ2
,∆22 −

∆
T
12∆12

σ2

)

.

Note that mǫ(θ, φ, t) = n̂T (mvr − P T12(t)P
−1
11 (t)mrr) =~i

Tm′′
v(t). Therefore,

I(n̂, t) =

∫

∞

−∞

∣

∣v′(t) · n̂+ ǫ0(n̂, t)
∣

∣ 1v′(t)·n̂+ǫ0(n̂,t)60(v
′)ρtv′(v

′)dv′,

=

∫

∞

−∞

|ǫ(t) · n̂+ ǫ0(n̂, t)| 1ǫ+ǫ0(n̂,t)60(ǫ)ρtv′′ (v
′′)dζdǫ,

=

∫

∞

−∞

|ǫ(t) · n̂+ ǫ0(n̂, t)| 1ǫ+ǫ0(n̂,t)60(ǫ)ρtǫ(ǫ)

∫

∞

−∞

ρtζ(ζ)dζ

1

dǫ,

= − 1√
2π σ

∫

−ǫ0(n̂,t)

−∞

(ǫ(t) · n̂+ ǫ0(n̂, t)) e
−
(ǫ−mǫ)

2

2σ2 dǫ,

(35)

since v′(t) · n̂ = v′′(t) · T n̂ = v′′(t) ·~i. Finally, remembering that the error function is given by:

erf : R → R

x 7→ erf(x) =
1√
π

∫ x

0
e−t

2

dt,
(36)
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the integral I(n̂, t) may be readily computed as:

I(n̂, t) =
σ√
2π

e
−
(ǫ0(n̂, t) +mǫ)

2

2σ2 − (mǫ + ǫ0(n̂, t))

2

[

1− erf

(

mǫ + ǫ0(n̂, t)√
2 σ

)]

, (37)

and the probability PI is finally obtained as:

PI =

∫ T

0

∫ 2π

0

∫ π

0
R2 |sin (φ)| ρtr(rr(θ, φ))I(n̂, t)dφdθdt. (38)
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Appendix

This appendix quickly summarizes the main definitions from measure theory and integration that
are needed for the developments presented in this report. The material here in is mainly borrowed
from the references [8], [7] and [30].

A Basic definitions, results and facts from measure theory

Definition 4 (Indicator Function). Let B ⊂ A. The indicator function 1B of B is defined as:

1B : A → {0, 1} ,
x 7→

{

0 if x /∈ B,
1 if x ∈ B.

Definition 5 (σ-algebra). Let A be a set. A σ-algebra of subsets of A (sometimes called a σ-field)
is a family A of subsets of A such that:

1. ∅ ∈ A,

2. ∀E ∈ A, A\E ∈ A,

3. for every sequence (En)n∈N ∈ A,
⋃

n∈N

En ∈ A.

Example 8.

- P(A) is a (the maximal) σ-algebra on A.

- {∅, A} is a (the minimal) σ-algebra on A.

- {∅, B,A\B,A} is a σ-algebra on A.

- If B 6= ∅ and B 6= A then {∅, B,A\B,A} is not a σ-algebra on A.

Definition 6. For every system of sets G ∈ P(A), there exists a smallest σ-algebra containing G.
This σ-algebra, denoted by σ(G) is the σ-algebra generated by G.

Definition 7 (Borel σ-algebra or topological σ-algebra). The σ-algebra σ(On), denoted B(Rn),
generated by the system On of all open sets of R

n is called the Borel σ-algebra on R
n and its

members are the Borel sets or Borel measurable sets.

Note that the Borel σ-algebra B(Rn) may be generated by the family of half-open rectangles in R
n,

i.e. B(Rn) = I where I = I(Rn) = {[a1, b1)× · · · × [an, bn) : aj , bj ∈ R}.

Definition 8 (Measurable Space). A measurable space is a pair (A,A) where A is a set and A is
a σ-algebra of subsets of A.

Definition 9 (Measure). Let (A,A) be a measurable space (see Definition 8). A positive measure
on A (or, more precisely, on (A,A)) is a mapping µ : A → [0,+∞] satisfying:
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1. µ (∅) = 0,

2. for every sequence (En)n∈N of pairwise disjoint sets in A, µ

(

⋃

n∈N

En

)

=
∑

n∈N

µ (En).

Example 9.

- Borel measure : A measure defined on the Borel σ-algebra B(Rn) is called a Borel measure.

- Dirac Measure at a : Let (A,A) be any measurable space and let a ∈ A. Then δa : A →
{0, 1}, defined for A ∈ A by:

δa(A) =

{

0 if a 6∈ A,
1 if a ∈ A,

is called the Dirac measure at the point a.

- Lebesgue measure: The set-function λn on (Rn,B(Rn)) that assigns the value :

λn ([a1, b1)× · · · × [an, bn)) =

n
∏

j=1

(bj − aj)

to every half-open rectangle [a1, b1)×· · ·×[an, bn) ∈ I, is called the n-dimensional Lebesgue
measure. If A ⊂ R

n then

λn(A) = inf
A⊂ ∪∞

i=1Ri

∑

(bi1 − ai1) · · · · · (bin − ain),

where the Ri’s are half-open rectangles, i.e. Ri = [ai1, b
i
1)× · · · × [ain, b

i
n).

The 1-dimensional-Lebesgue measure represents the conventional "length" of a segment:

∀ (a, b) ∈ R
2 s.t. a < b, λ ([a, b]) = b− a.

Remark that, for a ∈ R, λ ({a}) = 0. From the second point of Definition 9:

∀ (a, b) ∈ R
2 s.t. a < b, λ ([a, b]) = λ ({a}) + λ (]a, b[) + λ ({b}) = λ (]a, b[) .

Definition 10 (Measure Space). A measure space is a triplet (A,A, µ) where A is a set, A is a
σ-algebra of subsets of A, and µ is a positive measure on (A,A).

Property 1. Let (A,A, µ) be a measure space and B,C ∈ A. Then, C ⊂ B ⇒ µ (C) 6 µ (B).
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Figure 4: Monotonicity of positive measures.

Definition 11 (σ-finite measure). A measure µ defined on (A,A) is said to be σ-finite and (A,A, µ)
is called a σ-finite measure space if A contains an increasing sequence (Aj)j∈N ⊂ A of sets A1 ⊂
A2 ⊂ · · · such that ∪j∈NAj = A (exhausting sequence) verifying µ(Aj) <∞ for all j ∈ N.

Definition 12 (Support of a Measure). Let (A,A, µ) be a measure space.
The support of the positive measure µ is the smallest closed set defined as:

supp(µ) = {x ∈ A s.t. µ (U) > 0 for every open neighborhood U of x} .

Example 10.

- The support of the Dirac measure at 0 is the singleton {0}.

- Let (R,B(R)). The support of the Lebesgue measure λ is R. Note that every single point
has Lebesgue measure zero and so has every countable union of points.

Definition 13 (Product Measure). Let (A1,A1, µ1) and (A2,A2, µ2) be two σ-finite measure spaces.
Then the set-function

ρ : A1 ×A2 → [0,∞],
A1 ×A2 7→ µ1(A1)µ2(A2)

is the unique measure called product measure, denoted by ρ = µ1⊗µ2 and defined on the measurable
space (A1 × A2,A1 ⊗ A2) where A1 ⊗ A2 = σ(A1 × A2) is a product σ-algebra. (A1 × A2,A1 ⊗
A2, µ1 ⊗ µ2) is called the product measure space.
The product measure ρ is a σ-finite measure on (A1 ×A2,A1 ⊗A2) such that

ρ(E) =

∫ ∫

1E(x, y)µ1(dx)µ2(dy) =

∫ ∫

1E(x, y)µ2(dy)µ1(dx),

holds for all E ∈ A1 ⊗A2.
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Example 11.

The n-dimensional Lebesgue measure λn on (Rn,B(Rn)) may be defined as a product measure,
i.e.

(Rn,B(Rn), λn) = (Rd × R
n−d,B(Rd)⊗ B(Rn−d), λd ⊗ λn−d), ∀ n > d > 1.

B Measurable functions and integration

Definition 14 ((A1,A2)-measurable mapping). Let (A1,A1) and (A2,A2) be two measurable spaces.
A mapping f : A1 → A2 is (A1,A2)-measurable if

f−1(B) ∈ A1, ∀ B ∈ A2.

Definition 15 (Measurable function). Let (A,A) be a measurable space. A function f : A→ R is
A-measurable (or measurable in short) if {x : f(x) < c} ∈ A for every c ∈ R or equivalently

f−1(B) ∈ A, ∀ B ∈ B(Rn).

A measurable function f : A→ R is a (A1,B(R))-measurable mapping.

Example 12.

Let (X,A) be a measurable space. The indicator function f(x) = 1A(x) is measurable if and
only if A ∈ A. Indeed, for a set A ∈ A

{x : 1A(x) < c} = ∅ ∈ A if c 6 0,
{x : 1A(x) < c} = X\A ∈ A if c ∈ (0, 1],
{x : 1A(x) < c} = X ∈ A if c > 1.

Definition 16 (Simple function). A simple function g : A→ R on a measurable space (A,A) is a
function of the form:

g(x) =

M
∑

j=1

yj1Aj
(x),

with finitely many disjoint sets A1, · · · , AM ∈ A and y1, · · · , yM ∈ R.
If yi > 0 for all i, the function g is called a positive simple function.

Definition 17. Suppose µ is a positive measure on the measurable space (A,A) and f is measurable

- If f =

M
∑

j=1

yj1Aj
is a positive simple function then

∫

fdµ =

M
∑

i=1

yiµ(Ai).

- If f > 0 then
∫

fdµ = sup

{∫

gdg : g 6 f, g is positive simple

}

.
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- For arbitrary f ,
∫

fdµ =

∫

f+dµ−
∫

f−dµ,

where f+ = max{f, 0} and f+ = −min{f, 0}.

If (B,B) is measurable, the integral of f over B is defined by:

∫

B

fdµ =

∫

f1Bdµ.

Theorem 1 (Fubini). Let (A1,A1, µ1) and (A2,A2, µ2) be σ-finite measure spaces and let f : A1×
A2 → R be A1 ⊗A2-measurable. If at least one of the following is finite

∫

A1×A2

|f |d(µ1 ⊗ µ2),

∫

A2

∫

A1

|f(x, y)|µ1(dx)µ2(dy),
∫

A1

∫

A2

|f(x, y)|µ2(dy)µ1(dx)

then
∫

A1×A2

fd(µ1 ⊗ µ2) =

∫

A2

∫

A1

f(x, y)µ1(dx)µ2(dy) =

∫

A1

∫

A2

f(x, y)µ2(dy)µ1(dx).

Definition 18 (Density). Let (A,A, µ) be a measure space and ρ a positive real A-measurable
function, the set-function

ν : A 7→
∫

A

ρdµ =

∫

1Aρdµ =

∫

1A(x)ρ(x)µ(dx),

is a measure on (A,A) called the measure with density function ρ with respect to µ and denoted

ν = ρµ. Traditionally, the density is denoted ρ =
dν

dµ
.

For instance, if the measure µI is Gaussian (µI = µg), with mean m ∈ R
n, and covariance matrix

Σ, given by:

µI(A) :=
1

√

(2πdet(Σ))n

∫

A

exp

(

−(X −m)TΣ−1(X −m)

2

)

dX, (39)

where A ∈ B(Rn), and B(Rn) denotes the completion of the Borel σ-algebra on R
n and the integral

in (39) is with respect to the standard n-dimensional Lebesgue measure. The density of the measure
µI is a function ρI : R

n → R defined by:

ρI(X) =
1

√

(2πdet(Σ))n
exp

(

−(X −m)TΣ−1(X −m)

2

)

. (40)

Using the notation of Definition 18, one has ρI =
dµI
dλ

.

C Image of a measure

Let us denote by M(S)+ the cone of all nonnegative Borel measures on the subset S of a measurable
space. For completeness, let us recall the classical notions related to the pushforward measure, which
is roughly speaking the image of a given measure under a given mapping :
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Definition 19. [35, Theorem 1.44] (Pushforward measure) Let two measurable spaces (X,A) and
(Y,B), a (A,B)-measurable mapping h : X → Y and a measure µ ∈ M(X)+. The pushforward
measure (or image measure under the mapping h) ν = h⋆µ ∈M(Y )+ defined on B is given by:

ν(B) = h⋆µ(B) = µ(h−1(B)), (41)

for all Borel measurable sets B ⊆ Y .

For an arbitrary set B ⊆ Y , h−1(B) is the preimage of B under the mapping h, i.e.

h−1(B) = {x ∈ X : h(x) ∈ B} .

X

Y

0

ν

Bh−1(B)

ν(B) = µ(h−1(B)) R

h

µ

Figure 5: Pushforward measure or image measure ν.

Theorem 2. [8, Theorem 3.6.1] (Change of variables) Let µ ∈ M(X)+. A measurable function
g on Y is integrable with respect to the pushforward measure h⋆µ ∈ M(Y )+ if and only if the
composition g ◦ h is integrable with respect to the measure µ ∈M(X)+. In that case:

∫

Y

g d(h⋆µ) =

∫

X

g ◦ hdµ. (42)
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