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In this article, a dynamic model describing the growth of the green microalgae Chlamydomonas reinhardtii, under light attenuation and sulphur‐

deprived conditions leading to hydrogen production in a photobioreactor is presented. The strong interactions between biological and physical

phenomena require complex mathematical expressions with an important number of parameters. This article presents a global identification

procedure in three steps using data from batch experiments. First, it includes the application of a sensitivity function analysis, which allows one to

determine the parameters having the greatest influence on model outputs. Secondly, the most influential parameters were identified by using the

classical least‐squares cost function. This stage is applied to the experimental data collected from a lab‐scale batch photobioreactor. Finally, the

implementation of an Extended Kalman Filter estimating the biomass concentration, extracellular and intracellular sulphur concentrations is

presented. Thereby, the observer uses on‐line measurements provided by a mass spectrometer measuring the outlet gas composition (O2, CO2).

Software sensor performances and limits are illustrated in simulation and with experimental data.

Keywords: sensitivity function, cost function, extended Kalman filter, photobioreactor, Chlamydomonas reinhardtii

INTRODUCTION

T
heworld is in desperate need of a novel source of sustainable

and renewable energy, without greenhouse gas emissions or

environmental pollution. Photoautotrophic H2 produced

from solar energy bymicroalgaemight be this energy. This process

produces H2 and O2, and consumes CO2. For inducing H2

production in a photobioreactor, anaerobic conditions are re-

quired, as well as sulphur deprivation conditions.[1]

To optimize the process, bothmodelling and experimentations at

a laboratory scale in controlled conditions are required. As a first

approach, phenomenological models based on mass balance

equations coupled with kinetic expressions are used in general.

Photosynthetic growth can also be formulated as a function of the

amount of sulphur accumulated in cells. This is achieved by

incorporating an intracellular quota formulation based on the

Droop model.[2] The later model is classically used in oceano-

graphic studies[3] to consider the relation of microalgal growth to

the nutrient availability. In the case of light‐limited growth culture

in a photobioreactor, as presented here, this formulation has to be

associated with radiative transfer conditions, introducing the

coupling between a radiative model[4] and a Haldane model to

represent light‐dependent photosynthetic growth kinetics.

The strong interactions between biological and physical

phenomena lead to complex mathematical expressions with an

important number of parameters that have to be identified using

the available experimental data. Parameter identification becomes

a difficult task because of the complexity of models as well as the

lack of sufficient and reliable experimental data. Several works are

reported in literature that deal with questions of structural and

practical identifiability of bioprocessmodels, as well as experiment

design for its identification, and suitable methods to carry out this

identification.[5] Sensitivity analysis appears as a powerful tool to

determine the parameters that have the biggest influence onmodel

outputs, while avoiding over‐parameterization and reducing the

complexity of the model, as discussed by Bastin and Dochain.[6]

Sensitivity analysis has recently been applied to biological models

such as plant cell cultures.[7] Moreover, the shape of the sensitivity

function as a function of time allows for choosing the time range

during which the identification of a parameter can be the most

accurate. In fact, the higher the amplitude of a sensitivity function

during a certain time period, the more the parameter identification

will be accurate in this time interval.

A key role in the success of an identification procedure is held by

the computation of the sensitivity of the measured outputs with

regard to the model parameters, as well as an appropriation of the

cost function, which measures the deviation between the model

and measured outputs. Moreover, the proper application of an

optimization procedure may be important. Several cost functions

have been used for kinetic parameter estimation, following an

output‐error criterion. The type of function that is selected may

influence how the optimization proceeds, adjusting one or another

parameter.[8]

The accessibility to process measurements and to culture

physiological states is limited. Therefore, in this context, we

developeda software sensor for on‐line estimatingofkeyparameters

contributing to hydrogen production. The work is based on a

dynamic model describing the evolution of extra‐ and intracellular

sulphur, total biomass and intracellular starch concentrations as a
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function of environmental conditions. This model is analyzed in

order to elaborate on estimation strategies at the photobioreactor

level. Many studies have been made on the state estimation of

unmeasured states variables, among others several estimation

techniques have been proposed in the literature.[9–10]

In this article, the sensitivity analysis and optimization

procedure are applied on a dynamic model describing the growth

of the green microalgae Chlamydomonas reinhardtii, under light

attenuation and sulphur deprived conditions leading to hydrogen

production in a photobioreactor. A Droop formulation was used to

describe the evolution of extra‐ and intracellular sulphur, as a

function of environmental conditions.[1] We present also the

development of an extended Kalman filter (EKF) using on‐line

measurements of gas composition at the photobioreactor outlet as

an indirect measurement of the biomass concentration.

The article is organized as follows: the “Methods” sectionpresents

the method used to describe the dynamic process model, as well as

parameter identification, and the implementation of EKF. The

results of application are shown in the “Results and Discussions”

section. Finally, conclusions are given in the end section.

METHODS

Process Description

Photobiological H2 production by green microalgae is a transitory

phenomenon, taking place under anoxic conditions and in the

presence of illumination. The main limitation in the H2 production

is the inhibition of its production by the oxygen. As soon as oxygen

is released during water photolysis by photosynthesis, H2 release

stops. Anoxic conditions into the cultivation systems could be

induced in sulphur deprivation conditions.[1]

The H2 production in batch mode could be represented by a

succession of three stages:

� Photosynthetic growth phase, during which the microalgae is

growing, assimilating CO2 and nutrients (N, P, S), in the

presence of illumination. During this phase, O2 is released;

biomass concentration increases, progressively inducing light

limitation phenomena. The initial amount of sulphur intro-

duced into the cultivation system has to be determined in order

to achieve its total consumption (deprivation).
� Sulphur deprivation phase: Once the total consumption of

extracellular S is achieved, O2 release decreases progressively

resulting in a transition to anoxia. Intracellular sulphur

concentration accumulated during the first phase is progres-

sively consumed.
� H2 production phase–when anoxic conditions are obtained. The

H2 production is accompanied with intracellular starch

consumption.

Themodel analyzed here describes the transition from the first to

the second phase (photosynthetic and sulphur deprivation). The

evolutions of extra‐ and intracellular sulphur concentrations and

biomass concentration during these phases are described by a set of

three mass balance equations, as presented hereafter.

Dynamic Process Model

Let us first consider a continuous‐time state‐space model described

by the following nonlinear differential equations:

_x ¼ fðxÞ þ
Pm

i¼1 giðxÞui

yi ¼ hjðxÞwith j ¼ 1;…;m

(

ð1Þ

where x 2 Rn is the state vector, u 2 Rm is the vector of inputs, y 2
Rm is the vector of outputs, f(x) is an n‐dimensional vector

of nonlinear functions, g(x) is an (n�m)‐dimensional matrix of

nonlinear functions, and h(x) is an m‐dimensional vector of

nonlinear functions.

In our case, the state vector of the system consists of three

variables x¼ (X, S, Q) which are, respectively, the biomass

concentration (X), the extracellular‐sulphur concentration (S), and

intracellular sulphur quota (Q) (expressed as intracellular sulphur

concentration divided by the biomass concentration). The input

vector consists of two variables, the incident light intensity and

dilution rate u¼ (Io, D) which can be used as control variables.[11]

The model equations consist of mass balance equations at the

photobioreactor level, assuming perfectly stirred conditions. Two

kinetic rates were used for describing biological phenomena,

namely the specific growth rate, depending on available light and

on the internal sulphur quota, and an absorption rate of the

extracellular sulphur into the cell, providing the internal sulphur

quota.

The mass balance equations are:

dX

dt
¼ ðfQÞ < mG > X � msX � DX ð2Þ

dS

dt
¼ �Ysx < mG >

S

Sþ ks

� �

X þ DðSi � SÞ ð3Þ

dQ

dt
¼ Ysx < mG >

S

Sþ ks
� ðfQÞ < mG > Q ð4Þ

where D represents the dilution rate (h�1) (expressed as the

feeding flow divided by the reactor volume, D¼ 0 in batch

mode), and Si represents the sulphur concentration in the

feeding flow.

The growth rate dependency on light is given by:

mG ¼ mmax

Gz

KI þ Gz

where mmax is the maximal specific growth rate (h�1), Gz is the

irradiance inside the culture (mol photon�2 s�1), and KI is the half‐

saturation constant (mol photon�2 s�1).

Compared with the original model of Fouchard et al.[1] a

simplified formula[12] was used for describing the local value of

irradiance Gz within the culture medium:

Gz

I0
ffi exp �

ð1þ aÞ

2a
EaXz

� �

: ð6Þ

In this formula, I0 is the incident light intensity, a is the module

of linear diffusion, and Ea is the mass coefficient of absorption of

radiation. z is the culture depth, as light attenuation occurs along

only one direction, namely, the depth of culture z, perpendicular to

the illuminated surface. The average photosynthetic rate <mG>
calculated all over the reactor volume is obtained by integrating

local photosynthetic responses as follows:

< mG >¼
1

L

Z L

0

mGðGðzÞÞdz: ð7Þ

fQ function has been proposed to express the influence of the

intracellular sulphur concentration on the photosynthetic growth
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as follows:

fQ ¼
eðkðQ=QmÞÞ � 1

eðkÞ � 1
ð1� fminÞ þ fmin ð8Þ

where fQ¼ 1 if Q>Qm. Qm represents the maximal quota above

which photosynthetic activity is not affected by the internal

sulphur quota. fmin is the minimal value of fQ when Q is null (the

residual photosynthetic activity), and k is a parameter adjusting the

exponential shape.

ms is the specific respiration rate (supposed to be constant).Ysx is

the yield of substrate conversion (g S/g of biomass) and ks is the

half saturation constant (g/L), describing the sulphur limitation of

growth.

From Equations (2)–(4), it results in:

f ðxÞ ¼

f1

f2

f3

2

6

4

3

7

5
¼

ðfQÞ < mG > X � msX

�Ysx < mG >
S

Sþ ks

� �

X

Ysx < mG >
S

Sþ ks
� ðfQÞ < mG > Q

2

6

6

6

6

6

4

3

7

7

7

7

7

5

: ð9Þ

Simulated evolutions of X, S, and Q, using model parameters as

reported in Fouchard et al.[1] are illustrated in Figures 1 and 2 in

two different operating conditions: photosynthetic growth con-

ditions (without sulphur deprivation) and H2 production con-

ditions (sulphur deprivation conditions). Initial conditions used in

these simulations are reported in Table 1.

As can be seen in Figure 1, in the presence of a high amount of

sulphur inside the culture medium, only the first phase (photo-

synthetic phase) was observed. The stationary phase appears after

6 days of cultivation as a result of light limitation. The internal

quota has no influence on growth (fQ¼ 1).

In the second simulated scenario, conditions inducing H2

production were applied. As illustrated in Figure 2, the initial

amount of sulphur concentration was �8 time slower. The

extracellular sulphur concentration was totally consumed after

2 days of cultivation, which represents the duration of the photo-

synthetic growth phase. Limitation induced by intracellular sulphur

concentration occurred, as illustrated by the evolution of fQ.

Sensitivity Functions

The objective of this study was to determine the parameters having

the greatest influence on model outputs and to suggest a

classification of them. This study allowed for the determination

of the most important parameters and was used prior to the model

parameter identification.

The sensitivity functions represent the influence of variations of

each parameter on the output variables and are defined by the

partial derivative of the output variable with respect to the

parameter. The sensitivity functions provide information on the

influence of parameters and the quality of identification.[5]

Examples of calculation of the sensitivity functions can be found

in the literature.[7,13] After sensitivity analysis, a model reduction

could be conducted by removing the least significant parameters or

fixing their values from the literature.

xi (i¼ 1,…n) represents the state variables of the model and uj
(j¼ 1,… p) represents themodel parameterswhere p is the number

of model parameters. The sensitivity functions reflect the

sensitivity of the states x with respect to the parameter p, as

defined by dxi/duj. These functions are obtained by integrating the

equations d/dt (dxi/duj) using the following equation:

d

dt

@xi
@uj

� �

¼
@

@uj

dxi

dt

� �

: ð10Þ

The dynamics of states are given by:

dxi

dt
¼ tiðx;u; uÞ ð11Þ

Figure 1. Evolution of state variables of the model (X, S, Q) and fQ—growth phase.
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where ti represents the n differential equations of state variables,

and xi and ti are non‐linear functions. Thus, from Equations (10)

and (11), we obtain:

d

dt

@xi
@uj

� �

¼
@ti
@uj

þ
X

n

k¼1

@ti
@xk

@xk
@uj

: ð12Þ

The calculation of sensitivity functions was done by solving a

system of ordinary differential equations of dimension n (pþ 1).

However, the model parameters are likely to have quite different

orders of magnitude, leading to numerical difficulties in the

analysis of model sensitivity compared to the parameters. To

overcome this problem, normalized sensitivity functions were

used.[14]

Normalized sensitivity functions can be classified according to

their parameters influence and determine the most influential

parameters.

The expressions of the sensitivity functions of the model were

deduced from Equations (10) and (12) as follows:

d

dt

@xi
@uj

� �

¼
@ti
@uj

þ
@ti
@X

@X

@uj
þ
@ti
@S

@S

@uj
þ
@ti
@Q

@Q

@uj
: ð13Þ

The index i of the state variables denotes the three states (X, S,Q)

and j denotes the model parameter.

Cost Function Minimization

Classical least‐squares estimator (LS) is a popular approach that is

based on the assumption that the measurement errors have

constant (but possibly unknown) standard deviation.130

JLSðuÞ ¼
XN

t¼1
ðyexpðtÞ � ysimðt; uÞÞ

2 ð130Þ

where JLS is the objective function, yexp are the collected measure-

ments, ysim are the model‐predicted outputs, u represents the

parameters to be determined andN is the number ofmeasurements.

For weighted least‐squares (WLS), if the variance of the

measurement errors is time varying, then the previous expression

generalizes to:

JLSðuÞ ¼
XN

t¼1

yexpðtÞ � ysimðt; uÞ

st

� �2

: ð14Þ

Extended Kalman Filter

The Kalman filter is the most widely adopted state estimation

technology for non‐linear systems. We chose this approach for our

problem, but many other approaches could also be used. The

dynamics of a non‐linear bioprocess can be expressed in the

following general form:

_xðtÞ ¼ f ½xðtÞ� þ wðtÞ; xðtÞjt¼0 ¼ x0 ð15Þ

YðtÞ ¼ h½xðtÞ� þ vðtÞ ð16Þ

where x(t) is the state vector with an initial value of x0, Y(t) is the

measurement vector, w(t) is the system noise (representing

modelling error and unknown disturbances), and v(t) is the

measurement noise. Both system and measurement noises are

assumed to be independent, random white noises with zero mean

with corresponding covariance matrices Q and R. When the

Figure 2. Evolution of state variables of the model (X, S, Q) and fQ—sulphur deprivation phase.

Table 1. Conditions of simulations of the sensitivity functions

Non‐limited growth case Sulphur deprivation case

[X0; S0; I0] ¼

[0.072g/L; 48.7mg/L;

110mmolem�2 s�2]

[X0; S0; I0] ¼

[0.099g/L; 6mg/L;

110mmolem�2 s�2]

Simulation time: 10 days.
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measurements are taken continuously in time, the extended

Kalman filter (EKF) algorithm for calculating the optimal state

estimate x̂ based on the available measurement up to current time t

is given by[15]:

_̂xðtÞ ¼ f ½x̂ðtÞ� þ KðtÞfYðtÞ � h½x̂ðtÞ�g; x̂ðtÞjt¼0 ¼ x̂0 ð17Þ

where K(t)¼P(t)C(t)R�1, K(t) is the filtering gain matrix, and P(t)

is the covariance matrix of filtering error, satisfying the following

matrix Riccati equation:

_PðtÞ ¼ AðtÞPðtÞ þ PðtÞATðtÞ � KðtÞRKTðtÞ þ Q; PðtÞjt¼0 ¼ P0

ð18Þ

where: AðtÞ ¼ @f ½xðtÞ�
@xT ðtÞ jx̂ðtÞ; CðtÞ ¼ @h½xðtÞ�

@xT ðtÞ jx̂ðtÞ:

RESULTS AND DISCUSSIONS

Results of Sensitivity Analysis

Our study focused on the influence of parameters on the three state

variables of the model, biomass, sulphur, and sulphur internal

quota, supposing their three measures could be considered for the

parametric identification.

As described before, we distinguish the case of growth in non‐

limiting conditions with respect to sulphur, but in limiting light

conditions, from the case of growth under sulphur deprivation

conditions, where the rate of growth depends on both the incident

light flux and the intracellular quota. From the mathematical

viewpoint, the difference lies in the term fQ (Equation (8)), which

in the first case is equal to 1.

The vector of parameters u was:

� uj¼ [mmax, KI, ms, ks, Ysx]—in the case of growth without

sulphur limitation, that is called hereafter the non‐limited

growth case.

� uj¼ [mmax, KI, ms, ks, Ysx, fmin, k, Qm]—in the case of growth in

conditions leading to sulphur deprivation, that is called

hereafter the sulphur deprivation case, it adds the parameters

involved in the function (fQ).

Given the complexity of the analytical calculation of the

equations, the sensitivity functions were determined through the

symbolic software Mathematica1, and then the integration was

done numerically in Matlab1.

The analysis of the sensitivity functions was applied in both

cases mentioned above. The initial conditions used in simulation

for each case were chosen based on normal conditions placing the

system into the desired operating scenario. These conditions are

reported in Table 1.

The sensitivity functions in the non‐limited growth case and the

sulphur deprivation case are shown in Figures 3 and 4, respectively.

We note that normalized sensitivity functions allowed comparing

the relative influence of parameters with respect to a state variable

and not between different state variables because of their different

units. Consequently, for a given state variable, the parameter that

has the most sensitivity is one that has the highest absolute value in

the same case. We note that we cannot compare the sensitivity of

the parameters of a state variable in two different cases.

In the non‐limited growth case (Figure 3), we note the strong

influence ofmmax,KI, andms in the same proportions onX, S, andQ,

indicating that these three parameters have to be identified

simultaneously from all available experimental data. In turn,

there is no influence of Ysx and ks parameters on X and poor

influence on S. This allowed decoupling the identification of these

last two parameters of the rest. We note that the most sensitive

parameters were the kinetic parameters of the photosynthetic

growth rate mG.

In the sulphur deprivation case, the sensitivity functions

(Figure 4) presented a maximum that corresponds to the moment

when the internal sulphur quota reached its maximum.

Figure 3. Evolution of sensitivity functions—non‐limited growth case.
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Furthermore, the parameters mmax, KI, and ms were also influential

in sulphur deprivation phase, peakingwhen the internal quotawas

consumed due to the lack of extracellular sulphur.

While in the non‐limited growth case the sensitivity functions

increased with time, in the sulphur deprivation case we noted the

presence of peaks in precisemoments. These peaks indicate that an

important number of measurements have to be performed during

this period for accurate parameter identification.

Regarding the specific parameters of the sulphur deprivation

case, the parameter fmin showed very little influence compared the

other two parameters (k andQm). The k parameter has amaximum

influence after 2 days of cultivation onX and S.Qm influencedmore

on Q than on X and S. As expected, the measurement of the

intracellular sulphur quotawould improve the identifiability of this

parameter.

For the non‐limited growth case, the absolute value of the

sensitivity functions are exponentially increasing, and all param-

eters have the same shape of curve except onQ. On the other hand,

for the sulphur deprivation case the value of the sensitivity

functions are peak sensitivity values and all parameters have the

same shape of curve. To summarize, a classification of parameters

according to their influence is proposed in Table 2. A score

comprised between 1 and 8 was awarded, and the parameter that

has the higher influence is that which has the higher score.

Based on this analysis, an identification methodology, in few

steps, could be proposed as follows:

� mmax, KI, ms have to be identified first on X and S experimental

data obtained during a non‐limited growth case
� In a second step, ks and Ysx have to be identified on S data, in

sulphur limitation conditions after 5 days of cultivation. This

choice is justified because these two parameters (ks and Ysx)

have sensitivity pretty close to the three most influential

parameters (mmax, KI and ms). Therefore, an improvement may

be possible by optimizing the ks and Ysx parameters in the case

of sulphur limitation conditions.
� Then, Qm and k parameters have to be identified in sulphur

deprivation conditions using experimental data ofX, between 2

and 7 days of cultivation (corresponding to the decay phase of

biomass. Q measurements should significantly increase the

accuracy of this parameters identification.

Since the intracellular sulphur quota Q remains nearly constant

in the non‐limited growth case, its measurement does not provide

any additional information with respect to X and S, as was

expected.

Sensitivities functions in sulphur deprivation case were signifi-

cantly lower for the parameters mmax, KI, ms, Ysx, and ks (Figures 3

and 4), which confirms the choice to identify the parameters in a

few steps.

Dependencies Between Parameters

To perform reliable parameter identification, it is important to

check if there are dependencies between parameters. This study

Figure 4. Evolution of sensitivity functions—sulphur deprivation case.

Table 2. Classification of the influence of parameters in both phases

Parameter

Non‐limited growth case Deprivation case

Biomass Sulphur Quota Biomass Sulphur Quota

mmax 8 8 8 6 6 6

ms 6 6 6 4 2 3

KI 7 7 7 5 5 5

Ysx 0 5 5 3 4 4

ks 0 4 4 2 3 2

k 0 0 0 8 8 8

Qm 0 0 0 7 7 7

fmin 0 0 0 1 1 1

6
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allows for determining parameters, which are not individually

identifiable, and where applicable, the two parameters can be

replaced, for example, by their ratio (if the model equations allow

us to distinguish this report from the rest of the parameters).

The calculation of the determinant of the Gram matrix gives

valuable information on the dependencies between the param-

eters: if the determinant is null, the parameters are linearly

dependent; if not, the parameters are linearly independent and

therefore identifiable. Luenberger[16] defines the Gram matrix of

normalized sensitivity functions (Equation (19)) where Su is the

sensitivity function of each parameter (u):

The calculation of the determinant of the Gram matrix

corresponding to the two vectors of selected parameters with

respect to state variables X, S gave a nonzero response. It could be

concluded that the parameters mmax, KI, and ms are linearly

independent with respect to the biomass X and sulphur S

concentrations.

During sulphur deprivation phase, the calculation of the Gram

matrix for the vector of parameters selected for re‐identification (k,

Qm) gives a non‐zero response of the two variables X and S. So we

can conclude that these parameters are identifiable.

Conditioning of the Gram Matrix

Calculation of determinant of the Gram matrix shows only if the

parameter is identifiable or not, while calculating the conditioning

of the Grammatrix gives the degree of identifiability of parameters.

So, from the calculation of the conditioning Gram matrix, the best

operating conditions for identifying the selected parameters could

be found.

A study was conducted to find the best operating condition with

respect to the incident light (I0) ranging between 50 and 800mmol/

m2/s.

FromFigure 5, it follows that the best results (lower conditioning

of the Gram matrix) with respect to S were found for incident light

(I0) ranging between 200 and 600mmol/m2/s. Best identification

conditions using X alone is found for the lowest incident light

intensity I0¼ 50mmol/m2/s, and for S the optimal value is to

I¼ 300mmol/m2/s.

In the sulphur deprivation case, analysis of the two parameters

chosen for the identification (k, Qm) showed that we have better

identification conditions for an incident light intensity I0¼ 190

mmol/m2/s using two measured states, X and S (Figure 6). In the

case of X alone, the best operating condition of the incident light

was I¼ 50mmol/m2/s, and for S its value is I¼ 250mmol/m2/s.

Note that the results obtained in both phases are similar. The

optimal incident light conditions for the identification of X is the

lowest value for I¼ 50mmol/m2/s, and for S it is between 250 and

300mmol/m2/s.

Results of Cost Function Minimization

Simulation of the model variables—experimental data

We will compare the simulation of the model variables to

experimental data.[17,18] The experimental conditions are pre-

sented as follows in Table 3.

The first two experiments (Growth experiments 1 and 2) allow

us to analyze the growth phase on a medium autotrophic CO2—

only carbon source under conditions of non‐limited sulphur. The

other two experiments were performed on an autotrophic medium

limited in sulphur. These experiments were conducted at different

light intensity with the aim of characterizing the growth of these

microalgae at the growth kinetics and gas production.

Themodel presented abovewas used to describe the evolution of

a culture of microalgae in batch mode. The results of the

comparative evolutions between the model and experimental

data under the conditions of Growth experiments 1 and 2 are

presented in Figures 7 and 8. The simulation shows that the model

predicts that the sulphur is totally consumed. This prediction leads

to a reduction of internal quota, and thus the passage in phases 2

and 3, which are not observed experimentally. Note also that the

growth kinetics (X) are overestimated in both cases.

Deprivation experiments 3 and 4 were conducted under

operating conditions leading to the production of H2 and as a

result the consecutive passes by three phases. The simulation of the

model state variables X and S comparedwith experimental data are

shown in Figures 9 and 10. We notice an overestimation of growth

rate, as before. In both cases, the model predicts that the sulphur is

totally consumed. This prediction affects the rest of the variables,

Figure 5. Light optimal condition for the identification in photosynthetic

growth phase.
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including causing a decrease in intracellular sulphur quota

internally. Given this gap between the model and experimental

data, we must conduct an identification of parameters.

Parameter identification, non‐limited growth case

The second step consists of identifying the dominant parameters

that were calculated in the first step with available measurements.

The choice of these parameters is due to their significant influence

in their mode of operation illustrated by the values of the

normalized sensitivity functions. This identification is the result

of minimizing the sum of squared deviations between experimen-

tal data and the simulated corresponding values. The optimization

of this criterion is performed with an algorithm from Matlab1

using the fmincon function.

The chosen parameters in a non‐limited growth case are mmax,

KI, and ms. The parameter identification was performed using

experimental data from Growth experiment 1, whose operating

conditions are presented in Table 3. The identification procedure

was conducted by giving more importance to the X variable than

the variable S, by weighting in this regard the optimization

criterion.

The parameter values obtained after the identification are

mmax¼ 0.0685h�1, ms¼ 0.0074h�1 and KI ¼81.4019mmol/m2/s.

The simulation results of the new values obtained by the

identification are shown in Figure 11.

Figure 11 shows a very good fit to describe the evolution of

biomass concentration in the growth phase. In the extracellular

concentration of sulphur, we see an improvement during the first 5

days, and a degradation due to the model prediction of totally

consumed sulphur in the medium.

To improve the prediction of S, we have identified parameter Ysx

using only the evolution of S. A smaller value was found for Ysx

(8.631) compared to its initial value in the non‐limited growth

phase (Ysx¼ 20.6). This value has improved the prediction of S at

the end of the culture because S is not totally consumed (Figure 12).

We can conclude that the identification of parameters in the non‐

limited growth case gave a perfect fit for X. However, although it

could solve the problem corresponding to the prediction of the total

consumption of S in themedium,we lose the good fit that we had in

the first six days of the extracellular sulphur concentration. This

validates the low influence of the parameter Ysx compared to other

parameters identified.

Figure 6. Light optimal condition for the identification—sulphur

deprivation phase.

Table 3. Operating conditions and initial experiences

Experiment

Initial

Biomass

(g/L)

Initial

sulphur

(mg/L)

Initial

intensity

(mmole/m2/s)

Growth experiment 1 0.072 48.70 110

Growth experiment 2 0.181 133.9 300

Deprivation experiment 3 0.099 6 110

Deprivation experiment 4 0.1315 22.28 500

Figure 7. Evolution of the model variables (X, S) ‐‐‐, and experiment (þ)—Growth experiment 1.
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Validation of parameters identified in the non‐limited growth case

To validate the model with new parameter values identified, we

simulated the model in other operating conditions corresponding to

the experimental data of Growth experiment 2, as presented in

Table3.Similartothebiomassconcentration,Figure13showsagood

fit between themodel and experimental data, except for the last two

points which are due to a decrease in light intensity that was not

taken into consideration in the model. However, we found an

overestimate of the evolution of the extracellular sulphur

concentration.

The model with the new parameters identified in the growth

phasewas used to simulate the operating conditions corresponding

to experimental data from Deprivation experiments 3 and 4 to see

the impact of these parameters in the deprivation phase.

Figures 14 and 15 show a good improvement in the prediction of

themodel (compared to experimental data of the originalmodel) for

the biomass concentration and extracellular sulphur. However, the

deprivation phase, characterized by a decrease in biomass, was not

adequately predicted. In view of these results, we conducted an

identification of specific parameters of the deprivation phase, k and

Qm.

Parameter identification—sulphur deprivation case

The parameter identification was performed using experimental

data from Deprivation experiment 4, whose operating conditions

are presented in Table 3. The function fQ takes into account, by the

exponential form, the photosynthetic activity by the intracellular

sulphur quota.We noted that the photosynthetic activity occurs for

Figure 8. Evolution of the model variables (X, S) ‐‐‐, and experiment (þ)—Growth experiment 2.

Figure 9. Evolution of the model variables (X, S) ‐‐‐, and experiment (þ)—Deprivation experiment 3.
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at least 24 h in the experimental conditions cited above.[1] It was

observed that when the value of the parameter k exceeds 10, the

photosynthetic activity is not in accordance with experimental

data. To solve this problem, the value of k was limited to 10 in the

algorithm optimization. The parameter values obtained after

identification are k¼ 7.9575 and Qm¼ 8.3145mg S/mgX. The

simulation results using the new values obtained after identifica-

tion are shown in Figure 16. We can see that the identification of

parameters k and Qm correctly predicts the deprivation phase and

considers the decrease in biomass concentration. Similar to the

concentration of sulphur, we found a good fit between the model

and experimental data.

The new parameter values identified in the S deprivation case

using the operating conditions of Deprivation experiment 4 were

testedonDeprivationexperiment3tovalidatethem.Theevolutionof

biomass concentration shows a gap between the kinetic model and

experimental data (Figure 17). The decrease in biomass concentra-

tionstartsbefore theexperimentaldata. In fact, thesimulationshows

that the biomass concentration starts to decrease after reaching a

value of 0.51 g/L. Otherwise, the experimental data shows that the

decrease in biomass concentration begins after reaching the value

0.69 g/L. The sulphur concentration maintained a good fit.

After an analysis of the result of the parameters identified, we

noted that the new value ofmmax is less than the value identified on

Figure 10. Evolution of the model variables (X, S) ‐‐‐, and experiment (þ)—Deprivation experiment 4.

Figure 11. Comparison between the simulation state variables of the model and the experimental data using the re‐identified values, mmax, ms and KI—
Growth experiment 1.
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dedicated experiments in chemostat.[4] Using the model with the

new values results in the specific rate of growth that are not verified

by chemostat, as shown in Figure 18, and therefore that does not

meet the biological significance of this parameter.

To understand this result, we looked at the impact that could

have the optical parameter Ea in Equation (6), considered until

now as perfectly known and constant. However, recent work[19]

shows that the parameters Ea change significantly depending on

the values of the light intensity, as shown in Table 4. These values

were obtained under conditions of physical limitation by light

(g¼ 1) in the PBR, cultivating the microalgae C. reinhardtii.

Thus, we conducted a simulation study to determine the impact

of these parameters on the attenuation profile of the light intensity

at depth of culture. As shown in Figures 18 and 19, the parameter

Ea has a very important impact on the growth rate.

We see that the attenuation of the light intensity profile Gz

decreases with increasing Ea. Thus, the values of growth rates

calculated with these profiles will be reduced accordingly. The

Figure 12. Comparison between the simulation state variables of the model and the experimental data using the re‐identified values, mmax, ms, KI, and Ysx—
Growth experiment 1.

Figure 13. Comparison between the simulation state variables of the model and the experimental data using the re‐identified values, mmax, ms, KI—Growth

experiment 2.
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value of Ea used in the identification step was Ea¼ 220m2kg�1,[4]

while the “true” average value measured by Takache is

172m2kg�1.[19] As a result, the low value of mmax obtained by

parametric identification compensates for uncertainties on the

optical parameters including the parameter Ea.

The value of the parameter identified as KI is very close to the old

value. For the parameters k and Qm that appear in the equation fQ
(Equation (8)), we found k¼ 3.8996 is larger compared to the old

value (0.3389) calculated by regression on experimental data

related to fQ, and Qm¼ 6.7449, which is a little smaller than the

former value of 7. With this new value of k, the effect of limiting

intracellular quota (Q) is larger.

Results of Extended Kalman Filter Applied to PBR

Observability of the system

The verification of the observability property throughout the state

space is necessary before the construction of the observer. Recall

that a nonlinear system is uniformly observable if the following

observability matrix is full rank:

@

@x
½hLfhL

2
f h � � �L

n�1
f h�t ð20Þ

where h(x) as the system output, and Lf h(x) as the Lie derivative of

the function h(x) along a vector field f(x). The system output is

Figure 14. Comparison between the simulation state variables of the model and the experimental data using the re‐identified values, mmax, ms, KI—

Deprivation experiment 3.

Figure 15. Comparison between the simulation state variables of the model and the experimental data using the re‐identified values, mmax, ms, KI—

Deprivation experiment 4.
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equal to the measurement of biomass concentration:

hðxÞ ¼ X: ð21Þ

Thus, following observability matrix is obtained:

1 0 0

@f1
@X

0
@f1
@Q

@

@X

@f1
@X

f 1 þ
@f 1
@Q

f 3

� �

@

@S

@f 1
@X

f 1 þ
@f 1
@Q

f 3

� �

@

@Q

@f 1
@X

f 1 þ
@f 1
@Q

f 3

� �

2

6

6

6

6

6

4

3

7

7

7

7

7

5

:

ð22Þ

The determinant of the observability matrix is function of the

biomass concentration (X), incident light flux density (I0) and the

internal sulphur quota (Q).

Recall that the model used here corresponds to a modified Droop

model describing sulphur deprivation effect on the microalgae

growth. This is modelled by means of the function fQ varying

between 0 and 1, depending onQ, as illustrated in Figure 21. In the

case of the non‐limitation of intracellular sulphur quota (extra‐

cellular sulphur concentration is sufficient in the culturemedium),

the term fQ ¼1. In this case, df1/dQ¼ 0 and the determinant of the

observability matrix becomes equal to zero.

When fQ< 1, the determinant is defined for any value of Q,

unless X¼ 0 and I0¼ 0. It does not vanish on the whole state space,

Figure 16. Comparison between the simulation state variables of the model and the experimental data using the re‐identified values, Qm, k—Deprivation

experiment 4.

Figure 17. Comparison between the simulation state variables of the model and the experimental data using the re‐identified values, Qm, k—Deprivation

experiment 3.
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as illustrated in Figure 20, representing the set of values taken by

the determinant in the practical range of biomass concentration

and incident light flux density (I0). This analysis allows us to

conclude that the observability of the system is uniform in this case.

However, it may be noted that for low values of biomass

concentration and incident light flux intensities, the determinant

is very close to zero and its minimum value is �5.78� 10�7.

Thus,we can conclude the non‐observability of the systemunder

non‐limiting sulphur conditions. In limiting conditions (corre-

sponding to hydrogen producing conditions) the system is

observable. An illustration that gives the evolution of the

observability matrix rank with time during a batch is presented

in Figure 21. It can be noticed that during the first 5 days of

cultivation, when extracellular sulphur concentration is not

growth limiting, the rank of the observability is 1 and it becomes

3 when fQ starts to decrease.

Experimental materials and methods

Experiments were carried‐out in a laboratory photobioreactor

equipped with data acquisition system developed in a LabVIEW1

environment. The extended Kalman filter as well as the indirect

measurement of the biomass concentration were developed using

LabVIEW1 environment. Experimental data—inlet and outlet gas

flow rates and O2, CO2 gas compositions measured using a mass

spectrometer (Pfeiffer Vacuum PrismaPlus1 QMG 220)—are

integrated into a Matlabscript.[1] In this node, gas mass balance

equations are used to provide on‐line indirect measurement of

biomass concentration. A graphical representation of the system is

given in Figure 22.

Biomass estimation

A major difficulty for process control is the reliability of the

measurements. In the case of the Kalman filter, whose role will be

to rebuild the quantities that cannot be measured on‐line (internal

quota and extracellular sulphur concentration), a reliable knowl-

edge of the biomass concentration in real time is necessary. Several

techniques are available to evaluate biomass, such as dry weight

measurement measured offline (this method is considered as a

reference method). Other methods exist that provide on‐line

measurement, such as physical sensors like the dielectric

spectroscopy, optical sensors, infrared spectroscopy, and fluores-

cence physical sensors.

It is possible to use other variables measured in the bioreactor to

estimate the biomass concentration, including the use of measure-

ments of O2 and CO2 compositions. Coupling between the

elemental balance (stoichiometric equations) and the macroscopic

balance (gas balance, pH, conductivity, and pressure) allows to

obtain an indirect measurement of the biomass activity and its

concentration.[20]

This approachwas used here. There are two gas components that

are directly related to biomass activity in autotrophic conditions,

which are respectively the oxygen which is produced and carbon

dioxide which is consumed as a result of the microalgae

photosynthetic growth.

These elements are bound by the following stoichiometric

equation determined by elemental analysis of biomass:

CO2 þ 0:512H2Oþ 0:0063SO2�
4 þ 0:181NHþ

4

þ 0:0213PO3�
4 ! CH1:77O0:472N0:181S0:0063P0:0213 þ 1:0752O2:

ð170Þ

A mass balance on carbon dioxide consumed or on the oxygen

produced can give a correct estimation of biomass

concentration.[21]

Figure 18. Growth rate as a function of the light intensity.

Table 4. Experimental values of mass absorption coefficient Ea obtained
under conditions of strict physical limitation in the PBR

I (mmolem�2 s�2) 110 300 500 1000

Ea (m
2kg�1) 200 176 160 130

Figure 19. Light intensity profile of the luminous flux Gz for different values

of Ea.

Figure 20. The response surface of the state space.
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Balance on oxygen

Oxygen is produced as a result of the photosynthetic growth of

microalgae. Once produced, part of the O2 is transferred into the

gaseous phase. In the systemunder study, a gas vector N2 is applied

through the reactor. In these conditions, the accumulation of the

dissolved oxygen into the liquid phase could be neglected; as a

result, the produced oxygen rate (which is proportional to the

growth rate) equals the oxygen transfer rate. A mass balance on O2

into the gaseous phase allows determining on‐line the oxygen

production rate as the difference between inlet and outlet O2 partial

flow rates as follows:

QeCO2;e � QsCO2;s ¼ QCO2;p ð180Þ

whereQe is the flow input,Qs is the flow output, CO2;e is the oxygen

concentration at the input and CO2;s is the oxygen concentration at

output.

The oxygen production rate is correlated with the biomass

growth rate by the stoichiometric coefficient of the equation:

QCO2;p ¼
MX

MO2

1

qO2

ð190Þ

where qO2
is the stoichiometric coefficient, which is equal to 1.075

mole of O2/mole of biomass.

Balance on CO2

The contribution of CO2 is used to ensure the needs of the culture

and to optimize biomass production. On the other hand, the CO2

regulates the pH by controlled injection in the presence of a

continuous bubbling of nitrogen to optimize culture conditions and

avoid stressing the algae. The carbon balance is made by taking

into consideration all forms of carbon produced, consumed or

accumulated in the photobioreactor. It therefore relates to the

injected carbon for pH control and carbon dioxide output of

photobioreactor that has not been fixed by microalgae. We must

also consider the total inorganic carbon (TIC) and total organic

carbon (TOC) consumed or accumulated in the medium.

The pH is regulated every three hours. This is the time required

for CO2 that is not assimilated by the cells to exit entirely from the

PBR. It is then easy to perform a balance on the input and output

quantities. This balance gives the mass of carbon transferred

(mCO2) to the PBR, which a part can be assimilated by the cells,

and the other part accumulated in the culturemedium. Onemole of

CO2 assimilated by the biomass leads to the production of onemole

of biomass. The kinetics of growth is the result when the ratio of

molar masses MC of carbon (12 gmol�1) and MX biomass

(24.72 gmol�1).

QCCO2;p
MX

MC
¼ Xp: ð200Þ

The four experiments, of which their operating conditions are

presented in Table 3, were used to demonstrate the feasibility of

determining the biomass produced from gas analysis. They were

conducted in batches Figures 14 and 15 show: two in non‐limited

growth condition and two with sulphur limitation.

Balancing the carbon consumed and the oxygen produced can

allow us to estimate the biomass concentration in the PBR from the

balance presented above. As can be seen in Figures 23 and 24, the

available data on oxygen and CO2 reflect biomass production in

both Growth experiments 1 and 2 rather well.

The balance of the carbon consumed and the oxygen produced in

both Deprivation experiments 3 and 4 is shown in Figures 25 and

26. Note that the estimate of biomass from the balance of oxygen

Figure 21. fQ function and observability matrix rank.

Figure 22. The program steps of the Extended Kalman Filter.
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reflects biomass production rather well until the seventh day.

Outside this zone, the decrease in biomass is not predicted

correctly. From the available data on carbon, we find the same

problem with a more limited reconstitution and significant

differences. This is probably due to a change in reaction

stoichiometry in the Sulphur deprivation phase and the production

of secondarymisidentifiedmetabolites, whichmay be added as the

accumulation of measurement errors. Signal drift of the mass

spectrometer can cause a small error, but on a cumulative measure

high frequency, this error becomes important.

EKF results using indirect measurement of the biomass
concentration from O2 and CO2 by using Deprivation
experiment 4 measurements

The choice of covariancematrix (R andQ) is important to estimate.

The covariance matrix R corresponds to the measurements noise,

assumed to be characterized here by a Gaussian noise. The system

noise covariance matrix Q can be set based on the variance of the

model uncertainty of each state. For the photobioreactor system,

the values of Q and R were determined empirically, that is we

repeated the simulation with new values of R and Q to find the best

estimate. The best values obtained were R¼ 104 and Q¼ diag

[1,10�3, 10�3]. It was noted that whenwe have low values of R and

important values of Q, the estimate is worse. This shows that we

have an important measurement noise and that gives more

confidence to the model. The covariance matrix Q was chosen in

a diagonal form according to the usual assumption that the

individual components (i.e., systemnoise vector) are uncorrelated.

Results of state estimation of the culture of C. reinhardtiiwith the

Kalman filter via biomass estimated from the O2 balance show a

low convergence of the estimate (Figures 27 and 28). Indeed, the

experiment starts in non‐limiting conditions, thus in an unobserv-

able configuration. It is reflected by a divergence of the filter at the

beginning of experimentation. The system becomes observable

when fQ< 1 and the filter starts to converge.

Regarding extracellular concentrations of sulphur, we found the

same problem in the simulation, that is a small divergence in the

moment when fQ¼ 1, then convergence until the end of the

experiment (red line in Figure 27). Since there are no experimental

data for the intracellular sulphur quota, we cannot compare them

with the results of the filter. To verify that the divergence of the

filter at the beginning of the experiment was due to the non‐

observability of the system, gain values were obtained when the

filter has converged where it was used (blue line in Figure 27). It

can be observed that the estimates improved.

We note that it is difficult to obtain a fast convergence also during

deprivation phase for extracellular sulfate. The biomass (X) is not

dependent on extracellular sulphur (S) directly, but on the

Figure 23. Evolution of biomass concentration, indirect measurements

from O2, CO2 and dry matter—Growth experiment 1.

Figure 24. Evolution of biomass concentration, indirect measurements

from O2, CO2 and dry matter—Growth experiment 2.

Figure 25. Evolution of biomass concentration, indirect measurements

from O2, CO2 and dry matter—Deprivation experiment 3.

Figure 26. Evolution of biomass concentration, indirect measurements

from O2, CO2 and dry matter—Deprivation experiment 4.
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intracellular sulphur quota (Q), which itself depends on extracel-

lular sulphur (S). The presence of the state variable S¼ 22.28mg

L�1 in the denominator in Equation (3), which is fairly large

compared to ks¼ 3.7, makes S little observable. In order to see the

influence of the parameters relative to the other, a function of the

sensitivity of the measurement (X/Q) has been plotted (Figure 29).

We also tested the filter on data from Deprivation experiment 3.

The results are similar to those found in the Deprivation

experiment 4 data.

CONCLUSION

A dynamic model of Chlamydomonas reinhardtii growth under

light attenuation and sulphur‐deprived conditions leading to

hydrogen production in a photobioreactor is presented and a

sensitivity analysis has been done. Sensitivity function analysis

was revealed as an interesting tool to identify efficiently and

accurately the parameters of the considered model. This analysis

provided the most sensitive parameters for which special attention

has to be paid during identification. Furthermore, it allowed us to

Figure 27. Evolution of biomass, extracellular sulphur concentration and intracellular sulphur quota concentration: estimation versus experimental data.

Figure 28. Evolution of biomass, extracellular sulphur concentration and intracellular sulphur quota concentration: estimation versus experimental data.

Figure 29. Simulation of the sensitivity function of X/Q (&) and fQ
function (	).
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propose an identification procedure in three steps using measure-

ments of biomass and extracellular sulphur concentrations

collected with two different operating scenarios. Based on the

shape of the sensitivity functions, time periods (in batch mode)

were identified during which numerous measurements have to be

collected for accurate parameter identification.

We found that the most sensitive parameters in the case non‐

limited growth are mmax, KI, and ms. The strong influence is in the

same proportions onX, S, andQ. In turn, there is no influence ofYsx

and ks parameters on X and poor influence on S. In the sulphur

deprivation case, the sensitivity functions presented a maximum

that corresponds to the moment when the internal sulphur quota

reached its maximum. Furthermore, the parameters mmax, KI, and

ms were also influential in sulphur deprivation phase. For the

specific parameters of this case, the parameter fmin showed very

little influence compared to the other two parameters, k and Qm. k

parameter has a maximum influence after two days of cultivation

on X and S.

The second step consisted of the identification of the dominant

parameters calculated in step one. This identification is the result of

the minimization of the sum of squared deviations between

experimental data and the corresponding simulated values. The

identification of parameters allowed for a better prediction of the

model and to overcome the uncertainties of the optical parameters.

We note that the identification strategy developed has the

advantage of giving a good approximation of parameters.

Balancing the carbon consumed and on the oxygen produced

allowed us to estimate the biomass concentration in the PBR. The

available data on oxygen and CO2 reflect biomass production in

both Growth experiments 1 and 2 rather well. For both Deprivation

experiments 3 and 4, the estimation of biomass from the balance on

oxygen reflects biomass production rather well until the seventh

day. Outside this zone, the decrease in biomass is not predicted

correctly. On available data on carbon, we find the same problem.

So, a mass balance on carbon dioxide consumed and on the oxygen

produced can give a correct estimation of biomass concentration.

Finally, the extended Kalman filter was chosen to estimate the

three state variables X, S, and Q. We concluded that it provides a

relevant response for the design of an extracellular sulphur

concentration controller in limiting conditions inducing H2

production. Even if the results are not entirely satisfactory because

of the slow convergence of the filter, it still provides a relevant

response for the design of an extracellular sulphur concentration

controller in limiting conditions inducing H2 production.
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