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Introduction

We consider systems of N ≥ 2 equations of pseudodifferential form [START_REF] Alinhac | Pseudo-differential operators and the Nash-Moser theorem[END_REF] iε∂ t ψ ε = H(t)ψ ε , ψ ε |t=t 0 = ψ ε 0 , where (ψ ε 0 ) ε>0 is a bounded family in L 2 (R d , C N ). The Hamiltonian operator H(t) = H(t, x, -iε∇ x )

is the semi-classical Weyl quantization of a time-dependent Hamiltonian

H : R × R d × R d → C N ×N , (t, x, ξ) → H(t, x, ξ),
that is a smooth matrix-valued function and satisfies suitable growth conditions guaranteeing a well-defined and unique solution of the system. We denote with a " •" the semi-classical Weyl quantization, the definition of which is recalled in Section 2.1. Phase space variables are denoted by z = (x, ξ) ∈ R 2d . The semi-classical parameter ε > 0 is assumed to be small. The initial data are wave packets associated with one of the eigenspaces of the Hamiltonian matrix. That is,

(2) ψ ε 0 = V 0 WP ε z 0 ϕ 0 , where V 0 (z) is a normalized eigenvector of the matrix H(t 0 , z) such that V 0 : R 2d → C N is a smooth vector-valued function, and WP ε z 0 ϕ 0 denotes the wave packet transform of a Schwartz function ϕ 0 ∈ S(R d , C) for a phase space point z 0 = (x 0 , ξ 0 ) ∈ R 2d , (3) WP ε z 0 ϕ 0 (x) = ε -d/4 e iξ 0 •(x-x 0 )/ε ϕ 0

Our aim is to describe the structure of the system's solutions in the case, when eigenvalues of the Hamiltonian matrix H(t, z) coincide for some point (t, z) ∈ R × R 2d , while all eigenvalues and eigenvectors retain their smoothness. The literature refers to them as codimension one crossings. In the presence of eigenvalue crossings the key assumption for space-adiabatic theory (the existence of a positive gap between eigenvalues) is violated, and the knowledge of the dynamics associated with one of the eigenvalues is not enough any more. Moreover, in addition to the necessity to include more than one eigenvalue for an effective dynamical description, also the non-adiabatic transitions between the coupled eigenspaces have to be properly resolved. These questions have already been addressed for special systems corresponding to the following physical settings: In his monograph [START_REF] Hagedorn | Molecular Propagation through Electron Energy Level Crossings[END_REF]Chapter 5], G. Hagedorn investigated Schrödinger Hamiltonians with matrix-valued potential, ( 4)

H S = - ε 2 2 ∆ x I C N + V (x), V ∈ C ∞ (R d , C N ×N ).
More recently, in [START_REF] Watson | Wavepackets in inhomogeneous periodic media: propagation through a one-dimensional band crossing[END_REF], A. Watson and M. Weinstein studied models arising in solid state physics in the context of Bloch band decompositions,

(5)

H A = A(-iε∇ x ) + W (x)I C 2 , A ∈ C ∞ (R d , C N ×N ), W ∈ C ∞ (R d , C).
In both settings, the eigenvalues of the matrices V (x), x ∈ R d , respectively A(ξ), ξ ∈ R d , have a codimension one crossing of their eigenvalues.

We develop here a new analytical method which applies for general matrix-valued Hamiltonians with a codimension one crossings of eigenvalues, which might also have multiplicity larger than one. In particular, we give a general and unified computation of the transfer operator which describes the non-adiabatic interactions due to the crossing. The nonadiabatic transition formulae of Corollary 3.9 are explicit and derived in a self-contained and more accessible way than the previous ones in the literature. Due to their explicit form, they can directly be applied to numerical simulations based on thawed Gaussians that are currently investigated in chemical physics, see for example [START_REF] Begušić | Single-Hessian thawed Gaussian approximation[END_REF] or the recent review [START_REF] Vaniček | Ab initio semiclassical evaluation of vibrationally resolved electronic spectra with thawed Gaussians[END_REF].

As another byproduct of our method, we also obtain an effortless generalization of the semi-classical Herman-Kluk approximation to the case of systems with eigenvalue gaps (see Corollary 3.5 below). We expect that a refinement of the present error analysis is possible, such that our codimension one result can be extended to the Herman-Kluk framework as well. This is work in progress, which might also contribute to the algorithmical development of superpositions of surface-hopping approximations using frozen (or thawed) Gaussian wave packets in the spirit of [START_REF] Wu | A justification for a nonadiabatic surface hopping Herman-Kluk semiclassical initial value representation of the time evolution operator[END_REF], see also [START_REF] Lu | Frozen Gaussian approximation with surface hopping for mixed quantum-classical dynamics: A mathematical justification of fewest switches surface hopping algorithms[END_REF].

We assume that the matrix H(t, z) has a smooth eigenvalue h 1 (t, z), the eigenspace of which admits a smooth eigenprojector Π 1 (t, z), that is,

H(t, z)Π 1 (t, z) = Π 1 (t, z)H(t, z) = h 1 (t, z)Π 1 (t, z).
We shall consider two situations, depending on whether the eigenvalue h 1 (t, z) crosses another smooth eigenvalue h 2 (t, z) or not. Because we assume the Hamiltonian matrix H(t, z) to be independent of ε, then, in the gap situation, the eigenvalue h 1 (t, z) is separated from h 2 (t, z) by a gap larger than some fixed positive real number δ 0 > 0 that is of order one with respect to the semi-classical parameter ε. In the second case, the smooth crossing case, both eigenvalues are smooth and have smooth eigenprojectors. Note that it is not the case in general since eigenvalues may develop singularities at the crossing; however, we do not consider that situations here. We shall also assume that H(t, z) has no other eigenvalues since one can reduce to that case as soon as the set of these two eigenvalues is separated from the remainder of the spectrum of the matrix H(t, z) by a gap (uniformly in t and z).

The gap situation is well understood and corresponds to adiabatic situations that have been studied by several authors (see in particular the lecture notes [START_REF] Teufel | Adiabatic perturbation theory in quantum dynamics Lecture Notes in Mathematics 1821[END_REF] of S. Teufel or the memoirs [START_REF] Martinez | Twisted pseudodifferential calculus and application to the quantum evolution of molecules[END_REF] of A. Martinez and V. Sordoni and note that the thesis [START_REF] Bily | Propagation d'états cohérents et applications[END_REF] is devoted to wave packets in the adiabatic situation). For avoided crossings, the coupling of the gap and the semi-classical parameter violates the key requirement for adiabatic decoupling. The resulting non-adiabatic dynamics have been studied for wave packets by G. Hagedorn and A. Joye in [START_REF] Hagedorn | Landau-Zener transitions through small electronic eigenvalue gaps in the Born-Oppenheimer approximation[END_REF][START_REF] Hagedorn | Molecular propagation through small avoided crossings of electron energy levels[END_REF] and for the Wigner function of general initial data in [START_REF] Kammerer | An Egorov theorem for avoided crossings of eigenvalue surfaces[END_REF]. Smooth crossings have been less studied so far. Some results on the subject focus on the evolution at leading order in ε of quadratic quantities of the wave function for initial data which are not necessarily wave packets (see [START_REF] Jecko | Semiclassical resolvent estimates for Schrdinger matrix operators with eigenvalues crossings[END_REF][START_REF] Duyckaerts | Degenerated codimension 1 crossings and resolvent estimates[END_REF] and the references therein). The main results devoted to wave packet propagation through smooth eigenvalue crossings are the references [START_REF] Hagedorn | Molecular Propagation through Electron Energy Level Crossings[END_REF] and [START_REF] Watson | Wavepackets in inhomogeneous periodic media: propagation through a one-dimensional band crossing[END_REF] mentioned above. There, for the specific Hamiltonian operators (4) and [START_REF] Carles | Nonlinear coherent states and Ehrenfest time for Schrodinger equation[END_REF], respectively, the authors gave rather explicit descriptions of the propagated wave packet, exhibiting non-adiabatic transitions that occur at the crossing between the two eigenvalues that are of order √ ε. As in these contributions, we assume that the crossing set

(6) Υ = {(t, z) ∈ R 2d+1 , h 1 (t, z) = h 2 (t, z)}
of two smooth eigenvalues h 1 (t, z) and h 2 (t, z) is a codimension one manifold.

Our main result (Theorem 3.8 below) makes the following assumptions for the initial data ψ ε 0 . Let v ε 0 be a wave packet centered in a phase space point z 0 , that is,

v ε 0 = WP ε z 0 ϕ 0 for some ϕ 0 ∈ S(R d , C). Let V 0 (z) be a smooth normalized eigenvector of H(t 0 , z), that is, V 0 ∈ C ∞ (R 2d , C N ) is a smooth vector-valued function that satisfies in a neighborhood U of z 0 , H(t 0 , z) V 0 (z) = h 1 (t 0 , z) V 0 (z) for all z ∈ U.
Then, we define the initial wave packet according to [START_REF] Bily | Propagation d'états cohérents et applications[END_REF]. Let z 1 (t) denote the classical trajectory associated with the eigenvalue h 1 (t, z) initiated in wave packet's core z 0 . Let t ♭ > t 0 be the first time, when the trajectory z 1 (t) meets the crossing set Υ, and let z 2 (t) denote the classical trajectory associated with the second eigenvalue h 2 (t, z), that is initiated in the crossing point z 1 (t ♭ ). That is,

ż1 (t) = J∂ z h 1 (t, z 1 (t)), z 1 (t 0 ) = z 0 , ż2 (t) = J∂ z h 2 (t, z 2 (t)), z 2 (t ♭ ) = z 1 (t ♭ ).
Then, the solution of system (1) satisfies

ψ ε (t) = V 1 (t)WP ε z 1 (t) (ϕ 0 1 (t) + √ εϕ 1 1 (t)) + √ ε1 t>t ♭ V 2 (t)WP ε z 2 (t) ϕ 2 (t) + o( √ ε),
where the profiles of the wave packets

WP ε z 1 (t) (ϕ 0 1 (t) + √ εϕ 1 1 (t)) and WP ε z 2 (t) ϕ 2 (t)
are Schwartz functions ϕ 0 1 (t), ϕ 1 1 (t), and ϕ 2 (t), that solve ε-independent PDEs on [t 0 , t ♭ ] and [t ♭ , t 0 + T ], respectively, that are explicitly given in terms of the classical dynamics associated with the eigenvalues h 1 (t, z) and h 2 (t, z). The profile associated with the second eigenvalue is generated by the leading order profile of the first eigenvalue via

ϕ 2 (t ♭ ) = T ♭ ϕ 0 1 (t ♭ ),
where the non-adiabatic transfer operator T ♭ is a metaplectic transform (which implies that the structure of Gaussian states is preserved, see Corollary 3.9). The two families V 1 (t, z) and V 2 (t, z) are smooth normalized eigenvectors for h 1 (t, z) and h 2 (t, z), respectively, that are obtained by parallel transport.

We point out that, in the uniform gap case, an initial datum that is associated with one eigenvalue issues a solution at time t that is associated with the same eigenvalue up to terms of order ε, which is the standard order of the adiabatic approximation, while for smooth crossings a perturbative term of order √ ε associated with the other eigenvalue has to be taken into account for an order ε approximation.

Before giving a more precise statement of the result, we mention that the propagation of wave packets was also studied for nonlinear systems in [START_REF] Carles | A Nonlinear Adiabatic Theorem for Coherent States[END_REF][START_REF] Hari | Nonlinear propagation of coherent states through avoided energy level crossing[END_REF][START_REF] Hari | Coherent states for systems of L2-supercritical nonlinear Schrödinger equations[END_REF], including situations with avoided crossings [START_REF] Hari | Coherent states for systems of L2-supercritical nonlinear Schrödinger equations[END_REF]. However, nonlinear systems with codimension one crossings have not yet been analysed. We expect that our result can be extended when imposing appropriate assumptions on the nonlinearity. 
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Preliminary results

In this section, we introduce the relevant function spaces for the unitary propagation and also recall some known results on wave packets for scalar evolution equations.

2.1. Function spaces and quantization. Let a ∈ C ∞ (R 2d ) be a smooth scalar-, vectoror matrix-valued function with adequate control on the growth of derivatives. Then, the Weyl operator a = op w ε (a) is defined by

op w ε (a)f (x) := af (x) := (2πε) -d R 2d a x + y 2
, ξ e iξ•(x-y)/ε f (y) dy dξ for all f ∈ S(R d ). According to [START_REF] Maspero | On time dependent Schrödinger equations: global well-posedness and growth of Sobolev norms[END_REF], the unitary propagator U ε H (t, t 0 ) associated with the Hamiltonian operator

H(t), iε ∂ t U ε H (t, t 0 ) = H(t) U ε H (t, t 0 ), U ε H (t 0 , t 0 ) = I L 2 (R d ) , is well defined when the map (t, z) → H(t, z) is in C ∞ (R × R 2d , C N ×N ),
valued in the set of self-adjoint matrices and that it has subquadratic growth, i.e. [START_REF] Duyckaerts | Degenerated codimension 1 crossings and resolvent estimates[END_REF] ∀α ∈ N 2d , |α| ≥ 2, ∃C α > 0, sup

(t,z)∈R×R 2d ∂ α z H(t, z) C N×N ≤ C α .
These assumptions guarantee the existence of solutions to equation (1) in L 2 (R d , C N ) and, more generally, in the functional spaces

Σ k ε (R d ) = {f ∈ L 2 (R d ), ∀α, β ∈ N d , |α| + |β| ≤ k, x α (ε∂ x ) β f ∈ L 2 (R d )} endowed with the norm f Σ k ε = sup |α|+|β|≤k x α (ε∂ x ) β f L 2 .
We note that also with respect to the Σ k ε (R d ) spaces, the unitary propagator U ε H (t, t 0 ) is ε-uniformly-bounded in the sense, that for all T > 0 there exists C > 0 such that sup

t∈[t 0 ,t 0 +T ] U ε H (t, t 0 ) L(Σ k ε ) ≤ C.
Remark 2.1. The analysis below could apply to more general settings as long as the classical quantities are well-defined in finite time with some technical improvements that are not discussed here.

2.2. Scalar propagation and scalar classical quantities. The most interesting property of the coherent states is the stability of their structure through evolution, which can be described by means of classical quantities. Note that for all z ∈ R 2d and k ∈ N, the operator ϕ → WP ε z ϕ is a unitary map in L 2 (R d ) which maps continuously Σ 1 k into Σ ε k with a continuous inverse. Other elementary properties of the wave packet transform are listed in Lemma A.1. We shall use the notation

(8) J = 0 I R d -I R d 0 .
For smooth functions f, g ∈ C ∞ (R 2d ), that might be scalar-, vector-or matrix-valued, we denote the Poisson bracket by

{f, g} := J∇f • ∇g = d j=1 ∂ ξ j f ∂ x j g -∂ x j f ∂ ξ j g .
Let h : R × R 2d → R, (t, z) → h(t, z) be a smooth function of subquadratic growth [START_REF] Duyckaerts | Degenerated codimension 1 crossings and resolvent estimates[END_REF].We now review the main tools for the semi-classical propagation of wave-packets. We let z(t) = (q(t), p(t)) denote the classical Hamiltonian trajectory issued from a phase space point z 0 at time t 0 , that is defined by the ordinary differential equation

ż(t) = J∂ z h(t, z(t)), z(t 0 ) = z 0 .
The trajectory z(t) = z(t, t 0 , z 0 ) depends on the initial datum and defines via Φ t,t 0 h (z 0 ) = z(t, t 0 , z 0 ) the associated flow map of the Hamiltonian function h. We will also use the trajectory's action integral

(9) S(t, t 0 , z 0 ) = t t 0 (p(s) • q(s) -h(s, z(s))) ds,
and the Jacobian matrix of the flow map

F (t, t 0 , z 0 ) = ∂ z Φ t,t 0 h (z 0
). Note that F (t, t 0 , z 0 ) is a symplectic 2d × 2d matrix, that satisfies the linearized flow equation ( 10)

∂ t F (t, t 0 , z 0 ) = JHess z h(t, z(t)) F (t, t 0 , z 0 ), F (t 0 , t 0 , z 0 ) = I R 2d .
We denote its blocks by ( 11)

F (t, t 0 , z 0 ) = A(t, t 0 , z 0 ) B(t, t 0 , z 0 ) C(t, t 0 , z 0 ) D(t, t 0 , z 0 ) .
In a last step, we define the corresponding unitary evolution operator, the metaplectic transformation, that acts on square integrable functions in L 2 (R d ).

Definition 2.2 (Metaplectic transformation). Let h : R × R 2d → R be a smooth function of subquadratic growth [START_REF] Duyckaerts | Degenerated codimension 1 crossings and resolvent estimates[END_REF]. Let t, t 0 ∈ R and z 0 ∈ R 2d . Let F (t, t 0 , z 0 ) be the solution of the linearized flow equation (10) associated with the Hamiltonian function h(t). Then, we call the unitary operator M[F (t, t 0 , z 0 )] :

ϕ 0 → ϕ(t)
that associates with an initial datum ϕ 0 the solution at time t of the Cauchy problem i∂ t ϕ = op w 1 (Hess z h(t, z(t))z • z)ϕ, ϕ(t 0 ) = ϕ 0 , the metaplectic transformation associated with the matrix F (t, t 0 , z 0 ). Using these three ε-independent building blocks -the classical trajectories, the action integrals, and the metaplectic transformations associated with the linearized flow mapwe can approximate the action of the unitary propagator

iε∂ t U ε h (t, t 0 ) = op w ε (h(t)) U ε h (t, t 0 ), U ε h (t 0 , t 0 ) = I L 2 (R d )
on wave packets as follows.

Proposition 2.3. [ [6, §4.3]] Consider a smooth scalar Hamiltonian h(t) of subquadratic growth [START_REF] Duyckaerts | Degenerated codimension 1 crossings and resolvent estimates[END_REF]. Let T > 0, k ≥ 0, z 0 ∈ R 2d , and ϕ 0 ∈ S(R d ). Then, there exists a positive constant C > 0 such that

sup t∈[t 0 ,t 0 +T ] U ε h (t, t 0 )WP ε z 0 ϕ 0 -e i ε S(t,t 0 ,z 0 ) WP ε z(t) ϕ ε (t) Σ k ε ≤ Cε,
where the profile function ϕ ε (t) is given by

(12) ϕ ε (t) = M[F (t, t 0 , z 0 )] 1 + √ ε b 1 (t, t 0 , z 0 ) ϕ 0 ,
and the correction function b 1 (t, t 0 , z 0 ) satisfies

(13) b 1 (t, t 0 , z 0 )ϕ 0 = |α|=3 1 α! 1 i t t 0 ∂ α z h(s, z(s)) op w 1 [(F (s, t 0 , z 0 )z) α ] ϕ 0 ds.
The constant C = C(T, k, z 0 , ϕ 0 ) > 0 is independent of ε but depends on derivative bounds of the flow map Φ t,t 0 h (z 0 ) for t ∈ [t 0 , t 0 + T ] and the Σ k+3 1 -norm of the initial profile ϕ 0 . Let us discuss the especially interesting case of initial Gaussian states. Gaussian states are wave packets with complex-valued Gaussian profiles, whose covariance matrix is taken in the Siegel half-space S + (d) of d × d complex-valued symmetric matrices with positive imaginary part,

S + (d) = Γ ∈ C d×d , Γ = Γ τ , ImΓ > 0 .
With Γ ∈ S + (d) we associate the Gaussian profile [START_REF] Hagedorn | Semiclassical quantum mechanics. III. The Large Order Asymptotics and More General States[END_REF] g

Γ (x) := c Γ e i 2 Γx•x , x ∈ R d , where c Γ = π -d/4 det 1/4 (ImΓ) is a normalization constant in L 2 (R d ).
It is a non-zero complex number whose argument is determined by continuity according to the working environment. By Proposition 2.3, the Gaussian states remain Gaussian under the evolution by U ε h (t, t 0 ). Indeed, for Γ 0 ∈ S + (d), we have M[F (t, t 0 , z 0 )]g Γ 0 = g Γ(t,t 0 ,z 0 ) , where the width Γ(t, t 0 , z 0 ) ∈ S + (d) and the corresponding normalization c Γ(t,t 0 ,z 0 ) are determined by the initial width Γ 0 and the Jacobian F (t, t 0 , z 0 ) according to

Γ(t, t 0 , z 0 ) = (C(t, t 0 , z 0 ) + D(t, t 0 , z 0 )Γ 0 )(A(t, t 0 , z 0 ) + B(t, t 0 , z 0 )Γ 0 ) -1 (15) c Γ(t,t 0 ,z 0 ) = c Γ 0 det -1/2 (A(t, t 0 , z 0 ) + B(t, t 0 , z 0 )Γ 0 ).
The branch of the square root in det -1/2 is determined by continuity in time.

The semiclassical wave packets used by G. Hagedorn in [START_REF] Hagedorn | Semiclassical quantum mechanics. I. The → 0 limit for coherent states[END_REF][START_REF] Hagedorn | Semiclassical quantum mechanics. III. The Large Order Asymptotics and More General States[END_REF] are Gaussian wave packets, which are multiplied with a specifically chosen complex-valued polynomial function, that depends on the Gaussian's width matrix. If A ∈ C ∞ (R 2d , C) is an arbitrary polynomial function, then op w 1 (A)g Γ 0 is the product of a polynomial times a Gaussian, and we can again describe the action of the metaplectic transformation explictly. Indeed, by Egorov's theorem (which is exact here),

M[F (t, t 0 , z 0 )](op w 1 (A)g Γ 0 ) = op w 1 (A • F (t, t 0 , z 0 ))M[F (t, t 0 , z 0 )]g Γ 0 = op w 1 (A • F (t, t 0 , z 0 
))g Γ(t,t 0 ,z 0 ) . In particular, functions that are polynomials times a Gaussian remain of the same form under the evolution, even the polynomial degree is preserved.

Precise statement of the results

We now present our main results, that extend the previous theory of wave packet propagation for scalar evolution equations to systems associated with Hamiltonians that have smooth eigenvalues and eigenprojectors.

3.1. Vector-valued wave packets and parallel transport. We consider initial data that are vector-valued wave packets associated with a normalized eigenvector of the Hamiltonian matrix H(t 0 , z) as given in [START_REF] Bily | Propagation d'états cohérents et applications[END_REF]. The evolution of such a function also requires an appropriate evolution of its vector part, which we refer to as parallel transport. The following construction generalizes [4, Proposition 1.9], which was inspired by the work of G. Hagedorn, see [START_REF] Hagedorn | Molecular Propagation through Electron Energy Level Crossings[END_REF]Proposition 3.1]. Let us denote the complementary orthogonal projector by Π ⊥ (t, z) = I C N -Π(t, z) and assume that ( 16)

H(t, z) = h(t, z)Π(t, z) + h ⊥ (t, z)Π ⊥ (t, z)
with the second eigenvalue given by h ⊥ (t, z) = tr(H(t, z)) -h(t, z). We introduce the auxiliary matrices

Ω(t, z) = -1 2 h(t, z) -h ⊥ (t, z) Π(t, z){Π, Π}(t, z)Π(t, z), (17) 
K(t, z) = Π ⊥ (t, z) (∂ t Π(t, z) + {h, Π}(t, z)) Π(t, z), (18) 
Θ(t, z) = iΩ(t, z) + i(K -K * )(t, z), (19) 
that are smooth and satisfy algebraic properties detailed in Lemma B.1 below. In particular, Ω is skew-symmetric and Θ is self-adjoint, Ω = -Ω * and Θ = Θ * . We note, that for the Schrödinger and the Bloch Hamiltonian,

H S (z) = 1 2 |ξ| 2 I C N + V (x) and H A (z) = 0 ξ 1 + iξ 2 ξ 1 -iξ 2 0 + W (x)I C 2 ,
the skew-symmetric Ω-matrix vanishes, that is, Ω S = 0 and Ω A = 0. For Dirac Hamiltonians with electromagnetic potential or Hamiltonians that describe acoustic waves in elastic media, the Ω-matrix need not vanish.

Proposition 3.1. Let H(t, z) be a smooth Hamiltonian with values in the set of self-adjoint N × N matrices that is of subquadratic growth [START_REF] Duyckaerts | Degenerated codimension 1 crossings and resolvent estimates[END_REF] and has a smooth spectral decomposition [START_REF] Hagedorn | Landau-Zener transitions through small electronic eigenvalue gaps in the Born-Oppenheimer approximation[END_REF]. We assume that both eigenvalues are of subquadratic growth as well. We consider

V 0 ∈ C ∞ 0 (R 2d , C N ) and z 0 ∈ R 2d such that there exits a neighborhood U of z 0 such that for all z ∈ U V 0 (z) = Π(t 0 , z) V 0 (z) and V 0 (z) C N = 1.
Then, there exists a smooth normalized vector-valued function V (t, t 0 ) satisfying

V (t, t 0 , z) = Π(t, z) V (t, t 0 , z) for all z ∈ Φ t,t 0 h (U ), such that for all t ∈ R and z ∈ Φ t,t 0 h (U ), ( 20 
) ∂ t V (t, t 0 , z) + {h, V }(t, t 0 , z) = -iΘ(t, z) V (t, t 0 , z), V (t 0 , t 0 , z) = V 0 (z).
Proposition 3.1 is proved in Appendix C. Note that it does not require any gap condition for the eigenvalues. We will use it in the crossing situation, with smooth eigenvalues and eigenprojectors.

The parallel transport is enough to describe at leading order the propagation of wavepackets associated with an eigenvalue h(t, z) of the matrix H(t, z), that is uniformly separated from the remainder of the spectrum in the sense that there exists δ > 0 such that for all (t, z

) ∈ R × R 2d , (21) dist (h(t, z), σ(H(t, z)) \ {h(t, z)}) > δ.
Note that, this gap assumption implies the existence of a Cauchy contour C in the complex plane, such that its interior only contains the eigenvalue h(t, z) and no other eigenvalues of H(t, z). Then, one can write the eigenprojector as

Π(t, z) = -1 2πi C (H(t, z)-ζ) -1
dζ, which implies that the projector Π(t, z) inherits the smoothness properties of the Hamiltonian H(t, z) in the presence of an eigenvalue gap. However, if the symbol Π is of course of matrix norm 1, its derivatives may grow as |z| goes to infinity and we shall make assumption below (see [START_REF] Lasser | Discretising the Herman-Kluk Propagator[END_REF]) in order to guarantee that this growth is at most polynomial. Since the pioneering work of T. Kato [K1], numerous studies have been devoted to this adiabatic situation (see for example [START_REF] Nenciu | On the adiabatic theorem of quantum mechanics[END_REF][START_REF] Nenciu | Linear adiabatic theory. Exponential estimates[END_REF][START_REF] Teufel | Adiabatic perturbation theory in quantum dynamics Lecture Notes in Mathematics 1821[END_REF][START_REF] Martinez | Twisted pseudodifferential calculus and application to the quantum evolution of molecules[END_REF] and references therein). One can derive from these results the following statement of adiabatic decoupling. Theorem 3.2. [ [START_REF] Teufel | Adiabatic perturbation theory in quantum dynamics Lecture Notes in Mathematics 1821[END_REF][START_REF] Martinez | Twisted pseudodifferential calculus and application to the quantum evolution of molecules[END_REF][START_REF] Carles | A Nonlinear Adiabatic Theorem for Coherent States[END_REF]] Let H(t, z) be a smooth Hamiltonian with values in the set of self-adjoint N × N matrices and h(t, z) a smooth eigenvalue of H(t, z). Assume that both H(t, z) and h(t, z) are of subquadratic growth [START_REF] Duyckaerts | Degenerated codimension 1 crossings and resolvent estimates[END_REF] and that there exists an eigenvalue gap as in Assumption [START_REF] Jecko | Semiclassical resolvent estimates for Schrdinger matrix operators with eigenvalues crossings[END_REF]. Consider initial data (ψ ε 0 ) ε>0 that are wave packets as in [START_REF] Bily | Propagation d'états cohérents et applications[END_REF]. Then, for all T > 0, there exists

C > 0 such that ψ ε (t) = U ε H (t, t 0 )ψ ε 0 satisfies the estimate sup t∈[t 0 ,t 0 +T ] Π ⊥ (t)ψ ε (t) L 2 (R d ) + ψ ε (t) -V (t)v ε (t) L 2 (R d ) ≤ Cε where v ε (t) = U ε h (t, t 0 )v ε 0 and V (t) is determined by Proposition 3.1. Besides, if there exists k ∈ N such that (ψ ε 0 ) ε>0 is a bounded family in the space Σ k ε , then the convergence above holds in Σ k ε .
Theorem 3.2 is obtained as an intermediate result in the proof of Proposition 4.1, see Section 4 below. There, we perform a refined analysis of the adiabatic approximation that explicitly accounts for the size of the eigenvalue gap. We note that the estimate of Theorem 3.2 is unchanged, when allowing for perturbations of the initial data that are of order ε in L 2 (R d ) or Σ k ε , respectively. We also note, that in general the operator Π(t) is not a projector, but coincides at order ε with the superadiabatic operators constructed in [START_REF] Martinez | Twisted pseudodifferential calculus and application to the quantum evolution of molecules[END_REF][START_REF] Teufel | Adiabatic perturbation theory in quantum dynamics Lecture Notes in Mathematics 1821[END_REF], which are projectors (see also Appendix B).

Remark 3.3. The result of Theorem 3.2 can be generalized by means of superadiabatic projectors, showing that ψ ε (t) can be approximated at any order by an asymptotic sum of wave packets. The precise time evolution of coherent states was studied in the adiabatic setting in [START_REF] Bily | Propagation d'états cohérents et applications[END_REF][START_REF] Martinez | Twisted pseudodifferential calculus and application to the quantum evolution of molecules[END_REF][START_REF] Robert | Propagation of coherent states in quantum mechanics and applications[END_REF]. These results are obtained via an asymptotic quantum diagonalization, in the spirit of the construction of the superadiabatic projectors of [START_REF] Martinez | Twisted pseudodifferential calculus and application to the quantum evolution of molecules[END_REF][START_REF] Teufel | Adiabatic perturbation theory in quantum dynamics Lecture Notes in Mathematics 1821[END_REF]. Theorem 3.2 allows a semi-classical description of the dynamics of an initial wave packet, that is associated with a gapped eigenvalue. The building blocks are the scalar classical quantities introduced in section 2.2 and the parallel transport of eigenvectors given in Proposition 3.1. This is stated in the next Corollary; our aim is to derive a similar description for systems presenting a codimension one crossing.

Corollary 3.4 (Adiabatic wave packet). In the situation of Theorem 3.2, for any

T > 0, k ∈ N, z 0 ∈ R 2d , and ϕ 0 ∈ S(R d , C), there exists a constant C > 0 such sup t∈[t 0 ,t 0 +T ] U ε H (t, t 0 ) V 0 WP ε z 0 ϕ 0 -e iS(t,t 0 ,z 0 )/ε V (t, t 0 ) WP ε Φ t,t 0 h (z 0 ) ϕ ε (t) Σ k ε ≤ Cε,
where the profile ϕ ε (t) is given by [START_REF] Fang | A diabatic surface hopping algorithm based on time dependent perturbation theory and semiclassical analysis[END_REF], and all the classical quantities are associated with the eigenvalue h(t).

We close this section devoted to gapped systems by formulating another semi-classical consequence of adiabatic theory using the Herman-Kluk propagator. This approximate propagator has first been proposed by M. Herman and E. Kluk in [START_REF] Herman | A semiclassical justification for the use of non-spreading wavepackets in dynamics calculations[END_REF] for scalar Schrödinger equations and later used as a numerical method for quantum dynamics in the semi-classical regime, see for example [START_REF] Kluk | Comparison of the propagation of semiclassical frozen Gaussian wave functions with quantum propagation for a highly excited anharmonic oscillator[END_REF] or more recently [START_REF] Lasser | Discretising the Herman-Kluk Propagator[END_REF][START_REF] Buchholz | Herman-Kluk propagator is free from zero-point energy leakage[END_REF] with references therein. The rigorous mathematical analysis of the Herman-Kluk propagator is due to [START_REF] Robert | On the Herman-Kluk Semiclassical Approximation[END_REF][START_REF] Swart | A mathematical justification for the Herman-Kluk Propagator[END_REF]. The starting point of this approximation is the wave packet inversion formula

ψ(x) = (2πε) -d z∈R 2d g ε z , ψ g ε z (x)dz
that allows to write any square integrable function ψ ∈ L 2 (R d ) as a continuous superposition of Gaussian wave packets of unit width,

g ε z (x) = WP ε z (g iI )(x) = (πε) -d/4
e -|x-q| 2 /(2ε)+ip•(x-q)/ε . The semi-classical description of unitary quantum dynamics within the framework of Gaussians of fixed unit width becomes possible due to a reweighting factor, the so-called

Herman-Kluk prefactor, a h (t, t 0 , z) = 2 -d/2 det 1/2 (A(t, t 0 , z) + D(t, t 0 , z) + i(C(t, t 0 , z) -B(t, t 0 , z))) ,
which is solely determined by the blocks of the Jacobian matrix of the classical flow map. The resulting propagator 

ψ → I ε h (t, t 0 )ψ = (2πε) -d R 2d g ε z , ψ a h (t, t 0 , z)e iS(t,t 0 ,z)/ε g ε Φ t,
sup t∈[t 0 ,t 0 +T ] U ε H (t, t 0 )ψ ε 0 -I ε H (t, t 0 )ψ ε 0 L 2 (R d ) ≤ Cε,
where the vector-valued Herman-Kluk propagator is defined by

I ε H (t, t 0 )ψ ε 0 = (2πε) -d R 2d g ε z , v ε 0 A(t, t 0 , z)e iS(t,t 0 ,z)/ε g ε Φ t,t 0 h (z) dz. The prefactor A(t, t 0 , z) is given by A(t, t 0 , z) = V (t, t 0 , z)a h (t, t 0 , z)
, where a h (t, t 0 , z) is the Herman-Kluk prefactor associated with the eigenvalue h(t). Theorem 3.2 formulates adiabatic decoupling for a single eigenvalue that is uniformly separated from the remainder of the spectrum. As it is well-known, adiabatic theory also extends to the situation where a subset of eigenvalues is isolated from the remainder of the spectrum. For this reason, in the next section, we reduce our analysis to the case of matrices with two eigenvalues that coincide on a hypersurface Υ of codimension one and differ away from it. We explicitly describe the dynamics of wave packets through this type of crossings, which is our main result.

3.2.

Main result: propagation of wave packets through codimension one crossings. We write the Hamiltonian matrix H(t, z) as ( 22)

H(t, z) = v(t, z)I R N + H 0 (t, z), v(t, z) = 1 N trH(t, z),
where v(t, z) is a real number and H 0 (t, z) a trace-free self-adjoint N ×N matrix. We assume that H(t, z) has two smooth eigenvalues that cross on a hypersurface Υ. Such a situation is called a codimension one crossing (see Hagedorn's classification [START_REF] Hagedorn | Molecular Propagation through Electron Energy Level Crossings[END_REF] for example). Let us formulate our assumptions on the crossing set more precisely.

Assumption 3.6 (Codimension one crossing). Let H : R 2d+1 → C N ×N be a smooth function with values in the set of self-adjoint N × N matrices that is of subquadratic growth [START_REF] Duyckaerts | Degenerated codimension 1 crossings and resolvent estimates[END_REF].

We assume:

a) The matrix H(t, z) has two smooth eigenvalues h 1 (t, z) and h 2 (t, z) that are of subquadratic growth [START_REF] Duyckaerts | Degenerated codimension 1 crossings and resolvent estimates[END_REF]. b) These eigenvalues cross on a hypersurface Υ of R 2d+1 and differ outside of Υ. In particular, for any (t ♭ , z ♭ ) ∈ Υ there exists a neighbourhood Ω of (t ♭ , z ♭ ) and a smooth scalar function

(t, z) → f (t, z) defined on Ω such that f (t, z) = 0 is a local equation of Υ with d t,z f = 0 on Ω. c) The scalar function (t, z) → v(t, z) defined by the decomposition (22) satisfies (23) ∂ t f + {v, f } = 0 on Ω.
d) The crossing is non-degenerate in the sense, that the matrix H 0 (t, z) defined by the decomposition [START_REF] Kay | Integral expressions for the semi-classical time-dependent propagator[END_REF] satisfies

H 0 (t, z) = f (t, z) H0 (t, z) on Ω
for some smooth matrix-valued map (t, z) → H0 (t, z) with H0 (t, z) invertible on Ω.

The spectrum of the matrix H0 (t, z) consists of two distinct eigenvalues of constant multiplicity which do not cross on Ω. e) The eigenvalues satisfy a polynomial gap condition at infinity, in the sense that there exist constants c 0 , n 0 , r 0 > 0 such that

(24) |h 1 (t, z) -h 2 (t, z)| ≥ c 0 z -n 0 for all (t, z) with |z| ≥ r 0 ,
where we denote z = (1

+ |z| 2 ) 1/2 .
In the above setting, the trace-free smooth matrix H0 (t, z) has non-crossing and thus smooth eigenvalues. The eigenprojectors of H0 (t, z) are smooth and are also those of H(t, z). Note that one can then modify the function f in Ω so that the functions [START_REF] Lu | Frozen Gaussian approximation with surface hopping for mixed quantum-classical dynamics: A mathematical justification of fewest switches surface hopping algorithms[END_REF] h j (t, z) = v(t, z) -(-1) j f (t, z), j ∈ {1, 2}, are the two smooth eigenvalues of the matrix H(t, z), with smooth associated eigenprojectors Π 1 (t, z) and Π 2 (t, z). We shall choose f in that manner throughout the paper.

Example 3.7. Take N = 2, v, f ∈ C ∞ (R 2d+1 , R) and u ∈ C ∞ (R 2d+1 , R 3 ) with |u(t, z)| = 1
for all (t, z). Consider the Hamiltonian

H(t, z) = v(t, z)Id + f (t, z) u 1 (t, z) u 2 (t, z) + iu 3 (t, z) u 2 (t, z) -iu 3 (t, z) -u 1 (t, z) .
The smooth eigenvalues of H, h 1 = v + f and h 2 = v -f , cross on the set Υ = {f = 0}, and H satisfies Assumption 3.6 as soon as the conditions ( 23) and ( 24) hold.

Note that the condition [START_REF] Kay | The Herman-Kluk approximation: derivation and semiclassical corrections[END_REF] implies the transversality of the classical trajectories to the crossing set Υ. The gap condition at infinity [START_REF] Lasser | Discretising the Herman-Kluk Propagator[END_REF] ensures, that the derivatives of the eigenprojectors Π j (t), j = 1, 2, grow at most polynomially, in the sense that for all β ∈ N 2d 0 there exists a constant C β > 0 such that (26)

∂ β z Π j (t, z) ≤ C β z |β|(1+n 0 ) for all (t, z) with |z| ≥ r 0 , see [4, Lemma B.2]
for a proof of this estimate.

We associate with each eigenvalue h j the classical quantities introduced in section 2.2, that we index by j: Φ t,t 0 j , S j (t, t 0 ), F j (t, t 0 ), etc. We consider initial data at time t = t 0 as in [START_REF] Bily | Propagation d'états cohérents et applications[END_REF], where the coherent state is associated with the first eigenvalue h 1 and centered in a phase space point z 0 such that (t 0 , z 0 ) / ∈ Υ, while z → V 0 (z) is a smooth map with V 0 (z) = 1 for all z. We assume that the Hamiltonian trajectory z 1 (t, t 0 , z 0 ) = Φ t,t 0 1 (z 0 ) reaches Υ at time t = t ♭ and point z = z ♭ where (23) holds. Therefore, f (t, z) = 0 is a local equation of Υ in a neighborhood Ω of (t ♭ , z ♭ ), and the assumption 3.6 implies

d dt f (t, z 1 (t, t 0 )) = 0
close to (t ♭ , z ♭ ), and guarantees that the trajectory z 1 (t, t 0 , z 0 ) passes through Υ. The same holds for trajectories Φ t,t 0 1 (z) starting from z close enough to z 0 . We associate with V 0 (z) the time-dependent eigenvector ( V 1 (t, z)) t≥t 0 constructed as in Proposition 3.1 for the eigenvalue h 1 (t, z) with initial data V 0 (z) at time t 0 . We also consider the time-dependent eigenvector ( V 2 (t, z)) t≥t ♭ constructed for t ≥ t ♭ as in Proposition 3.1 for the eigenvalue h 2 (t, z) and with initial data at time t ♭ satisfying

(27) V 2 (t ♭ , z) = -γ(t ♭ , z) -1 Π 2 (∂ t Π 2 + {v, Π 2 }) V 1 (t ♭ , z) with γ(t ♭ , z) = (∂ t Π 2 + {v, Π 2 }) V 1 (t ♭ , z) C N .
Note that the vector V 2 (t ♭ , z) is in the range of Π 2 (t ♭ , z). We next introduce a family of transformations, which describes the non-adiabatic effects for a wave packet that passes the crossing. For (µ, α, β) ∈ R × R 2d and ϕ ∈ S(R d ), we set

(28) T µ,α,β ϕ(y) = +∞ -∞
e iµs 2 e is(β•y-α•Dy) ds ϕ(y).

By the Baker-Campbell-Hausdorff formula, we have

e isβ•y e -isα•Dy = e isβ•y-isα•Dy+is 2 α•β/2 ,
and we deduce the equivalent representation

(29) T µ,α,β ϕ(y) = +∞ -∞ e i(µ-α•β/2)s 2 e isβ•y ϕ(y -sα)ds.
We prove in Proposition E.1 below that this operator maps S(R d ) into itself if and only if µ = 0. Moreover, for µ = 0, it is a metaplectic transformation of the Hilbert space L 2 (R d ), multiplied by a complex number. In particular, for any Gaussian function g Γ , the function

T µ,α,β g Γ is a Gaussian: T µ,α,β g Γ = c µ,α,β,Γ g Γ µ,α,β,Γ ,
where Γ µ,α,β,Γ ∈ S + (d) and c µ,α,β,Γ ∈ C are given in Proposition E.1.

Combining the parallel transport for the eigenvector and the metaplectic transformation for the non-adiabatic transitions, we obtain the following result. Theorem 3.8 (Propagation through a codimension one crossing). Let Assumption 3.6 on the Hamiltonian matrix H(t) hold, and assume that the initial data (ψ ε 0 ) ε>0 are wave packets as in [START_REF] Bily | Propagation d'états cohérents et applications[END_REF]. Let T > 0 be such that the interval [t 0 , t ♭ ] is strictly included in the interval [t 0 , t 0 + T ]. Then, for all k ∈ N there exists a constant C > 0 such that for all t ∈ [t 0 , t ♭ ) ∪ (t ♭ , t 0 + T ] and for all ε

≤ [t -t ♭ | 9/2 , ψ ε (t) -V 1 (t)v ε 1 (t) - √ ε1 t>t ♭ V 2 (t)v ε 2 (t) Σ k ε ≤ C ε m ,
with an exponent m ≥ 5/9. The components of the approximate solution are

v ε 1 (t) = U ε h 1 (t, t 0 )v ε 0 and v ε 2 (t) = U ε h 2 (t, t ♭ )v ε 2 (t ♭ ) with (30) v ε 2 (t ♭ ) = γ ♭ e iS ♭ /ε WP ε z ♭ T ♭ ϕ 1 (t ♭ ), where ϕ 1 (t) = M[F h 1 (t, t 0 , z 0 )]
ϕ 0 is the leading order profile of the coherent state v ε 1 (t) given by Proposition 2.3, and

(31) γ ♭ = γ(t ♭ , z ♭ ) = ({v, Π 2 } + ∂ t Π 2 ) V 1 (t ♭ , z ♭ ) C N .
The transition operator

(32) T ♭ = T µ ♭ ,α ♭ ,β ♭
is defined by the parameters

(33) µ ♭ = 1 2 (∂ t f + {v, f }) (t ♭ , z ♭ ) and (α ♭ , β ♭ ) = Jd z f (t ♭ , z ♭
). The constant C = C(T, k, z 0 , ϕ 0 ) > 0 is ε-independent but depends on the Hamiltonian H(t, z), the final time T , and on the initial wave packet's center z 0 and profile ϕ 0 .

Note that by Assumption 3.6, µ ♭ = 0, which guarantees that T ♭ ϕ 1 (t ♭ ) is Schwartz class. Besides, if the Hamiltonian is time-independent, then Assumption 3.6 also implies that (α ♭ , β ♭ ) = (0, 0). The coefficient γ ♭ quantitatively describes the distortion of the projector Π 1 during its evolution along the flow generated by h 1 (t). In particular, we have

γ ♭ = ({v, Π 2 } + ∂ t Π 2 ) V 1 (t ♭ , z ♭ ) C N = ({v, Π 1 } + ∂ t Π 1 ) V 1 (t ♭ , z ♭ ) C N .
Moreover, if the matrix H is diagonal (or diagonalizes in a fixed orthonormal basis that is (t, z)-independent), then γ ♭ = 0: the equations are decoupled (or can be decoupled), and one can then apply the result for a system of two independent equations with a scalar Hamiltonian and, of course, there is no interaction between the modes.

The proof uses two types of arguments, one of the them applying away from the crossing set Υ, and the other one in a boundary layer of Υ. The boundary layer is taken of size δ > 0, and we have to balance the two estimates: an error of order εδ -2 which comes from the adiabatic propagation of wave packets outside the boundary layer, and an additional error of order δε 1/3 generated by the passage through the boundary. The choice of δ = ε 2/9 optimizes the combined estimate and yields convergence of order ε m with m ≥ 5/9. We also want to emphasize that the method of proof we propose here allows to systematically avoid the impressive computations, which appear in [START_REF] Hagedorn | Molecular Propagation through Electron Energy Level Crossings[END_REF] pages 65 to 72, and are also present in [START_REF] Watson | Wavepackets in inhomogeneous periodic media: propagation through a one-dimensional band crossing[END_REF] via the reference [46] to which the authors refer therein.

The wave packet that makes the transition to the other eigenspace can be described even more explicitly for the special case that the initial wave packet is a Gaussian state. The following corollary is proved in Proposition E.1. Corollary 3.9 (Transitions for Gaussian wave packets). We consider the situation of Theorem 3.8 and in particular the transition operator T ♭ defined by the parameters µ ♭ = 0 and (α ♭ , β ♭ ) ∈ R 2d .

(

) If v ε 0 = WP ε z 0 (g Γ 0 ) is a Gaussian state with width matrix Γ 0 ∈ S + (d), then v ε 2 (t ♭ ) = γ ♭ 2π iµ ♭ e iS ♭ /ε WP ε z ♭ (g Γ ♭ ) 1 
with

Γ ♭ = Γ 1 (t ♭ , t 0 , z 0 ) - (β ♭ -Γ 1 (t ♭ , t 0 , z 0 )α ♭ ) ⊗ (β ♭ -Γ 1 (t ♭ , t 0 , z 0 )α ♭ ) 2µ ♭ -α ♭ • β ♭ + α ♭ • Γ 1 (t ♭ , t 0 , z 0 )α ♭
and Γ 1 (t ♭ , t 0 , z 0 ) is the image of Γ 0 by the flow map associated with h 1 (t, z) by ( 15). ( 2)

If A ∈ C ∞ (R 2d ) is a polynomial function and v ε 0 = WP ε z 0 (op w 1 (A)g Γ 0 ), then v ε 2 (t ♭ ) = γ ♭ 2π iµ ♭ e iS ♭ /ε WP ε z ♭ op w 1 (A ♭ )g Γ ♭ with A ♭ = A • Φ α ♭ ,β ♭ (-(4µ ♭ ) -1
) where Φ α ♭ ,β ♭ (t) is the symplectic 2d × 2d matrix given by

Φ α ♭ ,β ♭ (t) = I -2tβ ♭ ⊗ α ♭ 2tα ♭ ⊗ α ♭ , -2tβ ♭ ⊗ β ♭ I + 2tα ♭ ⊗ β ♭ . ( 34 
)
As a concluding remark of this section, we want to emphasize that our results indeed generalize those of [START_REF] Hagedorn | Molecular Propagation through Electron Energy Level Crossings[END_REF][START_REF] Watson | Wavepackets in inhomogeneous periodic media: propagation through a one-dimensional band crossing[END_REF].

(1) In the Schrödinger example (4), denoting by E A (x) and E B (x) the two eigenvalues of the potential matrix V (x) as in [START_REF] Hagedorn | Molecular Propagation through Electron Energy Level Crossings[END_REF], one has

α ♭ S = 0, β ♭ S = ∇(E A -E B )(q ♭ ), µ ♭ S = p ♭ • ∇(E A -E B )(q ♭
). These coefficients appear in equation ( 5.3) of [START_REF] Hagedorn | Molecular Propagation through Electron Energy Level Crossings[END_REF]. There, the initial states are Gaussian wave packets that are multiplied with a polynomial function. Thus, the second part of Corollary 3.9 reproduces these results.

(2) For the Bloch example (5), we obtain

α ♭ A = ∇(E + -E -)(p ♭ ), β ♭ A = 0, µ ♭ A = - 1 2 ∇W (q ♭ ) • ∇(E + -E -)(p ♭ ),
where E ± (ξ) are the eigenvalues of A(ξ) as in equation (3.41) of [START_REF] Watson | Wavepackets in inhomogeneous periodic media: propagation through a one-dimensional band crossing[END_REF]. The result of [40, Theorem 3.20 (via Definition 3.18)] is therefore a special case of ours.

We notice, that for these special examples either one of the coefficients α ♭ or β ♭ is 0. This need not be the case for more general Hamiltonians that have position and momentum variables mixed in the matrix part of the Hamiltonian. Actually, for Dirac Hamiltonians with electromagnetic potential (V, A), the function ξ -A(t, x) appears in the coefficients of the matrix. Also for the propagation of acoustical waves in elastic media the Hamiltonian is of the form ρ(x)I C N -Γ(x, ξ),where ρ(x) > 0 is the density and Γ(x, ξ) the elastic tensor.

3.3.

Organization of the paper. The proof of Theorem 3.8 is decomposed into two steps: an analysis outside the crossing region in Section 4 and an analysis in the crossing region in Section 5, that allows to conclude the proof in Section 5.4, together with the one of Corollary 3.9. Finally, we gather in four Appendices various results about wave packets, algebraic properties of the projectors and parallel transport, analysis of the transfer operators T µ,α,β , and technical computations.

Adiabatic decoupling outside the crossing region

In this section, we consider a family of solutions to equation (1) in the case where the Hamiltonian H(t, z) satisfies Assumption 3.6 and with an initial datum which is a coherent state as in [START_REF] Bily | Propagation d'états cohérents et applications[END_REF]. We focus here on regions where the classical trajectories associated with the coherent state do not touch the crossing set Υ but are close enough. We prove the next adiabatic result.

Proposition 4.1. Let k ∈ N, δ = δ(ε) be such that √ ε ≪ δ ≤ 1. Let f (t, z) = 0 be an equation of Υ in an open set Ω ⊂ R × R 2d . Assume that for j ∈ {1, 2}, u ε j = WP ε z j ( ϕ j )
, where ϕ 1 , ϕ 2 ∈ S(R d ), z 1 , z 2 ∈ R d are such that there exist s 1 , s 2 ∈ R, c, C > 0 such that for all j ∈ {1, 2} and t ∈ [s 1 , s 2 ], z j (t) := Φ t,s 1 j ( z j ) ∈ Ω with |f (z j (t))| > cδ and

ψ ε (s 1 ) -V 1 (s 1 )u ε 1 -V 2 (s 1 )u ε 2 Σ k ε ≤ Cε.
Then, there exists C k > 0 such that for all j ∈ {1, 2},

sup t∈[s 1 ,s 2 ] Π j ψ ε (t) -V j (t)U ε h j (t, s 1 )u ε j Σ k ε ≤ C k ε δ -2 .
The constant C k does not depend on δ and ε.

For fixed δ, that is independent of ε, this Proposition implies Theorem 3.8 for t ∈ [0, t ♭ [. We shall choose later δ = ε 1/3 for obtaining a global a priori estimate in Section 4.2 below. Finally with δ = ε 2/9 , we will prove Theorem 3.8 in Section 5.4 by using the Proposition 4.1 for propagation times t ∈ [t 0 , t ♭ -δ] and t ∈ [t ♭ + δ, t ♭ + T ] with initial data at times t = t 0 and t = t ♭ + δ respectively. Remark 4.2. Pushing the construction of superadiabatic projectors of Appendix B, we would obtain that ψ ε (t) can be approximated by an asymptotic sum of wave packets up to order ε N δ p(N ) for some p(N ) ≤ N to be computed precisely.

4.1.

Proof of the adiabatic decoupling. We prove here Proposition 4.1.

Proof. Because of the linearity of the equation, it is enough to assume that the contribution of ψ ε (s 1 ) on one of the modes is negligible at the initial time s 1 . The roles of the two modes being symmetric, we can choose equivalently one or the other one. Therefore, without loss of generality, we assume ψ ε (s 1 ) = V 1 (s 1 )u ε 1 , and we focus on

ψ ε 1,app (t) := V 1 (t)U ε h 1 (t, s 1 )u ε 1
Then, using the parallel transport equation ( 20) associated with the eigenvalue h 1 ,

iε∂ t ψ ε 1,app (t) = h 1 ψ ε 1,app (t) + V 1 (t), h 1 + iε∂ t V 1 (t) U ε h 1 (t, s 1 )u ε 1 = ( h 1 Id + ε Θ 1 )ψ ε 1,app (t) + ε 2 r(t) U ε h 1 (t, s 1 )u ε 1 , (35) 
where the remainder r(t) depends on second order derivatives of h 1 and V 1 . Since u ε 1 is a wave packet with a Schwartz function amplitude, we obtain [START_REF] Teufel | Adiabatic perturbation theory in quantum dynamics Lecture Notes in Mathematics 1821[END_REF] iε∂

t ψ ε 1,app (t) = ( h 1 Id + ε Θ 1 )ψ ε 1,app (t) + O(ε 2 )
in Σ k ε for all k ∈ N. We now use the superadiabatic correctors of Π 1 and Π 2 defined in Definition B.3 that we denote by P 1 and P 2 , respectively, and the associated correctors Θ 1 and Θ 2 of the Hamiltonian H. Since P 1 and P 2 are singular on Υ, we use cut-off functions that follow the flows arriving at time s 2 in Φ s 2 ,s 1 h 1 (z 1 ). We introduce two sets of cut-off functions, one for each mode. Let I an interval containing [s 1 , s 2 ] and for j ∈ {1, 2} let the cut-off functions χ δ j , χδ j ∈ C(I, C ∞ 0 (R 2d )) satisfy as in Lemma B.5: (1) For any t ∈ I and any z in the support of χ δ j (t) and χδ j (t) we have |f (t, z)| > δ.

(2) The functions χ δ j and χδ j are identically equal to 1 close to a trajectory Φ t,s 1 j (z 1 ) for all t ∈ I and they satisfy

∂ t χ δ j + h j , χ δ = 0, ∂ t χδ j + h j , χδ j = 0.
(3) The functions χδ j are supported in {χ δ j = 1}. (4) Finally, we require χ δ 1 (s 2 ) = χ δ 2 (s 2 ) and χδ

1 (s 2 ) = χδ 2 (s 2 ). We set for t ∈ [s 1 , s 2 ] w ε 1 (t) = χδ 1 ( χ δ 1 Π ε 1 ψ ε (t) -ψ ε 1,app (t)), w ε 2 (t) = χδ 2 χ δ 2 Π ε 2 ψ ε (t),
where Π ε j (t, z) = Π j (t, z) + εP j (t, z), ∀z ∈ R 2d \ Υ, t ∈ I, j ∈ {1, 2}. Then, as a consequence of (36) and of Lemma B.5, we have for j ∈ {1, 2} and in Σ k ε ,

iε∂ t w ε j (t) = ( ĥj + ε Θ j )w ε j (t) + O(ε 2 δ -2 ).
For the initial data at time t = s 1 , we have in Σ k ε ,

w ε 1 (s 1 ) = χδ 1 χ δ 1 Π ε 1 V 1 -V 1 u ε 1 = O(εδ -1 ), w ε 2 (s 1 ) = χδ 2 χ δ 2 Π ε 2 V 1 u ε 1 = O(εδ -1 ).
We deduce that for any k ∈ N, j ∈ {1, 2} and t ∈ [s 1 , s 2 ], we have in Σ k ε , w ε j (t) = O(εδ -2 ). When t = s 2 , we have

w ε 1 (s 2 ) + w ε 2 (s 2 ) = χδ 1 op ε (χ δ 1 (Π ε 1 + Π ε 2 ))ψ ε (s 2 ) -ψ ε 1,app (s 2 ) = χδ 1 (ψ ε (s 2 ) -ψ ε 1,app (s 2 )) + O(εδ -1 )
and thus χδ

1 (s 2 )ψ ε (s 2 ) = χδ 1 (s 2 )ψ ε 1,app (s 2 ) + O(εδ -2
). Because of the localisation of the wave packet ψ ε 1,app (s 2 ), as stated in Remark A.2, we have in Σ k ε for any N ∈ N,

χδ 1 (s 2 )ψ ε 1,app (s 2 ) = ψ ε 1,app (s 2 ) + O(ε N/2 δ -N ).
Hence, choosing N = 2, we obtain

χδ 1 (s 2 )ψ ε (s 2 ) = ψ ε 1,app (s 2 ) + O(εδ -2 ),
and it only remains to study (1 -χδ 1 (s 2 ))ψ ε (s 2 ). Before that, some remarks are in order. Note that the arguments developed above do not depend on the choice of s 2 and could have been developed for any s ∈ [s 1 , s 2 ]. They are also independent of the choices of the functions χ δ j and χ δ j as long as they satisfy the properties stated above. Therefore, we have actually obtained a more general result, namely that for any function θ supported in {|f | > δ} and equal to 1 close to Φ t,s 1 1 ( z 1 ), we have for t ∈ [s 1 , s 2 ],

(37) θψ ε (t) = θψ ε 1,app (t) + O(εδ -2 ).

We can now study (1 -χδ 1 (s 2 ))ψ ε (s 2 ). We set for s ∈ [s 1 , s 2 ], w ε (s) = (1 -χδ 1 (s))ψ ε (s). We have

iε∂ s w ε (s) = H(s)w ε (s) -χδ 1 (s), H(s) ψ ε (s) -iε ∂ s χδ 1 (s)ψ ε (s) = H(s)w ε (s) -ε r ε δ (s)ψ ε (s) + O(ε 2 δ -2 )
where r ε δ (s) depends linearly on d χδ 1 (s), and thus is compactly supported close to the trajectory Φ t,s 1 1 ( z 1 ) and equal to 0 very close to it. Therefore, by [START_REF] Thoss | Semiclassical description of molecular dynamics based on initial-value representation methods[END_REF] and Remark A.2,

ε r ε δ (s)ψ ε (s) = ε r ε δ (s)ψ ε 1,app (s) = O(ε N/2+1 δ -N -1 )
for any N ∈ N. Choosing N = 1, we deduce w ε (s 2 ) = O(εδ -2 ).

4.2.

A global a priori estimate. In this section, we prove the following a priori estimate.

Lemma 4.3. Let k ∈ N and T > 0 such that [t 0 , t ♭ ] is strictly included in [t 0 , t 0 + T ].
Then there exists a constant C k > 0 such that [START_REF] Begušić | Single-Hessian thawed Gaussian approximation[END_REF] sup

t∈[t 0 ,t 0 +T ] ψ ε (t) -V 1 (t)v ε 1 (t) Σ k ε ≤ C k ε 1/3 , where v ε 1 (t) = U ε h 1 (t, t 0 )v ε 0 for all t ∈ [t 0 , t 0 + T ].
In the next section, we shall improve this estimate to go beyond this approximation and exhibits elements of order √ ε. However, we shall use this a priori estimate, together with elements developed in this section.

Proof. Of course, in view of the results of the preceding section, we choose δ > 0 and we focus on the time interval [t ♭ -δ, t ♭ + δ], taking into account that for times t ∈ [t 0 , t ♭ -δ],

we have

ψ ε (t) -V 1 (t)v ε 1 (t) Σ k ε ≤ C k εδ -2
for some constant C k > 0, and that for t ∈ [t ♭ + δ, t 0 + T ] we can use the same kind of transport estimate since the trajectory does not meet again the crossing set. It is thus enough to pass from t ♭ -δ to t ♭ + δ and analyze ψ ε (t ♭ + δ). Between the times t ♭ -δ and t ♭ + δ, we cannot use the super-adiabatic corrections to the projectors Π 1 and Π 2 , because they become singular when the eigenvalue gap closes. We thus simply work with the projectors Π 1 and Π 2 . We define the families w ε (t) = (w ε 1 (t), w ε 2 (t)) by ( 39)

w ε 1 = Π 1 ψ ε -V 1 v ε 1 , w ε 2 = Π 2 ψ ε .
Since ψ ε (t) and V 1 v ε 1 (t) are in all spaces Σ ℓ ε (R d ) for ℓ ∈ N and t ∈ [t 0 , t 0 + T ], the same is true for w ε 1 (t) and w ε 2 (t). We now use our former observations, that is, the evolution equation [START_REF] Swart | A mathematical justification for the Herman-Kluk Propagator[END_REF] for the approximate wave packet and the relation (52) of Appendix B, which gives that w ε (t) satisfies the following system:

   iε∂ t w ε 1 = h 1 w ε 1 + iεf ε 1 , iε∂ t w ε 2 = h 2 w ε 2 + iε 2 B 2 Π 1 V 1 v 1 + iεf ε 2 with (40) f ε 1 = -i Θ 1 w ε 1 + 1 2 B 1 Π 2 w ε 2 + εr ε 1 and f ε 2 = -i Θ 2 w ε 2 + 1 2 B 2 Π 1 w ε 1 + εr ε 2 .
The matrices B 1 and B 2 are defined according to

B j = -2∂ t Π j -{h j , Π j } + {Π j , H}, j = 1, 2,
and the sequences (r ε 1 (t)) ε>0 and (r ε 2 (t)) ε>0 are uniformly bounded in Σ k ε (R d ) due to the polynomial growth estimate [START_REF] Lubich | From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis[END_REF] for the eigenprojectors. We immediately deduce that for all t ∈ [t 0 , t 0 + T ],

w ε 1 (t) = U ε h 1 (t, t ♭ -δ)w ε 1 (t ♭ -δ) + t t ♭ -δ U ε h 1 (t, σ)f ε 1 (σ)dσ, (41) w ε 2 (t) = U ε h 2 (t, t ♭ -δ)w ε 2 (t ♭ -δ) + t t ♭ -δ U ε h 2 (t, σ)f ε 2 (σ)dσ + 1 2 t t ♭ -δ U ε h 2 (t, σ) B 2 Π 1 V 1 (σ)v ε 1 (σ)dσ. Therefore, in Σ k ε (R d ), for all times t ∈ [t ♭ -δ, t ♭ + δ] and j ∈ {1, 2}, w ε j (t) = O(εδ -2 ) + O(δ). Choosing δ = ε 1/3 , we obtain that w ε j (t) = O(ε 1/3 ).

Analysis in the crossing region

We now want to pass through the crossing and derive a more precise estimate on the function ψ ε (t ♭ + δ). We prove the following result.

Proposition 5.1. Assume √ ε ≪ δ ≪ ε 1/3 .
Then, for all k ∈ N, there exists a constant

C k > 0 such that ψ ε (t ♭ + δ) -V 1 (t ♭ + δ)v ε 1 (t ♭ + δ) - √ ε V 2 (t ♭ + δ)v ε 2 (t ♭ + δ) Σ k ε ≤ C k (εδ -2 + ε 1/3 δ), where v ε 1 (t) = U ε h 1 (t, t 0 )v ε 0 and v ε 2 (t) = U ε h 2 (t, t ♭ )v ε 2 (t ♭
) are as in Theorem 3.8. Proof. We split the proof in several steps. In Lemma 5.2 we use the a priori estimate of Lemma 4.3 to simplify the approximation of ψ ε (t ♭ + δ) and exhibit the contribution of order √ ε according to

ψ ε (t ♭ + δ) = V 1 (t ♭ + δ)v ε 1 (t ♭ + δ) + e iS ♭ /ε U ε h 2 (t ♭ + δ, t ♭ ) A ε + O(εδ -2 ) + O(ε 1/3 δ)
. Then, we carefully analyze the contribution A ε and construct a preliminary transfer operator T ε satisfying

A ε = WP ε z ♭ T ε ϕ 1 (t ♭ ) + O( √ εδ),
see Lemma 5.3. As the third step, Lemma 5.5 establishes the relation to the transfer operator T ♭ according to

T ε = √ ε Q ε (0)T ♭ + O( √ εδ) + O(εδ -1 ) with Q ε (0) = op w 1 ((γ V 2 )(t ♭ , z ♭ + √ ε•)).
The wave packet relation (49) in combination with symbolic calculus implies for all ϕ ∈ S(R d ) that

WP ε z ♭ Q ε (0)ϕ = γ V 2 (t ♭ )WP ε z ♭ ϕ = V 2 (t ♭ ) γ(t ♭ )WP ε z ♭ ϕ + O(ε) = V 2 (t ♭ )γ ♭ WP ε z ♭ ϕ + O( √ ε).
Hence, we have proven that

e iS ♭ /ε U ε h 2 (t ♭ + δ, t ♭ ) A ε = √ ε γ ♭ e iS ♭ /ε U ε h 2 (t ♭ + δ, t ♭ ) V 2 (t ♭ )WP ε z ♭ T ♭ ϕ 1 (t ♭ ) + O(εδ -2 ) + O(ε 1/3 δ) = √ ε U ε h 2 (t ♭ + δ, t ♭ ) V 2 (t ♭ )v ε 2 (t ♭ ) + O(εδ -2 ) + O(ε 1/3 δ).

It remains to analyze the function

ω(t) = V 2 (t)U ε h 2 (t, t ♭ ) -U ε h 2 (t, t ♭ ) V 2 (t ♭
). An analogous calculation to the one at the beginning of the proof of Proposition 4.1 yields that

iε∂ t ω = h 2 ω + O(ε).
Since ω(t ♭ ) = 0, the Duhamel principle implies that ω(t ♭ + δ) = O(δ) and

e iS ♭ /ε U ε h 2 (t ♭ + δ, t ♭ ) A ε = √ ε V 2 (t ♭ + δ)U ε h 2 (t ♭ + δ, t ♭ ) v ε 2 (t ♭ ) + O(εδ -2 ) + O(ε 1/3 δ).
5.1. Using the a priori estimate. We start describing the part of the wave packet that has been transferred at the crossing and identify its main contribution.

Lemma 5.2. Let k ∈ N. With the assumptions of Proposition 5.1, we have in

Σ k ε (R d ), ψ ε (t ♭ + δ) = V 1 (t ♭ + δ)v ε 1 (t ♭ + δ) + e iS ♭ /ε U ε h 2 (t ♭ + δ, t ♭ ) A ε + O(εδ -2 ) + O(ε 1/3 δ) (42) with A ε = t ♭ +δ t ♭ -δ U ε h 2 (t ♭ , σ) γ V 2 (σ) U ε h 1 (σ, t ♭ )WP z ♭ ϕ 1 (t ♭ )dσ,
where the eigenvector V 2 is defined in [START_REF] Martinez | Twisted pseudodifferential calculus and application to the quantum evolution of molecules[END_REF] and the Schwartz function ϕ 1 (t ♭ ) is associated with the profile ϕ 0 of the initial wave packet according to Proposition 2.3.

Proof. We again analyse the functions w ε 1 (t) and w ε 2 (t) introduced in [START_REF] Vaniček | Ab initio semiclassical evaluation of vibrationally resolved electronic spectra with thawed Gaussians[END_REF], that are of order εδ -2 at time t = t ♭ -δ. By the a priori estimate of Lemma 4.3, the remainder terms f ε 1 (t) and f ε 2 (t), which appear in [START_REF] Watson | Wavepackets in inhomogeneous periodic media: propagation through a one-dimensional band crossing[END_REF], are of order ε 1/3 . Therefore, the relation [START_REF] Wu | A justification for a nonadiabatic surface hopping Herman-Kluk semiclassical initial value representation of the time evolution operator[END_REF] gives for all

times t ∈ [t ♭ -δ, t ♭ + δ] and in Σ k ε (R d ), w ε 1 (t) = O(εδ -2 ) + O(δε 1/3 ), w ε 2 (t) = O(εδ -2 ) + O(δε 1/3 ) + 1 2 t t ♭ -δ U ε h 2 (t, σ) B 2 Π 1 V 1 (σ)v ε 1 (σ)dσ.
At this stage of the proof, we write

B 2 Π 1 = Π 1 B 2 Π 1 + Π 2 B 2 Π 1 and take advantage of Π 1 B 2 Π 1 = (h 2 -h 1 )Π 1 {Π 1 , Π 1 }Π 1 (see Lemma B.1) to write t t ♭ -δ U ε h 2 (t, σ) Π 1 B 2 Π 1 V 1 (σ) U ε h 1 (σ, t ♭ -δ)v ε 1 (t ♭ -δ)dσ = iε t t ♭ -δ d dσ U ε h 2 (t, σ) op w ε Π 1 {Π 1 , Π 1 }Π 1 V 1 (σ) U ε h 1 (σ, t ♭ -δ) v ε 1 (t ♭ -δ) dσ + ερ ε (t) = ερ ε (t),
where both families (ρ ε (t)) ε>0 and (ρ ε (t)) ε>0 are uniformly bounded in Σ k ε (R d ). Therefore,

t t ♭ -δ U ε h 2 (t, σ) B 2 Π 1 V 1 (σ)v ε 1 (σ)dσ = t t ♭ -δ U ε h 2 (t, σ) Π 2 B 2 Π 1 V 1 (σ)v ε 1 (σ)dσ + O(ε).
By Lemma B.1 and the definition of the eigenvector V 2 (see ( 27))

1 2 Π 2 B 2 V 1 = Π 2 (-∂ t Π 2 -{v, Π 2 }) V 1 = γ V 2 .
According to Proposition 2.3, we have for the wave packet

v ε 1 (σ) = U h 1 (σ, t ♭ )v ε 1 (t ♭ ) = U h 1 (σ, t ♭ )e iS ♭ /ε WP z ♭ ϕ 1 (t ♭ ) + O(ε). Therefore, 1 2 t t ♭ -δ U ε h 2 (t, σ) B 2 Π 1 V 1 (σ)v ε 1 (σ)dσ = e iS ♭ /ε U ε h 2 (t, t ♭ ) t t ♭ -δ U ε h 2 (t ♭ , σ) γ V 2 (σ) U h 1 (σ, t ♭ )WP z ♭ ϕ 1 (t ♭ )dσ + O(ε),
and, in terms of the function A ε is defined in (42), we are left at time t = t ♭ + δ with

w ε 1 (t ♭ + δ) = O(εδ -2 ) + O(δε 1/3 ), w ε 2 (t ♭ + δ) = e iS ♭ /ε U ε h 2 (t ♭ + δ, t ♭ ) A ε + O(εδ -2 ) + O(δε 1/3 ).

5.2.

Constructing the transfer operator. Next, we relate the transition term A ε to an integral operator that is defined in terms of the crossing parameters µ ♭ and (α ♭ , β ♭ ) introduced in Theorem 3.8.

Lemma 5.3. Let k ∈ N.
With the assumptions of Proposition 5.1, there exist

-a smooth real-valued map σ → Λ(σ) with Λ(0) = 0, Λ(0) = 0, Λ(0) = 2µ ♭ + α ♭ • β ♭ , -a smooth vector-valued map σ → z(σ) = (q(σ), p(σ)) with z(0) = 0, ż(0) = (α ♭ , β ♭ ), -a smooth map σ → Q ε (σ) of operators, that map Schwartz functions to Schwartz functions, with Q ε (0) = op w 1 (γ V 2 (t ♭ , z ♭ + √ ε•)),
such that the transition quantity A ε defined in Lemma 5.2 satisfies

(43) A ε = WP ε z ♭ T ε ϕ 1 (t ♭ ) + O( √ εδ) in Σ k ε (R d )
for the integral operator T ε defined by

T ε ϕ(y) = +δ -δ e i ε Λ(σ) Q ε (σ)e ipε(σ)•(y-qε(σ)) ϕ(y -q ε (σ)) dσ, ϕ ∈ S(R d ),
where we have used the scaling notation z ε (σ) = z(σ)/ √ ε.

Proof. We use Egorov's semi-classical theorem [6, Theorem 12] and obtain that in

Σ k ε (R d ), U ε h 2 (t ♭ , σ) γ V 2 (σ)f = op w ε ((γ V 2 )(σ) • Φ σ,t ♭ 2 ) U ε h 2 (t ♭ , σ)f + O(ε) for all f ∈ ℓ≥k Σ ℓ ε (R d ). Hence, A ε = t ♭ +δ t ♭ -δ op w ε ((γ V 2 )(σ) • Φ σ,t ♭ 2 ) U ε h 2 (t ♭ , σ) U ε h 1 (σ, t ♭ ) WP ε z ♭ ϕ 1 (t ♭ )dσ + O(δε). We set Q 2 (σ) = (γ V 2 )(t ♭ + σ) • Φ σ+t ♭ ,t ♭ 2
, and note that Q 2 (0) = (γ V 2 )(t ♭ ). We get after a change of variables

A ε = δ -δ Q 2 (σ) U ε h 2 (t ♭ , t ♭ + σ)U ε h 1 (t ♭ + σ, t ♭ )WP ε z ♭ ϕ 1 (t ♭ )dσ + O(δε).
Now we apply successively Proposition 2.3 to the evolutions U ε h 1 and U ε h 2 without encorporating the first amplitude correction, that is, for a basic approximation of order √ ε. We obtain

U ε h 2 (t ♭ , t ♭ + σ)U ε h 1 (t ♭ + σ, t ♭ )WP ε z ♭ ϕ 1 (t ♭ ) = e i ε S(σ) WP ε ζ(σ) M(σ)ϕ 1 (t ♭ ) + O( √ ε),
where we denoted the combined center, phase and metaplectic transform by

ζ(σ) = Φ t ♭ ,t ♭ +σ 2 Φ t ♭ +σ,t ♭ 1 (z ♭ ) , S(σ) = S 1 (t ♭ + σ, t ♭ , z ♭ ) + S 2 (t ♭ , t ♭ + σ, Φ t ♭ +σ,t ♭ 1 (z ♭ )), M(σ) = M[F 2 (t ♭ , t ♭ + σ, Φ t ♭ +σ,t ♭ 1 (z ♭ ))] M[F 1 (t ♭ + σ, t ♭ , z ♭ )].
This implies

A ε = +δ -δ Q 2 (σ)e i ε S(σ) WP ε ζ(σ) M(σ)ϕ 1 (t ♭ )dσ + O(δ √ ε).
We observe that

ζ(0) = z ♭ , S(0) = 0, M(0) = I,
and write ζ(σ) = z ♭ + z(σ) with z(0) = 0. By Lemma D.1, ż(0) = (α ♭ , β ♭ ), Ṡ(0) = p ♭ • α ♭ .
Moreover, using the group and translation properties of the wave packet transform (48) and (47), we have

WP ε ζ(σ) = e -i ε p ♭ •q(σ) WP ε z ♭ Λ -1 ε WP ε z(σ) = e -i ε p ♭ •q(σ) e -i 2ε p(σ)•q(σ) WP ε z ♭ Λ -1 ε T ε (z(σ))Λ ε = e -i ε p ♭ •q(σ) e -i 2ε p(σ)•q(σ) WP ε z ♭ T 1 (z ε (σ))
, By the translation properties of the metaplectic transform [6, Section 3.3], we have

T 1 (z ε (σ))M(σ) = M(σ) T 1 ( z ε (σ)) with new center z(σ) = F 1 (t ♭ + σ, t ♭ , z ♭ ) -1 F 2 (t ♭ , t ♭ + σ, Φ t ♭ +σ,t ♭ 1 (z ♭ )) -1 z(σ) We observe that z(0) = z(0) = 0, ˙ z(0) = ż(0) = (α ♭ , β ♭ ). Moreover, in view of the relation (49), Q 2 (σ)WP ε ζ(σ) M(σ) = e -i ε p ♭ •q(σ) e -i 2ε p(σ)•q(σ) Q 2 (σ)WP ε z ♭ M(σ) T 1 ( z ε (σ)) = e -i ε p ♭ •q(σ) e -i 2ε p(σ)•q(σ) WP ε z ♭ op w 1 ( Q 2 (σ, z ♭ + √ ε•))M(σ) T 1 ( z ε (σ)). Since T 1 ( z ε (σ))ϕ 1 (t ♭ , y) = e i 2 qε(σ)• pε(σ) e i pε(σ)•(y-qε(σ)) ϕ 1 (t ♭ , y -q ε (σ)
), we may introduce the phase Λ(σ) and the operator Q ε (σ) acccording to

Λ(σ) = S(σ) -p ♭ • q(σ) -p(σ) • q(σ) + p(σ) • q(σ), Q ε (σ) = op w 1 ( Q 2 (σ, z ♭ + √ ε•))M(σ), (44) 
to obtain the approximation

A ε = WP ε z ♭ +δ -δ e i ε Λ(σ) Q ε (σ)e i pε(σ)•(y-qε(σ)) ϕ 1 (t ♭ , y -q ε (σ)) dσ + O(δ √ ε). We clearly have Λ(0) = ˙ Λ(0) = 0 and Q ε (0) = op w 1 ((γ V 2 )(t ♭ , z ♭ + √ ε•)), whereas, by Lemma D.1, ¨ Λ(0) = S(0) -p ♭ • q(0) = 2µ ♭ + α ♭ • β ♭ .
Remark 5.4. Note that the first step of the proof of Lemma 5.3 can be performed at any order in ε with a remainder of the form O(δε N ): pushing the Egorov theorem at higher order, we obtain

A ε = t ♭ +δ t ♭ -δ Q ε,N 2 (σ) U ε h 2 (t ♭ , σ)U ε h 1 (σ, t ♭ )WP ε z ♭ ϕ 1 (t ♭ )dσ + O(δε N +1 ) with Q ε,N 2 = Q 2 + ε Q (1) 2 + • • • + ε N Q (N )
2 . Similarly, also Proposition 2.3 can be generalized at any order in ε, which then implies

A ε = WP ε z ♭ T ε,N ϕ ε 1 (t ♭ ) + O(ε N/2+1 δ)
where

ϕ ε 1 = ϕ 1 + √ εϕ (1) 1 + • • • + ε N/2 ϕ (N ) 1
and

T ε,N ϕ(y) = +δ -δ e i ε Λ(σ) Q ε,N (σ)e i(y-qε(σ)))•pε(σ) ϕ(y -q ε (σ))dσ
for all ϕ ∈ S(R d ). The phase function Λ(σ) and the phase space center z(σ) stay the same as in Lemma 5.3, while the operator Q ε,N (σ) is associated with Q ε,N 2 (σ) according to (44) by selecting terms up to order ε N/2 in its definition.

The transfer operator. Consider the family of operators

T ε ϕ(y) = +δ -δ e i ε Λ(σ) Q ε (σ)e i(y-qε(σ)))•pε(σ) ϕ(y -q ε (σ))dσ, ϕ ∈ S(R d ),
as introduced in Lemma 5.3. We next describe such an operator T ε , when ε goes to 0.

Lemma 5.5. Let k ∈ N. If √ ε ≪ δ ≪ 1, then for all ϕ ∈ S(R d ), T ε ϕ = √ ε Q ε (0)T ♭ ϕ + O( √ εδ) + O(εδ -1 ) (45) in Σ k ε (R d ) with T ♭ = +∞ -∞ e iµ ♭ s 2 e is(β ♭ •y-α ♭ •Dy) ds
Proof. The proof relies on the analysis of the integrand close to σ = 0. We write

T ε = √ ε +δ/ √ ε -δ/ √ ε e i ε Λ( √ εs)-i 2 qε(s √ ε)•pε(s √ ε) Q ε (s √ ε)e iL ε (s) ds
where L ε (s) := p ε (s √ ε) • y -p ε (s √ ε)D y defines a family of self-adjoint operators s → L ε (s) mappping S(R d ) into itself. Recall that the functions s → p ε (s √ ε) and s → q ε (s √ ε) are uniformly bounded with respect to ε, and that q(0) = p(0) = 0, while

(46) µ ♭ = 1 2 Λ(0) -q(0) • ṗ(0) , α ♭ = q(0), β ♭ = ṗ(0). We set L = β ♭ • y -α ♭ • D y .
Using Taylor expansion in s = 0, we obtain

Λ( √ εs) - i 2 q ε (s √ ε) • p ε (s √ ε) = µ ♭ s 2 + √ εs 3 f 1 (s √ ε)
with σ → f 1 (σ) bounded, together with its derivatives, for σ ∈ [t 0 , t 0 + T ]. In the following, the notation f j will denote functions that have the same property. We also have

L ε (s) = sL + √ εs 2 L ε 1 (s √ ε)
where the family of operator σ → L ε 1 (σ) maps S(R d ) into itself, for σ ∈ [t 0 , t 0 +T ]. Besides, the commutator [L, L 1 (s √ ε)] is a scalar, and we set

1 2 [L, L 1 (s √ ε)] = f 2 (s √ ε)
with the notation we have just introduced. Therefore, by Baker-Campbell-Hausdorff formula

e iL ε (s) = e isL e is 2 √ εL 1 (s √ ε) e i √ εs 3 f 2 (s √ ε) .
Besides,

e i √ εs 2 L 1 (s √ ε) = Id + √ εs 2 Θ(s √ ε)
where the operator-valued map σ → Θ(σ) is smooth and such that for all σ ∈ [t 0 , t 0 + T ], the operator Θ(σ) and its derivatives maps S(R d ) into itself. Setting f 3 = f 1 + f 2 , we deduce that T ε writes

T ε = √ ε +δ/ √ ε -δ/ √ ε e iµ ♭ s 2 + √ εs 3 f 3 (s √ ε) Q ε (s √ ε)e isL ds + R ε,δ with R ε,δ = ε +δ/ √ ε -δ/ √ ε e iµ ♭ s 2 + √ εs 3 f 3 (s √ ε) Q(s √ ε)e isL s 2 Θ ε (s √ ε)ds.
Let us analyze R ε,δ . For this, we perform an integration by parts. Indeed,

∂ s (µ ♭ s 2 + √ εs 3 f 3 (s √ ε)) = 2µ ♭ s(1 + s √ εf 4 (s √ ε))
for some smooth bounded function f 4 with bounded derivatives. Moreover, since δ is small, we have 1 + s √ εf 4 (s √ ε) > 1/2 for all s ∈] -δ/ √ ε, +δ/ √ ε[. Therefore, we can write

R ε,δ = εs 2iµ ♭ (1 + s √ εf 4 (s √ ε)) e iµ ♭ s 2 +i √ εs 3 f 3 (s √ ε) Q ε (s √ ε)e isL + δ √ ε -δ √ ε - ε 2iµ ♭ + δ √ ε -δ √ ε e iµ ♭ s 2 +i √ εs 3 f 3 (s √ ε) d ds s 1 + s √ εf 4 (s √ ε) Q ε (s √ ε)e isL ds,
where µ ♭ = 0 by the transversality condition [START_REF] Kay | The Herman-Kluk approximation: derivation and semiclassical corrections[END_REF]. We deduce that for all k ∈ N and

ϕ ∈ S(R d ), we have in Σ k ε (R d ) that R ε,δ ϕ = O( √ εδ) + R ε,δ 1 ϕ with R ε,δ 1 ϕ = - ε 2iµ ♭ + δ √ ε -δ √ ε e iµ ♭ s 2 +i √ εs 3 f 3 (s √ ε) s 1 + s √ εf 4 (s √ ε) Q ε (s √ ε)e isL Lϕ ds.
We then need another integration by parts to obtain that R ε,δ 1 ϕ = O( √ εδ). Note that this additional integration by parts is required by the presence of a s without a coefficient √ ε in the integrand. We write

R ε,δ 1 ϕ = - ε (2iµ ♭ ) 2 e iµ ♭ s 2 +i √ εs 3 f 3 (s √ ε) 1 (1 + s √ εf 4 (s √ ε)) 2 Q ε (s √ ε)e isL Lϕ + δ √ ε -δ √ ε + ε (2iµ ♭ ) 2 + δ √ ε -δ √ ε e iµ ♭ s 2 +i √ εs 3 f 3 (s √ ε) d ds 1 (1 + s √ εf 4 (s √ ε)) 2 Q ε (s √ ε)e isL Lϕ ds = O(δ √ ε)
Therefore, we are left with

T ε = √ ε + δ √ ε -δ √ ε e iµ ♭ s 2 +i √ εs 3 f 3 (s √ ε) Q ε (s √ ε)e isL ds + O( √ εδ).
In the positive part of the integral, we perform the change of variable

z = s(1 + √ εsf 3 (s √ ε)/µ ♭ ) 1/2
and observe that s = z(1

+ √ εzg 1 (z √ ε)) and ∂ s z = 1 + √ εzg 2 (z √ ε)
for some smooth bounded functions g 1 and g 2 with bounded derivatives. Note, that here again, we have used that s √ ε is small in the domain of the integral. Besides, there exists a family of operator

Q ε (z) such that Q ε (s √ ε) = Q ε (z √ ε) with Q ε (0) = Q ε (0)
. We deduce that there exists a bounded function of δ denoted by b(δ) such that

T ε = √ ε + δ √ ε b(δ) -δ √ ε e iµ ♭ z 2 Q ε (z √ ε)e iz(1+ √ εzg 1 (z √ ε)) L dz 1 + √ εzg 2 (z √ ε) .
A Taylor expansion allows to write

Q ε (z √ ε)e iz(1+ √ εzg 1 (z √ ε)) L 1 1 + √ εzg 2 (z √ ε) = Q ε (0) + √ εz( Q ε 1 (z √ ε) + z Q ε 2 (z √ ε)) = Q ε (0) + √ εz( Q ε 1 (z √ ε) + z Q ε 2 (z √ ε))
for some smooth operator-valued maps

z → Q ε j (z √ ε) mapping S(R d ) into itself, such that for all ϕ ∈ S(R d ) the family ( Q ε j (z √ ε)ϕ) ε>0 is bounded in Σ k ε (R d )
. We obtain

T ε = √ ε Q ε (0) + δ √ ε b(δ) -δ √ ε e iµ ♭ z 2 e izL dz + Rε,δ
with Rε,δ = ε

+ δ √ ε b(δ) -δ √ ε z e iµ ♭ z 2 ( Q ε 1 (z √ ε) + z Q ε 2 (z √ ε)) dz.
Arguing by integration by parts as previously, we obtain

Rε,δ =ε 1 2iµ ♭ e iµ ♭ z 2 ( Q ε 1 (z √ ε) + z Q ε 2 (z √ ε)) + δ √ ε b(δ) -δ √ ε - ε 2iµ ♭ + δ √ ε b(δ) -δ √ ε e iµ ♭ z 2 d dz ( Q ε 1 (z √ ε) + z Q ε 2 (z √ ε)) dz = O( √ εδ).
We deduce

T ε = √ ε Q ε (0) + δ √ ε b(δ) -δ √ ε b(δ)
e iµ ♭ s 2 e isL ds + O( √ εδ) and it remains to pass to infinity in the domain of the integral. For this, we set m ε = δ √ ε b(δ) and consider for ϕ ∈ S(R d ),

G ε 0 ϕ = +∞ mε e iµ ♭ s 2 e isL ϕ ds.
We make two successive integration by parts. We write in Σ k (R d ),

G ε 0 ϕ = (2isµ ♭ ) -1 e iµ ♭ s 2 e isL ϕ +∞ mε - +∞ mε e iµ ♭ s 2 d ds e isL ϕ 2isµ ♭ ds = O(m -1 ε ) ϕ Σ k - +∞ mε e iµ ♭ s 2 ie isL Lϕ 2isµ ♭ ds + +∞ mε e iµ ♭ s 2 e isL ϕ 2iµ ♭ s 2 ds = O(m -1 ε ) ϕ Σ k -(2isµ ♭ ) -2 e iµ ♭ s 2 ie isL Lϕ +∞ mε + +∞ mε e iµ ♭ s 2 d ds ie isL Lϕ (2isµ ♭ ) 2 ds = O(m -1 ε ) ϕ Σ k + Lϕ Σ k + L 2 ϕ Σ k .
We deduce that

T ε = √ ε Q ε (0) +∞ -∞
e iµ ♭ s 2 e isL ds + O( √ εδ) + O(εδ -1 ).

Remark 5.6. Note that the previous remainder terms could again by transformed by integration by parts. This implies that T ε ϕ has an asymptotic expansion in √ ε and δ at any order and each term of the expansion is a Schwartz function.

5.4. Proof of Theorem 3.8 and Corollary 3.9. We now complete the proof of Theorem 3.8. We choose δ = ε 2/9 , and ε is small enough so that ε ≤ |t -t ♭ | In summary, we obtain an error estimate of order εδ -2 = ε 1/3 δ = ε 5/9 . Corollary 3.9 comes from Theorem 3.8 and point (3) of Proposition E.1.

Appendix A. The wave packet transform

We discuss here useful properties of the wave-packet transform. We define the Weyl translation operator

T ε T ε (z) = e i ε (p• x-q• ξ) , z = (q, p) ∈ R 2d , the semi-classical scaling operator Λ ε Λ ε ϕ(x) = ε -d/4 ϕ x √ ε , ϕ ∈ S(R d ),
and we denote by a ε,z ∈ C ∞ (R 2d ) the function a ε,z (w) = a( √ εw + z), w ∈ R 2d .

Lemma A.1. The wave packet transform satisfies for all points z, z ′ ∈ R 2d and all smooth functions a ∈ C ∞ (R 2d )

WP ε z = e -i 2ε p•q T ε (z) Λ ε , (47) WP ε z+z ′ = e -i ε p•q ′ WP ε z Λ -1 ε WP ε z ′ , (48) op w ε (a)WP ε z = WP ε z op w 1 (a ε,z ), (49) 
Proof. We consider ϕ ∈ S(R d ). Then T ε (z)ϕ is the solution at time t = 1 of the initial value problem

iε∂ t ψ = (q • ξ -p • x)ψ, ψ(0) = ϕ.
The explicit form of this solution

ψ(t, x) = e -i 2ε t 2 q•p e i ε tp•x ϕ(x -tq)
implies for the action of the Weyl translation that

T ε (z)ϕ(x) = e -i 2ε q•p e i ε p•x ϕ(x -q).
This yields

-i 2ε p•q T ε (z) Λ ε ϕ(x) = ε -d/4 e -i ε p•q e i ε p•x ϕ( x-q √ ε ) = WP ε z ϕ(x).
For the commutation property we compute

e -i ε p•q ′ WP ε z Λ -1 ε WP ε z ′ ϕ(x) = e -i ε p•q ′ WP ε z e i ε p ′ •( √ εx-q ′ ) ϕ √ εx-q ′ √ ε = e -i ε p•q ′ ε -d/4 e i ε p•(x-q) e i ε p ′ •(x-q-q ′ ) ϕ x-q-q ′ √ ε = WP ε z+z ′ ϕ(x).
Moreover,

WP ε z op w 1 (a ε,z )ϕ(x) = ε -d/4 e i ε p•(x-q) (2π) -d R 2d a √ ε 2 x-q √ ε + y + q, √ εξ + p )e iξ•((x-q)/ √ ε-y) ϕ(y) dy dξ = ε -d/4 e i ε p•(x-q) (2πε) -d R 2d a 1 2 (x + y ′ ) + q, ξ ′ e i ε (ξ ′ -p)•(x-y ′ ) ϕ y ′ -q √ ε dy ′ dξ ′ = op w ε (a) WP ε z ϕ(x).
The intertwining property (49), that relates the wave packet transform with Weyl quantization, allows to describe the localisation properties of wave packets as follows.

Proof. We use the relation {A, BC} -{AB, C} = {A, B}C -A{B, C}. and apply it to A = B = C = Π. Since Π 2 = Π, we obtain 0 = {Π, Π}Π -Π{Π, Π} and therefore Π ⊥ {Π, Π}Π = Π{Π, Π}Π ⊥ = 0.

Besides, by the definition of the Poisson bracket, we have {Π, Π} * = -{Π, Π}, so that {Π, Π} and Ω = -1 2 (h -h ⊥ )Π{Π, Π}Π are skew-symmetric. In view of

{Π, H} = (h -h ⊥ ){Π, Π} -{h, Π}Π -{h ⊥ , Π}Π ⊥ , {h, Π} = {h, Π}Π + {h, Π}Π ⊥ , we obtain that B = -2∂ t Π -{h, Π} + {Π, H} = -2∂ t Π + (h -h ⊥ ){Π, Π} -2{h, Π}Π -{h + h ⊥ , Π}Π ⊥ .
Hence,

BΠ = -2Π ⊥ (∂ t Π + {h, Π})Π + (h -h ⊥ )Π{Π, Π}Π = -2(K + Ω) and Π ⊥ BΠ ⊥ = (h -h ⊥ )Π ⊥ {Π, Π}Π ⊥ . The matrix Θ = iΩ + i(K -K * ) is hermitian, since Θ * = -iΩ * -i(K * -K) = Θ. It also satisfies 2iΘΠ = 2i(iΩ + iK)Π = BΠ.
Decomposing the matrix B = BΠ + BΠ ⊥ , we may view the contribution associated with the projector Π as an effective dynamical correction to the eigenvalue h. We obtain the following: Lemma B.2. Let H = hΠ + h ⊥ Π ⊥ be a smooth matrix-valued Hamiltonian with smooth eigenvalues h, h ⊥ and smooth eigenprojectors Π, Π ⊥ . Then, there exists a smooth matrixvalued symbol R ε such that

Π(iε∂ t -H) =(iε∂ t -h -ε Θ) Π + ε 2i BΠ ⊥ Π ⊥ + ε 2 R ε , (52) 
where the matrices B and Θ have been defined in (51) and [START_REF] Hari | Coherent states for systems of L2-supercritical nonlinear Schrödinger equations[END_REF], respectively. If the Hamiltonian and its eigenvalues are of subquadratic growth [START_REF] Duyckaerts | Degenerated codimension 1 crossings and resolvent estimates[END_REF], while the projectors grow at most polynomially [START_REF] Lubich | From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis[END_REF], then for all k ∈ N there exist C k > 0 and ℓ ∈ N such that

sup t∈[t 0 ,t 0 +T ] R ε (t)ϕ Σ k ε ≤ C k ϕ Σ ℓ ε ∀ϕ ∈ Σ k ε (R d ).
Proof. We write

Π(iε∂ t -H) =(iε∂ t -h) Π -iε ∂ t Π + h Π -Π H.
The symbolic calculus gives

h Π -Π H = ε 2i ({h, Π} -{Π, H}) + ε 2 R ε ,
where the remainder R ε (t) satisfies the claimed estimate due to the growth assumptions on the symbols h, H and Π. In view of Lemma B.1, we have

-i∂ t Π + 1 2i ({h, Π} -{Π, H}) = ΘΠ + 1 2i BΠ ⊥ ,
which concludes our proof.

We note that for the projected solution wε (t) = Πψ ε (t), equation ( 52) implies an evolution equation of the form

iε∂ t wε (t) = ( h + ε Θ) wε (t) - ε 2i BΠ ⊥ Π ⊥ ψ ε (t) + O(ε 2 ).
In a next step we use the matrix B for introducing the first order super-adiabatic correction of the eigenprojector Π, following ideas from [START_REF] Sjöstrand | Projecteurs adiabatiques du point de vue pseudodifférentiel[END_REF][START_REF] Emmrich | Geometry of the transport equation in multicomponent WKB approximations[END_REF][START_REF] Bily | Propagation d'états cohérents et applications[END_REF][START_REF] Martinez | Twisted pseudodifferential calculus and application to the quantum evolution of molecules[END_REF][START_REF] Nenciu | On the adiabatic theorem of quantum mechanics[END_REF][START_REF] Nenciu | Linear adiabatic theory. Exponential estimates[END_REF][START_REF] Teufel | Adiabatic perturbation theory in quantum dynamics Lecture Notes in Mathematics 1821[END_REF].

Definition B.3. We assume that H is a smooth Hermitian matrix that has two smooth eigenvalues h and h ⊥ and smooth eigenprojectors Π and Π ⊥ , that is,

H = hΠ + h ⊥ Π ⊥ .
The first super-adiabatic corrector of Π is the hermitian matrix P = P * defined by 

ΠPΠ ⊥ = i h -h ⊥ Π ∂ t Π + 1 2 {h + h ⊥ , Π} Π ⊥ , Π ⊥ PΠ = - i h -h ⊥ Π ⊥ ∂ t Π + 1 2 {h + h ⊥ , Π} Π, ΠPΠ = - 1 2i Π{Π, Π}Π, Π ⊥ PΠ ⊥ = 1 2i Π ⊥ {Π, Π}Π ⊥ .

Note that one has PΠ

⊥ = 1 2i (h -h ⊥ ) -1 BΠ ⊥ and PΠ = - 1 2i (h -h ⊥ ) -1 BΠ. Note that
i∂ t Π + P(H -h) + 1 2i {Π, H + h} = ΘΠ and i(∂ t Π + {h, Π}) = [Θ, Π],
where the matrix Θ is given by [START_REF] Hari | Coherent states for systems of L2-supercritical nonlinear Schrödinger equations[END_REF].

Proof. Since H is acting as a scalar on RanΠ and RanΠ ⊥ , we have

[H, P] = [H, ΠPΠ ⊥ + Π ⊥ PΠ] = (h -h ⊥ )ΠPΠ ⊥ + (h ⊥ -h)Π ⊥ PΠ = i(∂ t Π + 1 2 {h + h ⊥ , Π}). Since {H, Π} -{Π, H} = Π{h, Π} + Π ⊥ {h ⊥ , Π} -{Π, h}Π -{Π, h ⊥ }Π ⊥ = {h + h ⊥ , Π},
we have proven the first equation. For the second equation, we calculate PΠ + ΠP = 2ΠPΠ + Π ⊥ PΠ + ΠPΠ ⊥ = P + ΠPΠ -Π ⊥ PΠ ⊥ = P -1 2i {Π, Π}, where we have used that {Π, Π} is diagonal. For the first relation with Θ, we write H -h = (h ⊥ -h)Π ⊥ and obtain

P(H -h) = (h ⊥ -h)PΠ ⊥ = - 1 2i BΠ ⊥ .
Therefore, by Lemma B.1,

i∂ t Π + P(H -h) + 1 2i {Π, H + h} = 1 2i B - 1 2i BΠ ⊥ = ΘΠ.
For the commutator of Θ and Π, we have

[Θ, Π] = i[Ω, Π] + i[K, Π] -i[K * , Π] = iΠ ⊥ (∂ t Π + {h, Π})Π + iΠ ⊥ (∂ t Π + {h, Π})Π = i(∂ t Π + {h, Π}).
If the crossing set Υ were empty and all the symbols in consideration were bounded, the relations of Lemma B.4 would imply that setting Π ε = Π + εP, then Π ε would be "better" than Π in terms of being an eigenprojector of H: in L(L 2 (R d )), Π ε Π ε = Π ε + O(ε 2 ) and Π ε (-iε∂ t + H) = (-iε∂ t + h + ε Θ) Π ε + O(ε 2 ), while the estimate would be only O(ε) when using the uncorrected Π. However, because the symbols we consider are smooth only outside Υ, we need to use cut-off functions to correctly state such properties.

Lemma B.5. Let I be an interval of R and χ δ , χδ ∈ C(I, C ∞ 0 (R 2d )) be two cut-off functions that satisfy:

(1) For any t ∈ I and z in the support of χ δ (t) and χδ (t) we have |(h -h ⊥ )(t, z)| > δ.

(2) The functions χ δ and χδ satisfy ∂ t χ δ + h, χ δ = 0, ∂ t χδ + h, χδ = 0.

(3) The functions χδ are supported in {χ δ = 1}. Let k ∈ N. Then, we have for all t ∈ I in Σ k ε , χδ -iε∂ t + ( ĥ + ε Θ) χ δ Π ε = χδ χ δ Π ε (-iε∂ t + H) + O(ε 2 δ -2 ).

In particular, the function w ε (t) = χδ χ δ Π ε ψ ε (t) satisfies for all t ∈ I in Σ k ε , iε∂ t w ε (t) = ( ĥ + ε Θ)w ε (t) + O(ε 2 δ -2 ).

Appendix C. Parallel transport

We prove here Proposition 3.1 that provides the time-dependent eigenvector V (t, z) defined by parallel transport. We adapt the proof of [START_REF] Carles | A Nonlinear Adiabatic Theorem for Coherent States[END_REF]Proposition C.1] to account for the matrix Ω(t, z), noting that we only require that Ω(t, z) is a skew-symmetric matrix mapping into the range of Π(t, z).

Proof. We consider the solution V (t, z) of the parallel transport equation and set Y (t, z) = V (t, Φ t,t 0 h (z)). We observe that Y (t, z) solves the equation ∂ t Y (t, z) = ∂ t V (t, Φ t,t 0 h (z)) + J∂ z h(Φ t,t 0 h (z))V (t, Φ t,t 0 h (z)) = Ω(t, Φ t,t 0 h (z))Y (t, z) + K(t, Φ t,t 0 h (z))Y (t, z). (55)

In particular, since Ω(t, z) maps into the range of Π(t, z), Π ⊥ (t, Φ t,t 0 h (z)) ∂ t Y (t, z) = K(t, Φ t,t 0 h (z))Y (t, z). We now start proving that for z ∈ U , Π(t, Φ t,t 0 h (z))Y (t, z) = Y (t, z), or equivalently that Z(t, z) = Π ⊥ (t, Φ t,t 0 h (z))Y (t, z) is constant and equal to 0. We compute ∂ t Z(t, z) = -∂ t Π(t, Φ t,t 0 h (z)) -J∂ z h(Φ t,t 0 h (z))∂ z Π(t, Φ t,t 0 h (z)) + K(t, Φ t,t 0 h (z)) Y (t, z).

We recall that K = (I -Π)(∂ t Π + {h, Π})Π. Since all derivatives of the projector are off-diagonal, we have -∂ t Π -{h, Π} + K = -Π (∂ t Π + {h, Π}) Π ⊥ and therefore ∂ t Z(t, z) = -Π(t, Φ t,t 0 h (z)) ∂ t Π(t, Φ t,t 0 h (z)) + J∂ z h(Φ t,t 0 h (z))∂ z Π(t, Φ t,t 0 h (z)) Z(t, z).

In particular, ∂ t Z(t, z) is an element of the range of Π(t, Φ t,t 0 h (z)) and thus orthogonal to Z(t, z). Hence, its norm is constant, Z(t, z) = 0 and Y (t, z) ∈ Ran Π(t, Φ t,t 0 h (z)). Besides, we have for any z ∈ R 2d ∂ t Y (t, z) • Y (t, z) = Ω(t, Φ t,t 0 h (z))Y (t, z) • Y (t, z) + K(t, Φ t,t 0 h (z))Y (t, z) • Y (t, z) = 0, because Ω(t, z) * = -Ω(t, z) and K(t, z) = Π ⊥ (t, z)K(t, z).

Therefore, Y (t, z) C N = 1.

Remark C.1 (Polynomial growth of the eigenvector). The above proof shows that the timeevolution of Y (t, z) = V (t, Φ t,t 0 h (z)) is generated by a norm-conserving evolution operator, that is, Y (t) = L(t, t 0 )Y (t 0 ). This observation allows to literally repeat the inductive argument in the proof of [START_REF] Carles | A Nonlinear Adiabatic Theorem for Coherent States[END_REF]Proposition C.1] for inferring from a polynomial bound on the Remark E.2. The matrix Γ µ,α,β,Γ is in S + (d) since g Γ µ,α,β,Γ is proved to be Schwartz class.

It is also important to notice that 2µ -α • β + α • Γα is non zero because its imaginary part is non zero.

Proof. Point (1) is linked with Point (2) and comes from the formula ( 29) and [START_REF] Nenciu | On the adiabatic theorem of quantum mechanics[END_REF]. Indeed, when µ = 0, equation ( 64) is an application of relation ( 28) and of functional calculus on the self-adjoint operator (β • y -α • D y ) 2 and the Fourier-transform formula of complex Gaussian functions: Point (3) derives from the formulation of T µ,α,β as a metaplectic transform. We use general results concerning the action of a metaplectic transformation on Gaussian g Γ (for details see [START_REF] Combescure | Coherent states and applications in mathematical physics[END_REF], Chapter 3). With the quadratic Hamiltonian K(y, η) = (β • y -α • η) 2 , one associates the linear flow Φ α,β (t) = (Φ ij (t)) 1≤i,j≤2 (in a d × d block form) given by [START_REF] Sjöstrand | Projecteurs adiabatiques du point de vue pseudodifférentiel[END_REF]. Besides, the Egorov theorem and the propagation of gaussian are both exact: we have 
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Corollary 3 . 5 (

 35 Adiabatic Herman-Kluk approximation). In the situation of Theorem 3.2, for all T > 0 there exists a constant C = C(T ) > 0 such that

  the diagonal part of the matrix P is smooth, while the off-diagonal part of P is singular on the crossing set Υ = {f = 0}. Besides, for all β ∈ N 2d and R > 0, (53)∃C β,R > 0, ∀z ∈ B(0, R) ∩ {f (t, z) > δ}, ∀t ∈ R, ∂ β z P(t, z) ≤ C β,R δ |β|+1 . The main interest in the corrector P comes from the following relations: Lemma B.4. With the assumptions of Definition B.3, the corrector matrix P satisfies (54) [H, P] = i∂ t Π -1 2i ({H, Π} -{Π, H}) and PΠ + ΠP = P -1 2i {Π, Π}, as well as

( 3 )

 3 If µ = 0, Γ ∈ S + (d) and A ∈ C ∞ (R 2d ) is a polynomial function then there exists Γ µ,α,β,Γ ∈ S + (d) such that T µ,α,β (op w 1 (A)g Γ ) = 2π iµ op w 1 (A • Φ α,β (-(4µ) -1 )g Γ µ,α,β,Γwhere Φ α,β satisfies (34) and(65) Γ µ,α,β,Γ = Γ -(β -Γα) ⊗ (β -Γα) 2µ -α • β + α • Γα .

e is 2 µ e isτ ds = 2π iµ e τ 2 4iµ, 1 R 2 e(

 212 with arg(iµ) ∈] -π, π[. It remains to analyze the case where µ = 0. The computations are different whether α • β = 0 or not. We assume α = 0 and we set α = α |α| , y = (y • α)α + y ⊥ .Similar formulas can be obtained when β = 0 using (63). Let us first assume α • β = 0.T 0,α,β = e isβ•y ⊥ ϕ(y • αα -sα + y ⊥ )ds = |α| -1 e i|α| -1 (y• α-σ)(β•y ⊥ ) ϕ(σ α + y ⊥ )dσ = |α| -1 e i|α| -1 (y• α)(β•y ⊥ ) F α ϕ β • y ⊥ |α| , y ⊥where ϕ ∈ S(R d ), y ⊥ = y -α • y α and F α is the partial Fourier transform in the direction α.In the case where α • β = 0, we writeT 0,α,β = (2π) --is 2 α•β 2 +isβ•y+iη(y•α-s) F α ϕ(η, y ⊥ )dηds = i πβ • α e i (β•y-η) 2 2α•β +iηy•α F α ϕ(η, y ⊥ )dη = i πβ • α e i (β•y) 2 2β•α e -iη β ⊥ •y ⊥ β•α e i η 2 2β•α F α ϕ(η, y ⊥ Dy • α) 2 2β•α ϕ -β ⊥ • y ⊥ β • α + y ⊥This concludes the proof of Points (1) and (2).

e

  -it K (op w 1 (A)g Γ ) = op w 1 (A • Φ α,β (t))e -it K g Γ = (op w 1 (A • Φ α,β (t))g Γt where the matrix Γ t ∈ S + (d) is given byΓ t = (Φ 21 (t) + Φ 22 (t)Γ)(Φ 11 (t) + Φ 12 (t)Γ) -1 , c Γt = det -1/2 (A(t) + B(t)Γ),where We deduce that if µ = 0,T µ,α,β g Γ = 2π iµ e i 4µ K g Γ = 2π iµ g Γ -(4µ) -1 .This induces the existence of the matrix Γ µ,α,β,Γ ∈ S + (d) of Point (2) of the Proposition. It remains to prove the formula (65). We use that if ϕ = g Γ , we haveT µ,α,β g Γ (y) = c Γ +∞ -∞ e is 2 (µ-α•β/2) e isβ•y e i 2 (y-sα)•(Γ(y-sα)) ds.Applying again (66) we get,T µ,α,β g Γ (y) = c Γ π 2µ -α • β + α • Γα e i 2 y•Γy-(y•(β-Γα)) 22µ-α•β+α•Γα , which gives (65).

  t 0 h (z) dz provides an order ε approximation to the scalar unitary propagator U ε h (t, t 0 ) in operator norm. Combining [35, Proposition 2 and Theorem 2] or [32, Theorem 1.2] with our previous results we obtain a Herman-Kluk approximation for gapped systems.

  9/2 . Then, one has |t -t ♭ | ≥ δ. If t ∈ [t 0 , t ♭ -δ], then Proposition 4.1 gives the result. If t ∈ [t ♭ + δ, t 0 + T ], then one combines Proposition 4.1 between times s 1 = t ♭ + δ and s 2 = t with Proposition 5.1.

Remark A.2 (Localisation on scale √ ε). Let χ ∈ C ∞ 0 (R 2d ) be a cut-off function such that χ = 1 close to 0 and 0 ≤ χ ≤ 1. Define for R > 0, χ R (z) = χ(R -1 z) for all z ∈ R 2d . Then, for any k, N ∈ N and any Schwartz function ϕ ∈ S(R d )

where the constant C > 0 depends on k, N and the norm of ϕ in Σ k+N

1

. Decomposing a wave packet as WP ε 0 ϕ = WP ε 0 op w 1 (χ R )ϕ + WP ε 0 op w 1 (1 -χ R )ϕ, the combination of the above estimate with equation (49) and the continuity of the wave packet transform as a mapping from Σ k 1 to Σ k ε yields (50)

Appendix B. Algebraic properties of the eigenprojectors

We consider a smooth eigenvalue h(t, z) of a matrix-valued Hamiltonian H(t, z), associated with a smooth eigenprojector Π(t, z) so that H = hΠ + h ⊥ Π ⊥ . We emphasize that, in this section, we just assume smoothness of the projector and make no gap assumption. Let us project the solution of the Hamiltonian system (1) to the eigenspace and consider the function wε (t) = Πψ ε (t). We have

and by symbolic calculus

where the order ε 2 remainder will be given a precise meaning in Lemma B. 

where the matrices Ω, K, and Θ have been introduced in (17), [START_REF] Hari | Nonlinear propagation of coherent states through avoided energy level crossing[END_REF], and [START_REF] Hari | Coherent states for systems of L2-supercritical nonlinear Schrödinger equations[END_REF]. Moreover, the matrix Ω is skew-symmetric and Θ self-adjoint.

Proof. We write

where the remainder R δ (t) depends on first order derivatives of χ δ P and H as well as second order derivatives of χ δ Π and H. Hence, R δ (t) = O(δ -2 ). Next, we write

, where ρ δ 2 (t) depends linearly on second derivatives of χ δ Π and h. By Lemma B.4, one part of the first order contributions can be combined according to

All this implies

, where the remainder is given by

We note that ρ δ 1 (t) and ρ δ 2 (t) are smooth symbols, depending linearly on derivatives of χ δ and thus are 0 on the support of χδ . The latter observation implies the first result. For the function w ε (t) we then have

, where the first part of the remainder r δ 3 (t) depends on third derivatives of h and χδ , while the second part r δ 1 (t) depends on first derivatives of Θ and χδ . Since δ ≫ √ ε, we have

Using (iε∂ t -H)ψ ε (t) = 0, we obtain the equation for w ε (t).

projector Π(t, z) a polynomial bound for the eigenvector V (t, z). Indeed, if [START_REF] Lubich | From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis[END_REF] holds for Π(t, z), then for all T > 0 and β ∈ N 2d+1 0 there exists a constant c β,T > 0 such that sup

Appendix D. The phase Λ(σ) and the function ζ(σ)

Lemma D.1. Let Λ and ζ be defined as

We have

In particular, we have

which yields that (46) is consistent with [START_REF] Robert | Propagation of coherent states in quantum mechanics and applications[END_REF].

Proof. We begin with the function ζ and we compute the Taylor expansion at the order 2 for (q(σ), p(σ)) = ζ(σ) -z ♭ at σ = 0. Let be h = h 1 , h 2 . We have :

Applying this formula, we obtain (omitting the argument (t ♭ , z ♭ ) in the functions h 1 , h 2 and their derivatives)

We deduce

and, for further use, the relation

We continue with the function Λ (defined in (56)) and we use Taylor expansion of the actions for general Hamiltonian h. In view of ( 9) and (60), we have (omitting the argument (t 0 , z 0 ) in the terms of the form ∂ α h(t 0 , z 0 ))

We first apply the formula with h = h 1 , t = t ♭ + σ, t = t ♭ and z = z ♭ , which gives (when the arguments of the functions are omitted, they are fixed to (t ♭ , z ♭ ))

We now use the same formula with

Note that the treatment of the term of order σ has to be performed carefully in the case of S 2 (t ♭ , t ♭ + σ, Φ t ♭ +σ,t ♭ 1 (z ♭ )). We obtain

As a consequence,

Combining with (62), we obtain

.

Appendix E. The operators T µ,α,β

We study here the operators T µ,α,β that are defined in [START_REF] Nenciu | On the adiabatic theorem of quantum mechanics[END_REF] for (µ, α, β) ∈ R 2d+1 . An explicit computation gives the following useful connection with the Fourier transform (63) FT µ,α,β = T µ+α•β,β,-α F.

The next proposition sums up the main information that we will use about these operators.

Proposition E.1. Let (µ, α, β) ∈ R 2d+1 .

(1) The operator T µ,α,β maps S(R d ) into itself if and only if µ = 0.

(2) Moreover, if µ = 0, T µ,α,β is a metaplectic transformation in the Hilbert space L 2 (R d ) multiplied by a complex number: .