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PROPAGATION OF WAVE PACKETS FOR SYSTEMS PRESENTING

CODIMENSION 1 CROSSINGS

CLOTILDE FERMANIAN-KAMMERER, CAROLINE LASSER, AND DIDIER ROBERT

Abstract. We analyze the propagation of coherent states through general systems of
pseudodifferential form associated with Hamiltonian presenting codimension one eigen-
value crossings. In particular, we calculate precisely the non adiabatic effects of the
crossing in terms of a transition operator.

1. Introduction

We consider the system of N equations of pseudodifferential form

(1) iε∂tψ
ε = Ĥ(t)ψε, ψε|t=t0 = ψε0

where ψε0 is a bounded family in L2(Rd,CN ), Ĥ(t) the semi-classical Weyl quantization
of a Hamiltonian H(t, x, ξ) which is a N × N matrix satisfying a growth condition of
subquadratic type that we explain below. We recall that if a ∈ C∞(R2d,CN,N ) with
adequate control on the growth of derivatives, the operator â is defined by

opwε (a)f(x) := âf(x) := (2πε)−d
∫
Rd
a

(
x+ y

2
, ξ

)
e
i
ε
ξ·(x−y)f(y)dy dξ, ∀f ∈ S(Rd,CN ).

We consider initial data that are wave packets, i.e. ψε0 = ~̂V0WPεz0ϕ where z0 = (q0, p0) ∈
R2d, ~V0 ∈ C∞0 (R2d,CN ) and ϕ ∈ S(Rd,R), we set

(2) WPεzϕ(x) = ε−d/4 e
i
ε
p·(x−q)ϕ

(
x−q√
ε

)
.

Our aim is to describe the structure of the solutions associated with and for systems
presenting codimension 1 crossings.

This question has already been addressed on special cases corresponding to physical
settings: Schrödinger type Hamiltonians in [12]:

(3) HS(x, ξ) =
|ξ|2

2
ICN + V (x), V ∈ C∞(Rd,CN,N ),

and models arising in solid state physics [33]:

(4) HA(x, ξ) = A(ξ) +W (x)IC2

Key words and phrases. Gaussian states, coherent states, wave packets, systems of Schrödinger equations,
eigenvalue crossing, codimension 1 crossing.
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where A is a matrix arising in a Bloch bands decomposition and V a scalar function.
We develop here a method which applies for general Hamiltonians H with subquadratic
growth situations and for codimension 1 crossings of eigenvalues which have multiplicity
larger than 1. In particular, we give a computation of the transfer operator which describe
the interactions due to the crossing, that is direct and transparent (see Corollary 2.9).

Our motivation is related with the development of numerical methods using Gaussians,
such as the Herman-Kluk and other Gaussian-based methods propagators as developed in
the chemical literature [15, 17, 18, 32, 8]. These approximations rely on a good under-
standing of the propagation of Gaussian states, and have been studied mathematically for
scalar systems [29, 28] with applications in numerics [21, 19], that makes this field very
active (see for examle [20] and references therein). Therefore theoretical results in this
direction should lead in improvement in the understanding of algorithmic realizations of
the propagator of systems. For example, we explain here that how to derive a Herman-
Kluk realization of the propagator for datas that are polarized along a mode of constant
multiplicity (see Corollary 2.5 below).

It turns aout that the propagator UεH(t, t0) associated with Ĥ is well defined according

to [26] provided that the map (t, z) 7→ H(t, z) is in C∞(R× R2d,CN×N ), valued in the set
of self-adjoint matrices and that it has subquadratic growth, i.e.

(5) ∀α ∈ N2d, |α| ≥ 2, ∃Cα > 0, sup
(t,z)∈R×R2d

‖∂αH(t, z)‖CN,N ≤ Cα.

These assumptions guarantee the existence of solutions to equation (1) in L2(Rd,CN ) and,
more generally, in the functional spaces

Σk
ε(Rd,CN ) = {f ∈ L2(Rd,CN ), ∀α, β ∈ Nd, |α|+ |β| ≤ k, xα(ε∂x)βf ∈ L2(Rd,CN )}

endowed with the norm
‖f‖Σkε = sup

|α|+|β|≤k
‖xα(ε∂x)βf‖L2 .

However, the analysis below could apply in more general settings as long as the classical
quantities are well-defined in finite time with some technical improvements that are not
discussed here.

Remark 1.1. Indeed, as symbols a ∈ C∞(R2d) with bounded derivatives define bounded
operators â (uniformly in ε) in Σk

ε , the propagators of symmetric bounded (or subquadratic)
symbols (may be time dependent) are also ε-uniformly-bounded in any Σk

ε . This can be
easily proved using the symbolic semi-classical calculus and observing that Σk

ε(Rd) is a

natural domain of the semi-classical harmonic oscillator and its powers
(
−ε24+ |x|2

)k/2
([26]).

Assuming that H(t, x, ξ) has a smooth eigenvalue h1(t, x, ξ), the eigenspace of which
admits a smooth eigenprojector Π1(t, x, ξ), the two following cases may happen:

(1) Gap situation: The eigenvalue h1(t, z) is separated from the remainder of the spec-
trum of H(t) by a gap larger than some fixed positive real number δ0.
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(2) Smooth crossing: The eigenvalue h1(t, z) cross another smooth eigenvalue h2(t, z)
which also has a smooth eigenprojector. We shall then assume that the set of
these two eigenvalues is separated from the remainder of the spectrum of the ma-
trix H(t, z) by a gap (uniformly in t and z).

The first case is very well understood and corresponds to adiabatic situations that have
been studied by several authors (see in particular [30, 22]). The second case is less studied;
some results on the subject focus on the evolution at leading order of quadratic quantities
of the wave function for data which are not necessarily wave-packets (see [16, 6] and the
references therein). The main results devoted to wave packets in this setting are [12, 33],
where the authors show on model problems from physics that one can give a rather explicit
description of the wave function itself, exhibiting transitions that occur at the crossing
between the two modes at order

√
ε. We give here a transparent description of these

transitions for general systems, through an approximation of ψε(t) for initial data which
are polarized along h1 with a wave packet structure. Our result (Theorem 2.8 below) shows

that if the initial data is a wave packet polarized along ~V1, an eigenvector corresponding
to the mode h1

(6) ψε0(x) = ~̂V0v
ε
0, vε0 =WPεz0ϕ0, (t0, z0) ∈ R2d+1, ϕ0 ∈ S(Rd),

and ~V0 ∈ C∞(R2d) is a function that satisfies in a neighborhood U of z0:

∀z ∈ U, H(t0, z)~V0(z) = h1(t0, z)~V0(z),

then the solution writes

ψε(t) = ~̂V1(t)WPεz1(t)(ϕ
0
1(t) +

√
εϕ1

1(t)) +
√
ε1t>t[

~̂V2(t)WPεz2(t)ϕ2(t) + o(
√
ε)

where

(1) the maps z1(t), z2(t) are classical trajectories associated respectively with the modes
h1 and h2 satisfying

z2(t[) = z1(t[),

(2) the time t[ is the first time where z1(t) meets the crossing set

(7) Υ = {(t, z) ∈ R2d+1, h1(t, z) = h2(t, z)}

(3) the profiles of the wave packets WPεz1(t)(ϕ
0
1(t) +

√
εϕ1

1(t)) and WPεz2(t)ϕ2(t) are

Schwartz functions ϕ0
1(t), ϕ1

1(t) and ϕ2(t) that solve ε-independent PDEs on [0, t]

and [t[, t] respectively, with the property

ϕ2(t[) = T [ϕ0
1(t[)

for some transfer operator T [ that we prove to be a metaplectic transform (which
implies that the structure of Gaussian states is preserved, see Corollary 2.9),

(4) the families ~V1(t, z) and ~V2(t, z) are smooth normalized eigenvectors for h1(t, z)
and h2(t, z) respectively, they are obtained via parallel transport and manifest the
polarization of the wave packet along a mode.



4 C. FERMANIAN KAMMERER, C. LASSER, AND D. ROBERT

We point out that, in the gap case, the solution at time t associated with a polarized data
remains polarized along the same mode up to terms of order O(ε), which is the standard
order of the adiabatic approximation, while for smooth crossings a perturbative term of
order O(

√
ε) polarized along the crossing mode has to be taken into account for an O(ε)

approximation.

Before giving a more precise statement of the result, note that the propagation of wave
packet has also been studied for nonlinear systems in [3, 13, 14], including situations with
avoided crossings [14], however, nonlinear systems with crossings in presence of codimen-
sion 1 crossing have not yet been studied and our result should extend in this nonlinear
setting with additional assumptions for treating the nonlinearity. Finally, this result opens
the way to the derivation of Herman-Kluk realizations of the propagators with the asso-
ciated algorithmic realizations, as in the adiabatic setting (see Corollary 2.5 below). We
postpone this result to further works.

2. Precise statement of the results

Before stating our main results, we recall basic facts about the scalar propagation of
wave packets and adiabatic results. That allows us to introduce notations and arguments
that we use all other this paper.

2.1. Scalar propagation and scalar classical quantities. The most interesting prop-
erty of the coherent states is the stability of their structure through evolution, which can
be described by means of classical quantities. Note that for all z ∈ R2d and k ∈ N, the
operator ϕ 7→ WPεzϕ is a unitary map in L2(Rd) which maps continuously Σ1

k into Σε
k with

a continuous inverse, other elementary properties of the wave-packet transform are listed
in Lemma A.1. We shall use the notation

(8) J =

(
0 IRd
−IRd 0

)
and, for smooth functions f, g ∈ C∞(R2d), that might be scalar-, vector- or matrix-valued,
we denote the Poisson bracket by

{f, g} := J∇f · ∇g =
d∑
j=1

(
∂ξjf∂xjg − ∂xjf∂ξjg

)
.

The Hamiltonian vector field of the eigenvalue h(t) is then defined by

∀f ∈ C∞(R2d), Xh(t)f = {h(t), f} = Jdh(t)f.

For (t0, z0) ∈ R2d+1 we consider the classical Hamiltonian trajectory z(t) = (q(t), p(t))
issued from z0 at time t0, and defined by the ordinary differential equation

ż(t) = J∂zh(t, z(t)) = Xh(t)(z(t)), z(t0) = z0.

The associated flow map is then denoted by Φt,t0
h (z0) and we have

(9) ∂tΦ
t,t0
h = J∂zh(t) ◦ Φt,t0

h , Φt0,t0
h = IR2d .
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We take a notation for the blocks of the Jacobian matrix of the flow map:

(10) F (t, t0, z0) =

(
A(t, t0, z0) B(t, t0, z0)
C(t, t0, z0) D(t, t0, z0)

)
:= ∂zΦ

t,t0
h (z0),

which satisfies the linearized flow equation

∂tF (t, t0, z0) = JHesszh(t, z(t))F (t, t0, z0), F (t0, t0, z0) = IR2d ,

and we associate with it the metaplectic transformation

M[F (t, t0, z0)] : ϕ0 7→ ϕ(t)

where ϕ solves the Schrödinger equation

i∂tϕ = opw1 (Hesszh(t, z(t))z · z)ϕ, ϕ(t0) = ϕ0.

We will also use the action integral

(11) S(t, t0, z0) =

∫ t

t0

(p(s) · q̇(s)− h(s, z(s))) ds.

Proposition 2.1. [[5]] Let h(t) be a smooth scalar Hamiltonian of subquadratic growth (5)
As ε↘ 0 we have for all ϕ0 ∈ S(Rd) and z0 ∈ R2d in the norm of Σk

ε , k ≥ 0,

Uεh(t, t0)WPεz0ϕ0 = e
i
ε
S(t,t0,z0)WPεz(t)ϕ

ε(t) +O(ε),

where the profile function ϕε(t) is given by

(12) ϕε(t) =M[F (t, t0, z0)]
(
1 +
√
ε b1(t, t0, z0)

)
ϕ0,

and the correction function b1(t, t0, z0) satisfies

(13) b1(t, t0, z0)ϕ0 =
∑
|α|=3

1

α!

1

i

∫ t

t0

∂αz h(s, z(s)) opw1 [(F (s, t0, z0)z)α]ϕ0 ds.

The special case of Gaussian states is of special interest. The Gaussian states are wave
packets with Gaussian profiles the variance of which is taken in the Siegel state S+(d) of
d× d complex-valued symmetric matrices with positive imaginary part,

S+(d) =
{

Γ ∈ Cd×d, Γ = Γτ , ImΓ > 0
}
.

With Γ ∈ S+(d) we associate the Gaussian profile

(14) gΓ := cΓ e
i
2

Γx·x.

where cΓ = π−d/4det1/4(ImΓ) is a normalization constant in L2(Rd), it is a non-zero com-
plex number whose argument is determined by continuity according to the work environ-
ment. By Proposition 2.1, the Gaussian states remain Gaussians through the evolution by
Uεh: for Γ0 ∈ S+(d), we have

M[F (t, t0, z0)]gΓ0 = gΓ(t,t0,z0)
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with Γ(t, t0, z0) ∈ S+(d), and the width and the normalization constant of the resulting
Gaussian function are determined by initial width Γ0 and the Jacobian F (t, t0, z0) according
to

Γ(t, t0, z0) = (C(t, t0, z0) +D(t, t0, z0)Γ0)(A(t, t0, z0) +B(t, t0, z0)Γ0)−1(15)

cΓ(t,t0,z0) = cΓ0 det−1/2(A(t, t0, z0) +B(t, t0, z0)Γ0),

where the branch of the square root in det−1/2 is determined by continuity in time.

2.2. The case of systems, parallel transport. For treating systems, one need to con-
sider vector-valued solutions and to take into account the vectorial aspects of the wave
packets. For this, we consider initial data at time t = t0 that are wave packets and focal-
ized along a mode, that is of the form (2.3). For this, we need to introduce the following
matrices

Ω(t, z) = Π(t, z){Π, H}(t, z)Π(t, z),(16)

K(t, z) = (ICN −Π(t, z)) (∂tΠ(t, z) + {h,Π}(t, z)) Π(t, z)(17)

that are smooth and satisfy algebraic properties detailed in Lemma B.1 below. The next
result introduce normalized eigenvectors that evolve inside a given mode by the so-called
parallel transport. This construction generalizes [3, Proposition 1.9 ], which was inspired
by the work of George Hagedorn, see [12, Proposition 3.1]).

Proposition 2.2. Assume that Π(t) is a smooth eigenprojector such that Π(t)H(t) =

H(t)Π(t) = h(t)Π(t). Let ~V0 ∈ C∞0 (R2d,CN ) be such that there exists z0 ∈ R2d and a
neighborhood Uz0 of z0 such that

∀z ∈ Uz0 , ~V0(z) = Π(t0, z)~V0(z).

Then, there exists a smooth normalized vector-valued function satisfying

∀z ∈ Φt,t0
h (U), ~V (t, t0, z) = Π(t, z)~V (t, t0, z)

such that for all t ∈ R and z ∈ R2d,

∂t~V (t, t0, z) + {h, ~V }(t, t0, z) = Ω(t, z)~V (t, t0, z) +K(t, z)~V (t, t0, z), ~V (t0, t0, z) = ~V0(z).

Note that Proposition 2.2 does not require any gap condition, and we will use it also in
the crossing situation, with smooth eigenvalues and eigenprojectors.

The parallel transport is enough to describe at leading order the propagation of wave-
packets focalized along gapped eigenvalues, that are eigenvalues h(t, z) of the matrix H(t)
that are uniformly separated from the remainder of the spectrum: there exists δ > 0 such
that for all (t, z) ∈ R× R2d,

(18) dist (h(t, z), σ(H(t, z)) \ {h(t, z)}) > δ.



7

Note that, this gap assumption implies the existence of a contour C in the complex plane,
such that its interior only contains the eigenvalue h(t, z) and no other eigenvalues of H(t, z).
Then, one can write the associated eigenprojector as

(19) Π(t, z) = − 1

2πi

∮
C
(H(t, z)− ζ)−1dζ,

which implies the smoothness of Π(t, z). Since the works of Kato [K1, K2], numerous
works have been devoted to this adiabatic situation (see for example the articles [22, 23, 24]
and [30]) and one can sum-up these results in the next statement

Theorem 2.3. [[30, 22, 3]] Assume the existence of an eigenvalue gap as in Assump-
tion (18) and consider initial data of the form

ψε0 = ~̂V0v
ε
0 +O(ε) in L2(Rd,CN ),

where ~V0 is a smooth eigenvector and vε0 ∈ L2(Rd,C). Then, for all T > 0, there exists
C > 0 such that ψε(t) = UεH(t, t0)ψε0 satisfies the estimate

sup
t∈[0,T ]

∥∥∥ ̂(ICN −Π(t))ψε(t)
∥∥∥
L2(Rd)

+

∥∥∥∥ψε(t)− ~̂V (t)vε(t)

∥∥∥∥
L2(Rd)

≤ Cε

where vε(t) = Uεh(t, t0)vε0. Besides, if there exists k ∈ N such that (ψε0)ε>0 is a bounded

family in Σk
ε , then the convergence above holds in Σk

ε .

Note that the operator Π̂(t) is no longer a projector. However, it coincides at order O(ε)
with the operators constructed in [22, 30], which are projectors. Besides, the reader will
find in [22, 30], various results about the adiabatic approximation, including expansions at
any order by means of superadiabatic projectors. The precise time evolution of coherent
state itself was studied in the adiabatic setting in [1, 22, 28]. Their result is obtained by
constructing an asymptotic quantum diagonalization, in the spirit of the construction of
superadiabatic projectors of [30]. However, the leading order approximation is enough for
our purpose.

It is also interesting to notice that Theorem 2.3 is enough to describe the dynamics of
an initial data of the form (2.3) focalized on a gapped eigenvalue by means of the scalar
classical quantities introduced in section 2.1 and by use of the parallel transport. This is
stated in the next Corollary; our aim is to give a similar description in the case of systems
presenting a codimension 1 crossing.

Corollary 2.4. In the situation of Theorem 2.3, for any k ∈ N, z0 ∈ R2d and ϕ ∈ S(Rd),
we have in Σk

ε(Rd,CN ),

UεH(t)
~̂V0WPεz0(ϕ) = e

i
ε
S(t,t0,z0) ~̂V (t, t0)WPε

Φ
t,t0
h (z0)

(ϕε(t)) +O(ε),

where the profile ϕε(t) is given by (12) and all the classical quantities are associated with
the function h(t).
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We close this section devoted to parallel transport to derive another consequence of the
adiabatic theorem in terms of numerical realizations of the propagator by a Herman-Kluk
approach. Indeed, the gaussian frame is at the root of the Herman-Kluk approximation
of a Schrödinger propagator as proved in [27, 29]. Let gεz = WPεz(giI) denotes a Gaussian
wave packet centered in z = (q, p) with variance

√
ε, the family of wave packets (gεz)z∈R2d

forms a continuous frame and provides the reconstruction formula

φε0(x) = (2πε)−d
∫
z∈R2d

〈gεz, φε0〉gεz(x)dz.

The results of [27, 29] about the Herman-Kluk approximation for scalar Schrödinger prop-
agators and Proposition 2.2 imply the convergence of a Herman-Kluk approximation for
the propagator of a system of Schrödinger equations, when the data is focalized on a gaped
eigenmode.

Corollary 2.5. In the situation of Theorem 2.3, in the norm of L2(Rd,CN )

UεH(t, t0)ψε0 = (2πε)−d
∫
R2d

〈gεz, ψ〉 ~A(t, t0, z)e
i
ε
S(t,t0,z)gε

Φ
t,t0
h (z)

dz +O(ε),

where the vector valued Herman–Kluk prefactor ~A(t, t0, z) is given by

~A(t, t0, z) = ~V (t, t0, z)a(t, t0, z)

with a(t, t0, z) = 2−d/2 det1/2 (A(t, t0, z) +D(t, t0, z) + i(C(t, t0, z)−B(t, t0, z))) .

The proof of Theorem 2.3 will be performed in a refined manner that takes into account
the size of the gap in Section 3. As it is well-known, it extends to the situation where a
subset of eigenvalues are isolated from the remainder of the spectrum (see Proposition 3.5
below). For this reason, in the next section, we reduce to the case of matrices admitting
two eigenvalues that differ outside a hypersurface Υ and we study the dynamics of wave
packets through this codimension 1 crossings, which is our main result.

2.3. Main result: propagation of wave packets through codimension 1 crossings.
We assume here that the Hamiltonan H writes

(20) H(t, z) = v(t, z)I +H0(t, z), v(t, z) =
1

N
trH(t, z),

where (t, z) 7→ v(t, z) ∈ R and (t, z) 7→ H0(t, z) are smooth functions of subquadratic
growth valued respectibely in R and in the set of N ×N trace-free matrices. We assume
that the crossing set Υ is a hypersurface. Such a situation is called a codimension 1
crossing (see Hagedorn’s classification [12] for example).Then if (t[, z[) ∈ Υ, there exists a
neighborhood Ω and a smooth function (t, z) 7→ f(t, z) defined in Ω such that f(t, z) = 0 is

a local equation of Υ in Ω. As a consequence, df 6= 0 and H0(t, z) = f(t, z)H̃0(t, z) for some

smooth map (t, z) 7→ H̃0(t, z) valued in the set of trace-free hermitian matrices. We shall

assume that the set of eigenvalues of H̃0 6= 0 consists in two distinct smooth eigenvalues
which do not cross on Ω and thus, it has smooth eigenprojectors, which are also those of
H(t, z); in other words, H̃0 is trace-free and invertible on Υ.
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To sum up, we make the following assumption.

Assumption 2.6. (1) The matrix H(t, z) has two distinct smooth eigenvalues which
cross on a hypersurface Υ of R2d+1

(2) The crossing is non-degenerate in the sense that for any (t[, z[) ∈ Υ there exists a

local equation f(t, z) = 0 of Υ in a neighborhood Ω of (t[, z[) such that we have (20)
and (22)for any (t, z) ∈ Ω. Besides, we assume

(21) ∂tf + {v, f} 6= 0,

Note that one can then modify f in Ω so that the functions

(22) hj(t, z) = v(t, z)− (−1)jf(t, z), j ∈ {1, 2}

are the two smooth eigenvalues of the matrix H(t, z), with smooth associated eigenprojec-
tors Π1(t, z) and Π2(t, z). We shall choose f in that manner throughout the paper.

Example 2.7. Take N = 2 and u ∈ C∞(R2d+1,R3) of subquadratic growth, and satisfying
|u|2 > δ0 > 0. Consider the Hamiltonian

H(t, z) = v(t, z)Id + f(t, z)

(
u1(t, z) u2(t, z) + iu3(t, z)

u2(t, z)− iu3(t, z) −u1(t, z)

)
.

The smooth eigenvalues of H, v+f |u| and v−f |u| cross on the set {f = 0} and H satisfies
Assumption 2.6 as soon as (21) holds.

Note that the condition (21) implies the transversality of the classical trajectories to
the crossing set Υ. We associate with each mode hj the classical quantities introduced
in section 2.1, before that we index by j. We consider an initial data at time t = t0 as

in which is a coherent state associated with the first mode h1 where (t0, z0) /∈ Υ, z 7→ ~V0(z)

is a smooth map compactly supported in a neighborhood of z0 and ~V0(z0) = 1.

We assume that the Hamiltonian trajectory z1(t, t0) = Φt,t0
1 (z0) reaches Υ at time t = t[

and point z = z[ where (21) holds. Therefore, f(t, z) = 0 is a local equation of Υ in a

neighborhood Ω of (t[, z[)and the hypothesis of Assumption 2.6 implies

d

dt
f(t, z1(t, t0)) 6= 0

close to (t[, z[) and guarantees that the trajectory z1(t, t0, z0) passes through Υ. A similar
behaviour holds for the trajectories Φt,t0(z) starting from z close enough to z0.

We associate with ~V0(t0, z) the time-dependent eigenvector (~V1(t, z))t≥t0 constructed as

in Proposition 2.2 for the mode h1 with initial data ~V0(t0) at time t0. We also consider

the time-dependent eigenvector (~V2(t, z))t≥t[ constructed for t > t] as in Proposition 2.2

for the mode h2 and with initial data at time t[ satisfying

(23) ~V2(t[, z) =
Π2(∂tΠ2 + {v,Π2})~V1

‖Π2(∂tΠ2 + {v,Π2})~V1‖CN
(t[, z)
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where ~V0 appears in the definition of the initial data (2.3). Note that the vector ~V2(t[, z)

is in the range of Π2(t[, z).

We introduce a family of transformations which will appear in the crossing process.
When (µ, α, β) ∈ R× R2d, we set

(24) Tµ,α,βϕ(y) =

(∫ +∞

−∞
eiµs

2
eis(β·y−α·Dy)ds

)
ϕ(y),

By the Baker-Campbell-Hausdorff formula, we have

eisβ·ye−isα·Dy = eisβ·y−isα·Dy+is2α·β/2

and we deduce

(25) Tµ,α,βϕ(y) =

∫ +∞

−∞
ei(µ−α·β/2)s2eisβ·yϕ(y − sα)ds

We prove in Proposition E.1 that this operator maps S(Rd) into itself if only if µ 6=
0. Moreover, for µ 6= 0, it is a metaplectic transformation of the Hilbert space L2(Rd),
multiplied by a complex number. In particular, for any Gaussian function gΓ, the function
Tµ,α,βgΓ is a Gaussian:

Tµ,α,β gΓ = cµ,α,β,Γ g
Γµ,α,β,Γ ,

where Γµ,α,β,Γ ∈ S+(d) and cµ,α,β,Γ ∈ C are given in Proposition E.1.

The result is then the following.

Theorem 2.8. Let Assumption 2.6 holds and assume that the initial data is as in (2.3).

Let T > 0 be such that the interval [t0, t
[] is strictly included in the interval [t0, t0 + T ].

Then, for all k ∈ N, there exists a constant CT,k > 0 such that

sup
t∈[0,T ]

∥∥∥∥ψε(t)− ~̂V 1(t)vε1(t)−
√
ε1t>t[

~̂V 2(t)vε2(t)

∥∥∥∥
Σkε

≤ CT,k εm,

with an exponent m ≥ 2/3, vε1(t) = Uεh1
(t, 0)vε0 and vε2(t) = Uεh2

(t, t[)vε2(t[) with

(26) vε2(t[) = γ[eiS
[/εWPε

z[
T [ϕ1(t[),

where ϕ1 is the profile of the coherent state vε1(t) given by Proposition 2.1,

(27) T [ = Tµ[,α[,β[

(28) µ[ =
1

2
(∂tf + {v, f})

(29) (α[, β[) := Jdf(t[, z[)

(30) γ[ = ‖ ({v,Π2}+ ∂tΠ2) ~V1(t[, z[)‖CN .
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Note that by Assumption 2.6, µ[ 6= 0, which guarantees that T [ϕ1(t[) is Schwartz class.

Besides if the Hamiltonian is not time-dependent, this also implies that (α[, β[) 6= (0, 0).

The coefficient γ[ describes the distortion of the projector Π1 during its evolution along the
flow h1. It is a quantitative information about the torsion of the eigenmodes. In particular,
we have

γ[ = ‖ ({v,Π2}+ ∂tΠ2) ~V1(t[, z[)‖CN = ‖ ({v,Π1}+ ∂tΠ1) ~V1(t[, z[)‖CN .
In particular, if the matrix H is diagonal (or diagonalizes in a fixed orthonormal basis),

then γ[ = 0: the equations are decoupled (or can be decoupled), one can then apply the
result for two independent equation with a scalar Hamiltonian and, of course, there is no
interaction between the modes.

The error estimate stems from the method of the proof which is done in two steps with
two types of arguments applying far from the crossing step for the first one, and in a
boundary layer of Υ for the other one. The size of the boundary layer is taken of size δ > 0
and we have to balance two kinds of estimates: an error of size O(εδ−1) which comes from
the adiabatic propagation of wave packets outside the boundary layer, and an error of size
O(δ2 +ε) generated by the passage through the boundary. The choice of δ = ε1/3 optimizes
the error.

The result of Theorem 2.8 can be specified to Gaussian states.

Corollary 2.9. 1- If vε0 =WPεz0(gΓ0) is a Gaussian state then

vε2(t[) = c[eiS
[/εWPε

z[

(
eiΓ

[y·y
)

with

c[ = γ[

√
2π

iµ[
, Γ[ = Γ1(t[, t0, z0)− (β[ − Γ1(t[, t0, z0)α[)⊗ (β[ − Γ1(t[, t0, z0)α[)

2µ[ − α[ · β[ + α[ · Γ1(t[, t0, z0)α[

and Γ1(t[, t0, z0) is the image of Γ0 by the flow map associated with h1(t, z) by (15) and (10).
2- Let A ∈ C∞(R2d) be a polynomial function, then opw1 (A)gΓ0 is the product of a polynomial
by a Gaussian and choosing vε0 =WPεz0(opw1 (A)gΓ0), we have (with the notations of 1-)

vε2(t[) = c[eiS
[/εWPε

z[

(
opw1 (A[)gΓ[

)
with A[ = A ◦ Φα[,β[(−(4µ[)−1) where Φα[,β[ is given by

Φα[,β[(t) =

(
I− 2tβ[ ⊗ α[ 2tα[ ⊗ α[,
−2tβ[ ⊗ β[ I + 2tα[ ⊗ β[

)
.(31)

As concluding remarks of this introduction, we want to emphasize that our results are
in accordance with those of [12, 33].

(1) In the example (3), denoting by EA and EB the two eigenvalues of the potential
Vq(x) as in [12], one has

α[S = 0, β[S = ∇(EA − EB)(x), µ[S(x, ξ) = ξ · ∇(EA − EB)(x).
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These coefficients appear in the equation (5.3) of [12]. The latter contribution
is devoted to a special type of wave packets which have a profile consisting of a
Gaussian multiplied by a Hermite polynomial like in part 2 of Corollary 2.9.

(2) For the example (4), we obtain

α[A = ∇(E+ − E−)(ξ), β[A = 0, µ[A(x, ξ) = −1

2
∇W (x) · ∇(E+ − E−)(ξ)

where E± are the eigenvalues of A(ξ) as in equation (3.41) of [33] and. The result
of Theorem 3.20 (via Definition 3.18) is very a special case of ours.

It is also interesting to notice that in these two examples one of the coefficients α[ or β[

is 0, which is not necessarily the case in our setting since position and momentum variables
can be mixed in the coefficient of the matrix part of the Hamiltonian, as long as the symbol
satisfies the required growth condition. Actually, it is the case in several physical systems,
as Dirac equations with electromagnetic potential (V,A) for example (with the function
ξ − A(t, x) appearing in the coefficients of the matrix), or for the equations describing
the propagation of acoustical waves in elastic media (the Hamiltonian then is of the form
ρ(x)Id− Γ(x, ξ) where ρ > 0 is the density and Γ the elastic tensor).

Finally, we want to emphasize that the method of proof we propose here allows to avoid
lots of tedious computations which appears in [12] pages 65 to 72 and are also present
in [33] via the reference [46] to which the authors refer therein.

2.4. Organization of the paper. The proof of Theorem 2.8 is made on two steps: an
analysis outside the crossing region in Section 3 and an analysis in the crossing region
in Section 4, that allows to conclude the the proof in Section 4.3, together with the one
of Corollary 2.9. Finally, we gather in four Appendices various results about wave pack-
ets, algebraic properties of the projectors and parallel transport, analysis of the transfer
operators Tµ,α,β and technical computations.

3. Adiabatic decoupling outside the crossing region

In this section, we consider a family of solutions to equation (1) in the case where the
Hamiltionian H(t, z) satisfies Assumption 2.6 and with an initial data which is a coherent
state as in (2.3). We focus here on regions where the classical trajectories associated with
the coherent state do not touch the crossing set but are close enough. We prove the next
result.

Proposition 3.1. Let k ∈ N, δ(ε) be such that
√
ε� δ ≤ 1. Let f(t, z) = 0 be an equation

of Υ in an open set Ω ⊂ R× Rd. Assume that for j ∈ {1, 2},
uεj =WP εz̃j (ϕ̃j)

where ϕ̃1, ϕ̃2 ∈ S(Rd), z̃1, z̃2 ∈ Rd are such that there exist s1, s2 ∈ R, c, C > 0 such that

for all j ∈ {1, 2} and t ∈ [s1, s2], zj(t) := Φt,s1
j (z̃j) ∈ Ω with |f(zj(t))| > cδ and∥∥∥∥ψε(s1)− ~̂V1(s1)uε1 − ~̂V2(s1)uε2

∥∥∥∥
Σkε

≤ Cε.
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Then, for all k ∈ N, one has

sup
t∈[s1,s2]

∥∥∥∥Π̂jψ
ε(t)− ~̂Vj(t)Uεhj (t, s1)uεj

∥∥∥∥
Σkε

≤ Ck
ε

δ
,

where the constant Ck does not depend on δ and ε.

For fixed δ, this Proposition implies Theorem 2.8 for t ∈ [0, t[[. We shall choose later

δ = ε5/12. We shall also use this Lemma for t > t[ + δ with some initial data in t = t[ + δ.

Proof. Because of the linearity of the equation, it is enough to assume that the contribution
of ψε(s1) on one of the modes is negligible at the initial time s1. The roles of the two modes
been symmetric, we can choose equivalently one or the other one. For this reason, doing
the proof with vε1(s2) = 0 is enough for proving the Proposition, and it is what we assume
now. We set

wε1(t) = Π̂1ψ
ε(t)− ~̂V1(t)vε1(t), wε2(t) = Π̂2ψ

ε(t).

We introduce the matrices

(32) Bj(t) = −2∂tΠj(t)− {hj(t),Πj(t)}+ {Πj(t), H(t)},

that satisfy Lemma B.1 after indexation of the quantities therein by j. We use the next
lemma that gives a system satisfied by wε1 and wε2.

Lemma 3.2. The family wε = (wε1, w
ε
2) satisfies wε(0) = 0 and

iε∂tw
ε
1 = ĥ1w

ε
1 +

ε

2i
B̂1Π1w

ε
1 +

ε

2i
B̂1Π2w

ε
2 +O(ε2),

iε∂tw
ε
2 = ĥ2w

ε
2 +

ε

2i
B̂2Π2w

ε
2 +

ε

2i
B̂2Π1(wε1 + ~̂V1v

ε
1) +O(ε2),

where the O(ε2) holds in Σε
k(Rd).

We postpone the proof of this lemma in a next subsection and set

f ε1 = −1

2
B̂1Π1w

ε
1 −

1

2
B̂1Π2w

ε
2,

f ε2 = −1

2
B̂2Π2w

ε
2 −

1

2
B̂2Π1w

ε
1.

Therefore, we have for t, s ∈ [s1, s2], and in Σk
ε(Rd){

wε1(t) = wε1(s) +
∫ t
s U

ε
h1

(t, σ)f ε1 (σ)dσ +O(ε),

wε2(t) = wε2(s) +
∫ t
s U

ε
h2

(t, σ)f ε2 (σ)dσ − 1
2

∫ t
s U

ε
h2

(t, σ)B̂2Π1
~̂V1(σ)vε1(σ)dσ +O(ε).

At this stage of the proof, we take advantage of the special form of the matrix Π1B2Π1

given by (55), i.e.

Π1B2Π1 = (h1 − h2)Π1{Π1,Π1}Π1
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to write in L(Σk
ε(Rd)),∫ t

s
Uεh2

(t, σ)Π̂1B2Π1
~̂V1(σ)Uεh1

(σ, 0)vε0dσ

= iε

∫ t

s

d

dσ

(
Uεh2

(t, σ)opε

(
Π1{Π1,Π1}Π1

~V1(σ)
)
Uεh1

(σ, 0)
)
vε0dσ +O(ε) = O(ε).

We deduce that for s, t ∈ [s1, s2], there exists a constant C > 0 such that

(33)

∥∥∥∥∫ t

s
Uεh2

(t, σ)Π̂1B2Π1
~̂V1(σ)Uεh1

(σ, 0)vε0dσ

∥∥∥∥
Σkε

≤ Cε.

Therefore, we are left with the equations
(34){

wε1(t) = wε1(s) +
∫ t
s U

ε
h1

(t, σ)f ε1 (σ)dσ +O(ε),

wε2(t) = wε2(s) +
∫ t
s U

ε
h2

(t, σ)f ε2 (σ)dσ − 1
2

∫ t
s U

ε
h2

(t, σ)Π̂2B2Π1
~̂V1(σ)vε1(σ)dσ +O(ε).

Note that for the moment, we have only used the smoothness of the eigenvalues and the
eigenprojectors, and not the non-crossing assumption. However, for proving that the source

term

∫ t

s
Uεh2

(t, σ)Π̂2B2Π1
~̂V1(σ)vε1(σ)dσ is small enough, we need the gap assumption. We

set wε(t) = (wε1(t), wε2(t)) and we prove the next Lemma.

Lemma 3.3. With the assumptions of Proposition 3.1, τ ∈ R and k ∈ N, there exist
constants C0, C1 > 0 such that for all t ∈ [tin, tin + τ ] ⊂ [s1, s2],

(35) ‖wε(t)‖Σkε ≤ ‖w
ε(tin)‖Σkε + C0τ sup

t∈[tin,tin+τ ]
‖wε(t)‖Σkε + C1εδ

−1.

Then the proof uses a bootstrap argument. We choose some time step τ . Therefore,
choosing τ such that C0τ <

1
2 and tin = s1, we get

sup
t∈[s1,s1+τ ]

‖wε(t)‖Σkε (Rd) ≤ 2C1εδ
−1 := η(ε).

As a consequence, we can iterate the argument. We obtain

∀t ∈ [s1 + τ, s1 + 2τ ], ‖wε(t)‖Σkε (Rd) ≤ η(ε) + C0τ sup
t∈[s1+τ,s1+2τ ]

‖wε(t)‖Σkε (Rd) +
1

2
η(ε),

whence sup
t∈[s1+τ,s1+2τ ]

‖wε(t)‖Σkε (Rd) ≤
3

2
η(ε). Iterating again the argument, until the interval

[s1, s2] is covered, we obtain that there exists a constant M > 0 such that

sup
t∈[s1,ts2]

‖wε(t)‖Σkε (Rd ≤Mη(ε).

We have got the estimate of Proposition 3.1 and it only remains to prove Lemma 3.2 and
Lemma 3.3. �
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3.1. Proof of Lemma 3.2.

Proof. By the symbolic calculus for systems we have:

Π̂1Ĥ = ĥ1Π̂1 +
ε

2i
opwε ({Π1, H} − {h1,Π1}) +O(ε2).

Therefore, we have in Σk
ε(Rd)

iε∂tw
ε
1 = iεΠ̂1∂tψ

ε + iε∂̂tΠ1ψ
ε − iε~̂V1∂tv

ε
1 − iε∂t ~̂V1v

ε
1

= (ĥ1Π̂1ψ
ε +

ε

2i
B̂1ψ

ε)− ~̂V 1ĥ1v
ε
1 − iε∂t ~̂V 1v

ε
1 +O(ε2)

= ĥ(wε1 + ~̂V1v
ε
1) +

ε

2i
B̂1(wε1 + wε2 + ~̂V 1v

ε
1)− ~̂V 1ĥv

ε
1 − iε∂t ~̂V 1v

ε
1 +O(ε2)

= ĥ1w
ε
1 +

ε

2i
B̂1(wε1 + wε2) +

ε

2i
B̂1
~̂V 1v

ε
1 −

ε

i
̂{~V1, h1}vε1 − iε∂t ~̂V 1v

ε
1 +O(ε2)

= ĥ1w
ε
1 +

ε

2i
B̂1Π̂1w

ε
1 +

ε

2i
B̂1

̂(I−Π1)wε2 +
ε

i

(
1

2
B̂1Π1V̂1 + ∂t ~̂V 1 − ̂{~V1, h1}

)
vε1 +O(ε2)

We observe that by (2) of Lemma B.1 and Proposition 2.2 (with Ω1(t) = −1
2Π1(t)B1(t)Π1(t)),

the vector ~V1(t) is chosen in order to have

∂t ~̂V 1 +
̂{h1, ~V1} = −1

2
B̂1Π1V̂1 = −1

2
Π̂1B1Π1V̂1 −

1

2
̂(I−Π1)B1Π1V̂1.

Remark 3.4. At that point, it is important to notice that we could made another choice.

An alternative would have been to choose ~V1(t) satisfying

∂t ~̂V 1 +
̂{h1, ~V1} = −1

2
̂(I−Π1)B1Π1V̂1

and iε∂vε1(t) = ĥΩ1v
ε
1(t) with hΩ1 = h1 + ε

2iΠ1B1Π1 (which is self-adjoint according to
Lemma B.1).

Therefore, we are left with

iε∂tw
ε
1 = ĥ1w

ε
1 +

ε

2i
B̂1Π̂1w

ε
1 +

ε

2i
B̂1Π̂2w

ε
2 +O(ε2)

and a similar calculus holds for wε2(t). �

3.2. Proof of Lemma 3.3.

Proof. Let k ∈ N. We work in Σk
ε(Rd,CN ) on the term

Aε :=

∫ t

s
Uεh2

(t, σ)Π̂2B2Π1
~̂V1(σ)vε1(σ)dσ.(36)

We recall that δ �
√
ε. We are going to use that the matrix (H − h1Π2) is invertible

on IΩ∩{f≥δ}Ran Π2 with an inverse that we denote by of (H − h1Π2)−1|Ran Π2 which has a

norm of size δ−1. Besides, by assumption, there exists c > 0 such that f(t, z1(t)) > c δ for
t ∈ [s1, s2]. The family vε1 being a wave packet, we can restrict its analysis in close to the
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points z1(t) for t ∈ [s1, s2] (see Remark A.2, (53)). On this compact, there exists M > 0
such that |f(t, z)− f(t, z1(t))| < M |z − z1(t)|, whence

|f(t, z)| > cδ −MR
√
ε if |z − z1(t)| < R

√
ε.

In view of these considerations, we introduce a cut-off function χ ∈ C∞0 (R) so that 0 ≤ χ ≤ 1
and χ = 1 close to 0 and we set

(37) vε,R1 (t) = k̂εR(t)vε1(t), kεR(z, t) = χ

(
z − z1(t)

R
√
ε

)
.

Then, by (53), we have in Σk
ε(Rd,CN ) and for t ∈ [tin, tin + τ ],

(38) vε1(t) = vε,R1 (t) +O(ε) +O(R−N )

and vε,R1 (t) is compactly supported in |z − z1(t)| ≤ R
√
ε. Using δ �

√
ε, we can choose R

such that MR
√
ε = c

2δ and we obtain that the matrix (H − h1Π2)−1 is invertible with a

norm of size δ−1 on the support of Π2k
R
ε (t) for all t ∈ [tin, tin + τ ]. Therefore, we write

Aε =

∫ t

s
Uεh2

(t, σ)opε(Π2B2Π1
~V1)(σ)vε,R1 (σ)dσ +O(ε) +O(R−N )

=

∫ t

s
Uεh2

(t, σ)opε(kε,R(σ)Π2B2Π1
~V1(σ))vε1(σ)dσ +O(

√
εR−1) +O(ε) +O(R−N ).

We then set

Q(σ) = Uεh2
(t, σ)opε((H − h1Π2)−1|Ran Π2kε,R(σ)Π2B2Π1) ~̂V1(σ)Uεh1

(σ, 0)

and differentiating

d

dσ
Q(σ) =

i

ε
Uεh2

(t, σ)Ĝ(σ)Uεh1
(σ, 0) +O(1) +O(R−1ε−1/2)

in Σk
ε(Rd,CN ), where (using the the equation satisfied by ~V1 and differentiating kRε ), we

have

Ĝ = ĥ2 opε

(
(H − h1Π2)−1|Ran Π2kε,R(σ)Π2B2Π1

~V1(σ)
)

−opε
(
(H − h1Π2)−1|Ran Π2kε,R(σ)Π2B2Π1V1(σ)

)
ĥ1 +O(ε)

= −opε

(
kε,R(σ)(H − h1Π2)−1|Ran Π2(h1 − h2)Π2B2Π1

~V1(σ)
)

+O(ε) +O(R−1√ε)

= −opε

(
kε,R(σ)Π2B2Π1

~V1(σ)
)

+O(ε) +O(R−1√ε),

where we have used the identity

(39) (H − h1Π2)−1(h1 − h2)Π2 = Π2.
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Finally, we obtain in Σk
ε(Rd),

Aε =
ε

2

∫ t

s

d

dσ
Q(σ) vε0 dσ +O(ε) +O(R−1√ε) +O(ε) +O(R−N )(40)

=
ε

2
(Q(t)−Q(s)) vε0 dσ +O(εδ−1) = O(εδ−1)

since R−1√ε = 2
cεδ
−1 and by choosing N large enough so that R−N = O(εδ−1) �

3.3. Remarks on systems with gapped eigenvalues. Note that the proof of Propo-
sition 3.1 can be adapted to prove Theorem 2.3. Besides, this result extends to a more
general setting where two blocks of eigenvalues of H are separated than a gap and where
h is no longer scalar and has to be replaced by a matrix H[ with

H = ΠH[H + (I−Π)H⊥(I−Π).

One can then prove the analogue to Theorem 2.3.

Proposition 3.5. Assume Π̂ψε0 = ψε0 +O(ε) in Σk
ε(Rd). Then

sup
t∈[0,T ]

∥∥∥ ̂(I−Π)ψε(t)
∥∥∥

Σkε (Rd)
+ sup
t∈[0,T ]

∥∥∥Π̂ψε(t)− φε(t)
∥∥∥

Σkε (Rd)
≤ Cε,

where φε solves

iε∂tφ
ε = Ĥ[φε, φε(0) = ψε0.

The proof of this proposition follows the lines of the proof of Theorem 2.3. However,
some new difficulties arise because H[ is no longer scalar and, thus, one cannot use some
commutation relations that we used above in the algebraic Lemma. Setting

B[ = −2∂tΠ− {H[,Π}+ {Π, H} and C[ = 2∂tΠ− {Π, H}+ {H⊥,Π}
one then uses the following properties which are enough to run the proof.

Lemma 3.6. (1) The matrix ΠB[Π is skew symmetric.
(2) There exists Q = (I−Π)QΠ such that

(I−Π)CΠ = [H,Q] = H⊥Q−QH[

and
ΠCΠ = H⊥(Π{Π,Π}Π)− (Π{Π,Π}Π)H[

Proof. (1) One argue as in the proof of Lemma B.1 by using the relation

(Π{H⊥,Π}Π)∗ = −Π{Π, H⊥}Π = −Π{H⊥,Π}
which comes from the fact thet Π{H⊥,Π} = {Π, H⊥,Π}. This latter relation can be proved
by use of the property

(41) {A,BC} − {AB,C} = {A,B}C −A{B,C}.
Indeed, taking A = C = Π and B = H⊥, one gets

(42) 0 = {Π, H⊥}Π−Π{H⊥,Π}
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whence ΠCΠ = −Π{Π, H[}Π.
(2) Finding Q is done by use of the integral relation (19). We choose

Q = − 1

2iπ

∫
C
(H − ζ)−1(I−Π)CΠ(H − ζ)−1dζ

and observe that

[H,Q] = − 1

2iπ

∫
C
(H(H − ζ)−1(I−Π)CΠ(H − ζ)−1 − (H − ζ)−1(I−Π)CΠ(H − ζ)−1H)dζ

= − 1

2iπ

∫
C
((I−Π)CΠ(H − ζ)−1 − (H − ζ)−1(I−Π)CΠ)dζ

= −[(I−Π)CΠ,Π] = (I−Π)CΠ.

Besides, and, using again the brackets relation (56) with A = B = Π and C = H[, we
obtain

{Π,ΠH[} − {Π, H[} = {Π,Π}H[ −Π{Π, H[}
whence

Π{Π, H[}Π = Π{Π,Π}H[.

We deduce, using again (42),

ΠCΠ = −Π{Π,Π}H[ = H⊥(Π{Π,Π}Π)− (Π{Π,Π}Π)H[.

�

4. Analysis in the crossing region

4.1. A priori estimate in the crossing region. The analysis performed before gives
that if

√
ε� δ ≤ 1 and k ∈ N, there exists a constant Ck > 0 such that

sup
t∈[t0,t[−δ]

‖ψε(t)− ~̂V1(t)vε(t)‖Σkε ≤ Ck
ε

δ
.

Therefore, using (34), we deduce that there exists C ′k > 0 such that

(43) sup
t∈[t0,t[+δ]

‖ψε(t)− ~̂V1(t)vε(t)‖Σkε ≤ C
′
k

(
δ +

ε

δ

)
.

In the next section, we improve this estimate to go beyond this δ-approximation.

4.2. Towards a more precise analysis. We now want to derive a more precise estimate
on ψε(t). We prove the following result.

Proposition 4.1. Assume
√
ε � δ ≤ 1. Then, for all k ∈ N, there exists a constant

Ck > 0 such that∥∥∥∥ψε(t[ + δ)− ̂~V1(t[ + δ)vε1(t[ + δ)−
√
ε

̂~V2(t[ + δ)vε2(t[ + δ)

∥∥∥∥
Σkε

≤ Ck(ε+ δ2 + εδ−1),

where vε1(t) and vε2(t) are as in Theorem 2.8.
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Here again, for proving the proposition, we follow the arguments of the proof of Propo-
sition 3.1 and, with the same notations, we write

ψε(t) = ~̂V1(t)vε1(t) + wε1(t) + wε2(t).

By equations (34), (33), and in view of the a priori estimate (43) that we have obtained in
the preceding subsection, we have

wε1(t[ + δ) = O(δ−1ε) +O(ε) +O(δ2),

wε2(t[ + δ) = O(δ−1ε) +O(ε) + +O(δ2)− i

2

∫ t[+δ

t[−δ
Uεh2

(t[ + δ, σ)
̂

Π2B2Π1
~V1(σ)vε1(σ)dσ

= −1

2
eiS

[/ε Uεh2
(t[ + δ, t[)

∫ t[+δ

t[−δ
Uεh2

(t[, σ)
̂

Π2B2Π1
~V1(σ)Uεh1

(σ, t[)WPz[ϕ1(t[)dσ

+O(δ−1ε) +O(ε) +O(δ2)

where we have used

vε1(t[) = eiS
[/εWPz[ϕ1(t[) +O(

√
ε)

and O(δ
√
ε) = O(δ2) + O(ε). We recall that z[ = Φt[,t0

h1
(z0), S[ = S1(t[, t0, z0) and ϕ1(t[)

is associated with ϕ0 according to Proposition 2.1. We set

Aε = −1

2
eiS

[/ε Uεh2
(t[ + δ, t[)

∫ t[+δ

t[−δ
Uεh2

(t[, σ)
̂

Π2B2Π1
~V1(σ)Uεh1

(σ, t[)WPz[ϕ1(t[)dσ

and we focus in determining the leading order contribution of Aε.

4.2.1. Egorov semi-classical Theorem. We use Egorov semiclassical theorem (Theorem 12
in [5]): that is, in Σk

ε ,

Uεh2
(t[, σ)

̂
Π2B2Π1

~V1(σ) = opw(Π2B2Π1
~V1(σ) ◦ Φσ,t[

2 )Uεh2
(t[, σ) +O(ε),

Using that Φσ,t[

j = IR2d +O(|σ − t[|), we obtain

Aε =− 1

2
eiS

[/ε Uεh2
(t[ + δ, t[)

̂
Π2B2Π1

~V1(t[)

∫ t[+δ

t[−δ
Uεh2

(t[, σ)Uεh1
(σ, t[)WPε

z[
ϕ1(t[)dσ(44)

+O(ε+ δ2 + δ−1ε)

By the definition of ~V2(t[, z), we have

−1

2
Π2B2Π1

~V1(t[, z) = γ(t[, z)~V2(t[, z), γ(t[, z) =
1

2
‖Π2B2Π1

~V1(t[, z)‖CN .

Therefore
(45)

Aε = eiS
[/ε Uεh2

(t[+ δ, t[)γ̂ ~V2(t[)

∫ t[+δ

t[−δ
Uεh2

(t[, σ)Uεh1
(σ, t[)WPε

z[
ϕ1(t[)dσ+O(ε+ δ2 + δ−1ε)
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4.2.2. Wave packet formulation of propagators. Now applying successively Proposition 2.1
to the evolutions Uεh1

and Uεh2
, with error term O(

√
ε), we get after a change of variables

Aε = eiS
[/ε Uεh2

(t[ + δ, t[)α̂~V2(t[)

(46)

×
∫ +δ

−δ
e
i
ε

(
S1(t[+σ,t[,z[)+S2(t[,t[+σ,Φt

[+σ,t[

1 (z[))

)
WPεζ(σ)ϕ1(t[)dσ +O(ε+ δ2 + δ−1ε)

where

ζ(σ) = Φt[,t[+σ
2

(
Φt[+σ,t[

1 (z[)
)
.

Since ζ(0) = z[, we set

(47) Φt[,t[+σ
2

(
Φt[+σ,t[

1 (z[)
)

= ζ(σ) = z[ + (q(σ), p(σ)) = z[ +
√
ε(qε(σ), pε(σ)),

with (qε(σ), pε(σ)) = ε−1/2(q(σ), p(σ)), and we write by using (51),

WPεζ(σ) = e−
i
ε
p[·q(σ)WPε

z[
Λ−1
ε WPε(q(σ),p(σ)),

whence

WPεζ(σ)ϕ1(t[, ·) = e−
i
ε
p[·q(σ)WPε

z[
(ei(y−qε(σ))·pε(σ)ϕ1(t[, y − qε(σ)).

We are left with

Aε = eiS
[/ε Uεh2

(t[ + δ, t[)γ̂ ~V2(t[)WPε
z[
T εϕ1(t[) +O(ε+ δ2 + δ−1ε)

where the operator T ε is defined on functions ϕ ∈ S(Rd) by

T εϕ(y) =

∫ +δ

−δ
e
i
ε
Λ(σ)ei(y−qε(σ)))·pε(σ)ϕ(y − qε(σ))dσ

with

(48) Λ(σ) = S1(t[ + σ, t[, z[) + S2(t[, t[ + σ,Φt[+σ,t[

1 (z[))− q(σ) · p[.

4.2.3. The transfer operator. Proposition 4.1 then comes from the analysis of the opera-
tor T ε when ε goes to 0.

Lemma 4.2. We have

T ε =
√
εT [ +O(ε+ δ2),(49)

where T [ = Tµ[,α[,β[ with λ[ given by (28) and (α[, β[) by (29)

Proof. The proof relies on the analysis close to σ = 0 of the phasis Λ(σ) and of the
function ζ(σ) = (q(σ), p(σ)), as stated in Lemma D.1 in Appendix D. Then, to prove the
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estimate (49) we use that if ϕ ∈ S(Rd), the map z 7→ WP1
zϕ is locally Lipschitz from R2d

in S(Rd). Using ζ(0) = 0 and Λ(0) = Λ̇(0) = 0, we obtain

T εϕ(y) =
√
ε

∫ + δ√
ε

− δ√
ε

ei(
Λ̈(0)

2
−q̇(0)·ṗ(0))s2eisy·ṗ(0)ϕ(y − sq̇(0))ds+Rε,δ.

We set

(50) µ[ =
1

2

(
Λ̈(0)− q̇(0) · ṗ(0)

)
, α[ = q̇(0), β[ = ṗ(0), L = β[ · y − α[ ·Dy

and write

ei(
Λ̈(0)

2
−q̇(0)·ṗ(0))s2eisy·ṗ(0)ϕ(y − sq̇(0)) = eiµ

[s2+isLϕ(y).

With these notations the remainder Rε,δ are sum of terms of the form

Θk(y) = (
√
ε)k+1

∫ + δ√
ε

− δ√
ε

eiµ
[s2+isLskθk(y, s)ds

where k ∈ {1, 2, 3} and θk(y, s) are smooth bounded functions with bounded derivatives.
For estimating semi-norms of the functions y 7→ Θk(y), we use integration by parts. Indeed,

Θk(y) =

[
(
√
ε)k+1

2iµ[
eiµ

[s2+isLsk−1θk(y, s)

]+ δ√
ε

− δ√
ε

−(
√
ε)k+1

2iµ[

∫ + δ√
ε

− δ√
ε

eiµ
[s2 d

ds

(
eisLsk−1θk(y, s)

)
ds.

Since eiLs is a bounded operator in Σk
ε , we obtain

Rε,δ = O(ε) +O(δ2) in Σk
ε ,

which gives (28) and (29) in view of (59) and (61). �

4.3. Proof of Theorem 2.8 and Corollary 2.9. Theorem 2.8 comes from Proposi-
tions 3.1 and 4.1 with the adequate choice of δ = ε1/3. Corollary 2.9 comes from Theo-
rem 2.8 and Point (3) of Proposition E.1.

Appendix A. The wave packet transform

We discuss here useful properties of the wave-packet transform. We define the Weyl
translation operator T ε

T̂ ε(z) = e
i
ε
(p·x̂−q·ξ̂), z = (q, p) ∈ R2d,

the semi-classical scaling operator Λε

Λεϕ(x) = ε−d/4ϕ
(
x√
ε

)
, ϕ ∈ S(Rd),

and we denote by aε,z ∈ C∞(R2d) the function aε,z(w) = a(
√
εw + z), w ∈ R2d.
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Lemma A.1. The wave packet transform satisfies for all points z, z′ ∈ R2d and all smooth
functions a ∈ C∞(R2d)

WPεz = e−
i

2ε
p·q T̂ ε(z) Λε,

WPεz+z′ = e−
i
ε
p·q′WPεz Λ−1

ε WPεz′ ,(51)

opwε (a)WPεz =WPεz opw1 (aε,z),(52)

Remark A.2. The property (52) induces a strong localisation property of wave packets. Let
χ ∈ C∞0 (Rd) such that χ = 1 close 0 and 0 ≤ χ ≤ 1 and define for R > 0, χR(y) = χ(R−1y).
Then, for ϕ ∈ S(Rd), N ∈ N, k ∈ N, and in Σk

ε ,

WPε0(ϕ) =WPε0(χ̂Rϕ) +WPε0( ̂(1− χRϕ) =WPε0(χ̂Rϕ) +O(R−N )

= χ̂R
√
εWPε0(φ) +O(R−N ).(53)

Proof. We consider ϕ ∈ S(Rd). Then T̂ ε(z)ϕ is the solution at time t = 1 of the initial
value problem

iε∂tψ = (q · ξ̂ − p · x̂)ψ, ψ(0) = ϕ.

The explicit form of this solution

ψ(t, x) = e−
i

2ε
t2q·p e

i
ε
tp·xϕ(x− tq)

implies for the action of the Weyl translation that

T̂ ε(z)ϕ(x) = e−
i

2ε
q·p e

i
ε
p·xϕ(x− q).

This yields

e−
i

2ε
p·q T̂ ε(z) Λεϕ(x) = ε−d/4 e−

i
ε
p·q e

i
ε
p·xϕ(x−q√

ε
) =WPεzϕ(x).

For the commutation property we compute

e−
i
ε
p·q′WPεzΛ−1

ε WPεz′ϕ(x) = e−
i
ε
p·q′WPεze

i
ε
p′·(
√
εx−q′)ϕ

(√
εx−q′√
ε

)
= e−

i
ε
p·q′ε−d/4e

i
ε
p·(x−q)e

i
ε
p′·(x−q−q′)ϕ

(
x−q−q′√

ε

)
=WPεz+z′ϕ(x).

Moreover,

WPεz opw1 (aε,z)ϕ(x)

= ε−d/4e
i
ε
p·(x−q)(2π)−d

∫
R2d

a
(√

ε
2

(
x−q√
ε

+ y
)

+ q,
√
εξ + p

)
)eiξ·((x−q)/

√
ε−y)ϕ(y) dy dξ

= ε−d/4e
i
ε
p·(x−q)(2πε)−d

∫
R2d

a
(

1
2(x+ y′) + q, ξ′

)
e
i
ε
(ξ′−p)·(x−y′)ϕ

(
y′−q√
ε

)
dy′ dξ′

= opwε (a)WPεzϕ(x).

�
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Appendix B. Algebraic properties of the eigenprojectors

We thus consider a smooth eigenvalue h(t, z) of a matrix-valued Hamiltonian H(t, z),
associated with a smooth eigenprojector Π(t, z), and, without restricting the generality of
the result, we assume that h(t, z) 6= 0. We emphasize that we just assume smoothness of
the projector and make no gap assumption.

Lemma B.1. We assume that h is a smooth eigenvalue of H and Π is a smooth eigen-
projector associated with h. Then, the matrix

B = −2∂tΠ− {h,Π}+ {Π, H}(54)

has the following properties:

(1) The matrix

Ω = ΠBΠ = Π{Π, H}Π
is skew-symmetric. Besides, if H has only two eigenvalues h and h⊥ = tr(H) − h
(i.e. H = hΠ + h⊥(I−Π)), then

(55) (I−Π)B(I−Π) = (h− h⊥)(I−Π){Π,Π}(I−Π).

(2) The off-diagonal part of B(t)Π(t) satisfies

(I−Π)BΠ = (I−Π) ({Π, h} − 2∂tΠ) Π and ΠB(I−Π) = Π ({Π, h} − 2∂tΠ) (I−Π).

Proof. For notational simplicity, we suppress the time dependence, once noticed that ∂tΠ(t)
is off-diagonal. We will twice use the relation

(56) {A,BC} − {AB,C} = {A,B}C −A{B,C}.
We first apply it to A = C = Π and B = H(I−Π). We obtain

0 = {Π, H(I−Π)}Π−Π{H(I−Π),Π},
whence

Π{Π, H(I−Π)}Π = Π{H(I−Π),Π}Π
and

(57) (I−Π){Π, H(I−Π)}Π = 0.

In particular, we have

Π{Π, H}Π = Π{H,Π}Π.

Proving (1): Since {Π, h} is off-diagonal, ΠBΠ = Π{Π, H}Π = Ω and

Ω∗ = Π{Π, H}∗Π = −Π{H,Π}Π = −Ω.

Besides, when H has two eigenvalues, we have

(I−Π)B(I−Π) = (I−Π){Π, H}(I−Π)

= h(I−Π){Π,Π}(I−Π) + h⊥(I−Π){Π, (I−Π)}Π
= (h− h⊥)(I−Π){Π,Π}(I−Π).
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Proving (2): We write

{Π, H} = {Π, h}Π + h{Π,Π}+ {Π, H(I−Π)}.
We now apply the relation (56) to A = B = C = Π and we obtain

0 = {Π,Π}Π−Π{Π,Π},
whence

(I−Π){Π,Π}Π = Π{Π,Π}(I−Π) = 0.

Altogether with (57), we have proven

(I−Π){Π, H}Π = (I−Π){Π, h}Π
and (I−Π)BΠ = 2(I−Π){Π, h}Π. �

Appendix C. Parallel transport

We prove here Proposition 2.2 that provides the time-dependent eigenvector ~V (t, z)
defined by parallel transport.

Proof. We consider the solution ~V (t, z) of the parallel transport equation and set Y (t, z) =
~V (t,Φt,t0

h (z)). We observe that Y (t, z) solves the equation

∂tY (t, z) = ∂t~V (t,Φt,t0
h (z)) + Jdh(Φt,t0

h (z))V (t,Φt,t0
h (z))

= Ω(t,Φt,t0
h (z))Y (t, z) +K(t,Φt,t0

h (z))Y (t, z).(58)

In particular,
(I−Π(t,Φt,t0

h (z))) ∂tY (t, z) = K(t,Φt,t0
h (z))Y (t, z).

We now start proving that for z ∈ Uz0
Π(t,Φt,t0

h (z))Y (t, z) = Y (t, z),

or equivalently that
Z(t, z) = (I−Π(t,Φt,t0

h (z)))Y (t, z)

is constant and equal to 0. We compute

∂tZ(t, z) =
(
−∂tΠ(t,Φt,t0

h (z))− Jdh(Φt,t0
h (z))Π(t,Φt,t0

h (z)) +K(t,Φt,t0
h (z))

)
Y (t, z)

= −Π(t,Φt,t0
h (z))

(
∂tΠ(t,Φt,t0

h (z)) + X (Φt,t0
h (z))Π(t,Φt,t0

h (z))
)
Z(t, z),

where we have used that all derivatives of the projector are off-diagonal. In particular,
∂tZ(t, z) is an element of the range of Π(t,Φt,t0

h (z)) and thus orthogonal to Z(t, z). Hence,
its norm is constant, Z(t, z) = 0 and Y (t, z) ∈ Ran Π(t,Φt,t0(z)).

Besides, we have for any z ∈ R2d

∂tY (t, z) · Y (t, z) = Ω(t,Φt,t0
h (z))Y (t, z) · Y (t, z) +K(t,Φt,t0

h (z))Y (t, z) · Y (t, z) = 0,

because
Ω(t, z)∗ = −Ω(t, z) and K(t, z) = (I−Π(t, z))K(t, z).

Therefore, |Y (t, z)| = 1. �
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Appendix D. The phasis Λ(σ) and the function ζ(σ)

Lemma D.1. Let Λ be defined in (48) and ζ in (47). We have

ζ(0) = (q(0), p(0)) = z[, ζ̇(0) = (q̇(0), ṗ(0)) = J∂z(h1 − h2)(t[, z[)(59)

Λ(0) = Λ̇(0) = 0,(60)

Λ̈(0) = ∂t(h2 − h1)− ∂qh2 · ∂p(h2 − h1) + ∂ph1 · ∂q(h2 − h1)(61)

In particular, setting µ[ = 1
2(Λ̈(0)− ṗ(0) · q̇(0)) as in (50), we have

µ[ =
1

2
(Λ̈(0)− ṗ(0) · q̇(0))

=
1

2
(∂t(h2 − h1)− ∂qh2 · ∂p(h2 − h1) + ∂ph1 · ∂q(h2 − h1) + ∂p(h2 − h1) · ∂q(h2 − h1))

=
1

2
(∂t(h2 − h1)− ∂qh1 · ∂p(h2 − h1) + ∂ph1 · ∂q(h2 − h1))

=
1

2

(
∂t(h2 − h1) +

{
h1 + h2

2
, h2 − h1

})
which yields (28).

Proof. We begin with the function ζ and we compute the Taylor expansion at the order 2
for (q(σ), p(σ)) = ζ(σ)− z[ at σ = 0. Let be h = h1, h2. We have :

Φt,t0
h (z) = z + (t− t0)J∂zh(t0, z) +

(t− t0)2

2

(
J∂2

t,zh(t0, z) + J∂2
z,zh(t0, z)J∂zh(t0, z)

)(62)

+O(|t− t0|3).

Applying this formula, we obtain (omitting the argument (t[, z[) in the functions h1, h2

and their derivatives)

Φt[+σ,t[

1 (z[) = z[ + σJ∂zh1 +
σ2

2

(
J∂2

t,zh1 + J∂2
z,zh1J∂zh1

)
+O(|σ|3),

ζ(t) = Φt[+σ,t[

1 (z[)− σJ∂zh2(t[ + σ,Φt[+σ,t[

1 (z[))

+
σ2

2

(
J∂2

t,zh2 + J∂2
z,zh2J∂zh2

)
+O(|σ|3).

We deduce

ζ(t) = z[ + σJ∂z(h1 − h2) +O(|σ|3)

+
σ2

2

(
J∂2

t,z(h1 − h2) + J∂2
z,z(h1 − h2)J∂zh1 + J∂2

z,zh2J∂z(h2 − h1)
)
,
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and, for further use, the relation

−p[q̇(0) =− p[ · ∂q(h1 − h2),(63)

−p[ · q̈(0) =− p[ · (∂2
t,p(h1 − h2) + ∂2

z,p(h1 − h2)J∂zh1 + ∂2
z,ph2J∂z(h2 − h1))(64)

We continue with the function Λ (defined in (48)) and we use Taylor expansion of the
actions for general Hamiltonian h. In view of (11) and (62), we have (omitting the argument
(t0, z0) in the terms of the form ∂αh(t0, z0))

S(t, t0, z0) =

∫ t

t0

(p0 − (s− t0)∂qh) · (∂ph+ (s− t0)(∂2
t,ph+ ∂2

z,phJ∂zh))ds

−
∫ t

t0

(h+ (s− t0)∂th)ds+O((t− t0)3)

= (p0 · ∂ph− h)(t− t0)− (t− t0)2

2
(∂th+ ∂qh · ∂ph− p0 · (∂2

t,ph+ ∂2
z,phJ∂zh))

+O((t− t0)3).

We first apply the formula with h = h1, t = t[ + σ, t = t[ and z = z[, which gives (when

the arguments of the functions are omitted, they are fixed to (t[, z[))

S1(t[ + σ, t[, z[) =σ(p · ∂ph1 − h1)

− σ2

2
(∂th1 + ∂qh1 · ∂ph1 − p · (∂2

t,ph1 + ∂2
z,ph1J∂zh1)) +O(σ3).

We now use the same formula with h = h2, t = t[, t0 = t[+σ, z0 = Φt[+σ,t[

1 (z[). We obtain

S2(t[, t[ + σ,Φt[+σ,t[

1 (z[)) =

−σ(p1(t[ + σ, t[, z[) · ∂ph2(t[ + σ,Φt[+σ,t[

1 (z[))− h2(t[ + σ,Φt[+σ,t[

1 (z[)))

− σ2

2
(∂th2 + ∂qh2 · ∂ph2 − p · (∂2

t,ph2 + ∂2
z,ph2J∂zh2)) +O(σ3)

Note that the treatment of the term of order σ has to be performed carefully in the case

of S2(t[, t[ + σ,Φt[+σ,t[

1 (z[)). We obtain

S2(t[, t[ + σ,Φt[+σ,t[

1 (z[)) =− σ(p · ∂ph2 − h2)

− σ2(−∂th2 − ∂qh2 · ∂ph1 + p · (∂2
t,ph2 + ∂2

z,ph2J∂zh2))

− σ2

2
(∂th2 + ∂qh2 · ∂ph2 − p · (∂2

t,ph2 + ∂2
z,ph2J∂zh1)) +O(σ3)

= (p · ∂ph2 − h2)σ

+
σ2

2
(∂th2 + ∂qh2 · ∂p(2h1 − h2)− p · (∂2

t,ph2 + ∂2
z,ph2J∂z(2h2 − h1)

+O(σ3)
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As a consequence,

S1(t[ + σ, t[, z[)+S2(t[, t[ + σ,Φt[+σ,t[

1 (z[)) = σ p · ∂p(h1 − h2) +
σ2

2
(∂t(h2 − h1)

− ∂qh2 · ∂p(h2 − h1) + ∂ph1 · ∂q(h2 − h1)

+ p · (∂2
t,p(h1 − h2) + ∂2

z,p(h1 − h2)J∂zh1 + ∂2
z,ph2J∂z(h1 − h2))) +O(σ3).

Combining with (64), we obtain

Λ(σ) =
σ2

2
(∂t(h2 − h1)− ∂qh2 · ∂p(h2 − h1) + ∂ph1 · ∂q(h2 − h1)) +O(σ3),

whence (61).
�

Appendix E. The operators Tµ,α,β
We study here the operators Tµ,α,β that are defined in (24) for (µ, α, β) ∈ R2d+1. An

explicit computation gives the following useful connection with the Fourier transform

(65) FTµ,α,β = Tµ+α·β,β,−αF .

The next proposition sums up the main information that we will use about these operators.

Proposition E.1. Let (µ, α, β) ∈ R2d+1.

(1) The operator Tµ,α,β maps S(Rd) into itself if and only if µ 6= 0.
(2) Moreover, if µ 6= 0, Tµ,α,β is a metaplectic transformation in the Hilbert space

L2(Rd) multiplied by a complex number:

(66) Tµ,α,β =

√
2π

iµ
e
i

4µ
(β·y−α·Dy)2

.

(3) If µ 6= 0, Γ ∈ S+(d) and A ∈ C∞(R2d) is a polynomial function then there exists
Γµ,α,β,Γ ∈ S+(d) such that

Tµ,α,β(opw1 (A)gΓ) =

√
2π

iµ
opw1 (A ◦ Φα,β(−(4µ)−1)gΓµ,α,β,Γ

with

(67) Γµ,α,β,Γ = Γ− (β − Γα)⊗ (β − Γα)

2µ− α · β + α · Γα
.

and Φα,β satisfying (31).

Remark E.2. The matrix Γµ,α,β,Γ is in S+(d) since gΓµ,α,β,Γ is proved to be Schwartz class.
It is also important to notice that 2µ−α ·β+α ·Γα is non zero because its imaginary part
is non zero.
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Proof. Point (1) is linked with Point (2) and comes from the formula (25) and(24). Indeed,
when µ 6= 0, equation (66) is an application of relation (24) and of functional calculus on
the self-adjoint operator (β · y − α · Dy)

2 and the Fourier-transform formula of complex
Gaussian functions:

(68)

∫ +∞

−∞
eis

2µeisτds =

√
2π

iµ
e
τ2

4iµ , with arg(iµ) ∈]− π, π[.

It remains to analyze the case where µ = 0. The computations are different whether
α · β = 0 or not. We assume α 6= 0 and we set

α̂ =
α

|α|
, y = (y · α̂)α̂+ y⊥.

Similar formulas can be obtained when β 6= 0 using (65). Let us first assume α · β = 0.

T0,α,β =

∫
eisβ·y⊥ϕ(y · α̂α̂− sα+ y⊥)ds

= |α|−1

∫
ei|α|

−1(y·α̂−σ)(β·y⊥)ϕ(σα̂+ y⊥)dσ

= |α|−1ei|α|
−1(y·α̂)(β·y⊥)Fαϕ

(
β · y⊥
|α|

, y⊥

)
where ϕ ∈ S(Rd), y⊥ = y−α̂ · yα̂ and Fα is the partial Fourier transform in the direction α.
In the case where α · β 6= 0, we write

T0,α,β = (2π)−1

∫
R2

e−is
2 α·β

2
+isβ·y+iη(y·α−s)Fαϕ(η, y⊥)dηds

=

√
i

πβ · α

∫
e
i
(β·y−η)2

2α·β +iηy·αFαϕ(η, y⊥)dη

=

√
i

πβ · α
e
i
(β·y)2

2β·α

∫
e
−iη β⊥·y⊥

β·α e
i η2

2β·αFαϕ(η, y⊥)dη

=

√
i

πβ · α
e
i
(β·y)2

2β·α

∫
e
−iη β⊥·y⊥

β·α Fα
(
e
i
(Dy ·α̂)2

2β·α ϕ

)
(η, y⊥)dη

=

√
4iπ

β · α
e
i
(β·y)2

2β·α e
i
(Dy ·α̂)2

2β·α ϕ

(
−β⊥ · y⊥

β · α
+ y⊥

)
This concludes the proof of Points (1) and (2).

Point (3) derives from the formulation of Tµ,α,β as a metaplectic transform. We use

general results concerning the action of a metaplectic transformation on Gaussian gΓ (for
details see [5], Chapter 3). With the quadratic Hamiltonian K(y, η) = (β · y − α · η)2, one
associates the linear flow Φα,β(t) = (Φij(t))1≤i,j≤2 (in a d × d block form) given by (31).
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Besides, the Egorov theorem and the propagation of gaussian are both exact: we have

e−itK̂(opw1 (A)gΓ) = opw1 (A ◦ Φα,β(t))e−itK̂gΓ = (opw1 (A ◦ Φα,β(t))gΓt

where the matrix Γt ∈ S+(d) is given by

Γt = (Φ21(t) + Φ22(t)Γ)(Φ11(t) + Φ12(t)Γ)−1, cΓt = det−1/2(A(t) +B(t)Γ),

where We deduce that if µ 6= 0,

Tµ,α,βgΓ =

√
2π

iµ
e
i

4µ
K̂
gΓ =

√
2π

iµ
g

Γ−(4µ)−1 .

This induces the existence of the matrix Γµ,α,β,Γ ∈ S+(d) of Point (2) of the Proposition.
It remains to prove the formula (67). We use that if ϕ = gΓ, we have

Tµ,α,βgΓ(y) = cΓ

∫ +∞

−∞
eis

2(µ−α·β/2)eisβ·ye
i
2

(y−sα)·(Γ(y−sα))ds.

Applying again (68) we get,

Tµ,α,βgΓ(y) = cΓ

√
π

2µ− α · β + α · Γα
e
i
2

(
y·Γy− (y·(β−Γα))2

2µ−α·β+α·Γα

)
,

which gives (67). �
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Créteil Cedex, France

E-mail address: Clotilde.Fermanian@u-pec.fr

Zentrum Mathematik - M8 Technische Universität München 85747 Garching bei München,
Germany

E-mail address: classer@ma.tum.de
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