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Abstract

While graph-based collaborative filtering recommender systems have been
introduced several years ago, there are still several shortcomings to deal with,
the temporal information being one of the most important. The new link
stream paradigm is aiming at extending graphs for correctly modelling the
graph dynamics, without losing crucial information.

We investigate the impact of such link stream features for recommender
systems. We design link stream features, that capture the intrinsic structure
and dynamics of the data. We show that such features encode a fine-grained
and subtle description of the underlying system.

We focused on a traditional recommender system context, the rating
prediction on the MovieLens20M movie dataset and the Goodreads book
dataset. We input link stream features along with some content-based ones
into a gradient boosting machine (XGBoost) and show that it outperforms
significantly a sole content-based solution.

These encouraging results call for further exploration of this original mod-
elling and its integration to complete state-of-the-art recommender systems
algorithms. Link streams and graphs, as natural visualizations of recom-
mender systems, may offer more interpretability in a time when algorithm
transparency is an increasingly important topic of discussion. We also hope
that these results will sparkle interesting discussions in the community about
the connections between link streams and traditional methods (matrix fac-
torization, deep learning).

Keywords:
link streams, recommender systems, interpretability, temporal networks,
graphs
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1. Introduction

Collaborative filtering algorithms are at the core of recommender systems
research. They rely on finding similar users to the user for whom the rec-
ommendation is intended, collecting the previous opinions of these users to
compute scores for items the given user has not yet rated, and present these
items with the best scores. The most widespread modelisation of recom-
mender data is in the form of a matrix where the rows represent the users,
the columns represent the items, and one element of the matrix indicates the
rating the user has given to the item.

This ensemble of users and items may also be seen as a bipartite graph,
where nodes represent users and items, and an edge between a user-node and
an item-node represents a rating between the user and the item. Finding
similar users in this context is naturally linked to the graph-theoretic notion
of neighborhood, i.e. the user-nodes which share a subset of neighbour item-
nodes with a given node.

While recommender systems initially discarded any notion of time, and
two ratings given several years apart where considered equal, a body of re-
search has emerged to take this into account. A common solution is to rely
on sequences of user-item matrices, with a time step (∆): one builds a se-
quence {Mk}k such that for all k, Mk is a user-item matrix, and Mk

i,j 6= 0
indicates that user i has interacted with item j at least once in [k, k + ∆[.

Studying dynamic graphs traditionally relies on sequences of snapshot
graphs, similar to the sequences of user-item matrices Mk, with the same
shortcomings (loss of information). To overcome these issues, the complex
network community has recently come up with link streams, also called tem-
poral networks or time-varying graphs depending on the context. The link
stream paradigm enables to study jointly the topological structure and the
dynamics of interactions. A system where users interact with items over time,
like in a recommender system scenario, may then be efficiently modelled as
a bipartite link stream.

In this paper, we show that modelling a recommender setting as a link
stream produces descriptors that are relevant to a recommendation task,
including in a large-scale context.

To test our approach, we use the interactions from the well-known Movie-
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lens 20M dataset1, along with a more recent one, Goodreads2 [26]. We devise
relevant content-based features for both datasets and generate link stream-
based features, adapted to the datasets’ parameters. We then feed a state-of-
the-art machine learning algorithm for recommendation (XgBoost) to learn
the recommendation task.

We evaluate the relevance of our link-stream features by comparing their
performance to a content-based-only baseline, and to state-of-the-art results
on these datasets.

We obtain promising results in terms of the RMSE metric, even though
our primary objective is not to be directly competitive with state-of-the-art
results, but to demonstrate the point of incorporating link stream features
into more complex models. Indeed, recommender systems have benefited
from much attention in the last 20 years, leading to extremely optimized mod-
els, based for example on matrix factorization or deep learning approaches.

These approaches come with the drawback that they are increasingly
complex and obscure, leading to effective recommendations that operators
have difficulty to explain to their users. On the contrary, our analysis of
graph and link stream-based features show that they provide an accurate and
fine-grained description of the datasets at hand. This makes an interesting
point towards more explainability and justifiability in recommender systems.

The remainder of this paper is organized as follows: in Section 2, we
present the recommending context we study ; the bipartite link stream model
is formalised in Section 3. We detail the features we devised in Section 4.
We present our experimental setup and results in Section 5. We discuss
related works in Section 6, before concluding the paper with some stimulating
perspectives in Section 7.

2. Problem setting

Given a user u and a movie i, we focus on the task of predicting the rating
assigned by u to i on the 0.5 scale from 0 to 5, i.e. a regression task. Let U
be a set of users, and I a set of movies, with |U | = n the number of users and
|I| = m the number of movies, and F a set of features such that |F | = f .

1Grouplens: https://grouplens.org/datasets/movielens/20m/.
2UCSD Book Graph dataset : https://sites.google.com/eng.ucsd.edu/

ucsdbookgraph/home.
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Our model inputs a (n ·m)× f matrix, and outputs a n ·m matrix P , where
each element r of P is the predicted rating, between 0 and 5.

The feature set F is composed of a mixture of numerical and categorical
variables describing the dataset, and, for each user u ∈ U and movie i ∈ I,
is comprised of three sets: F (u), the set of user-based features, F (m), the
set of movie-based features, and F (u, i), the set of interaction-based features.
The contents of each of these sets is discussed below in Section 4.

3. The bipartite link stream model

Modelling a recommender system as a bipartite graph G = (U, I, EG) is
rather natural: the sets of users U and items I represent the two sets of
nodes U and I. The set of edges E ⊆ U ⊗ I is composed of interactions
between a user and an item, where ⊗ is a shorthand notation for a pair
of distinct elements [16]. All those sets may be completed by weights, for
example a rating, or labels, for example a list of timestamps. However, these
solutions are limited by essence; not resorting to weighted or labeled graphs
causes important losses of information, while weighted and labeled graphs
are complex objects that currently lack the vast array of algorithms required
for social network analysis.

A bipartite link stream L = (T, U, I, EL) is defined by a time span T , a
set of users U , a set of items I, and a set of links EL ⊆ T ×U ⊗ I [16]. Nodes
u and i are linked at time t if (t, ui) ∈ E. We say that (b, e, ui) is a link of
L if [b, e] is a maximal interval of T such that u and i are linked at all t in
[b, e]. See Figure 1 for an illustration.

The usual properties of graphs (neighbourhoods, paths, clustering, etc.)
have been generalized to link streams [16], enabling the study of interaction
streams with a single modelling structure, and without resorting to snap-
shots. As with bipartite graphs, it is easy to see a recommender system as a
bipartite link stream L = (T, U, I, EL).

4. Data and feature engineering

4.1. Datasets
For our evaluation, we focus on two datasets coming from different con-

texts: a movie rating context (MovieLens) and a book rating context (Goodreads).
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Figure 1: A bipartite link stream L = (T,U, I, EL) with T = [0, 10], U = {u, v}, I = {x, y},
and EL = ([2, 7] ∪ [9, 10]) × {ux} ∪ [1, 2] × {uy} ∪ ([3, 8] × {vx} ∪ [4, 5] × {vy}. In other
words, the links of L are (2, 7, ux), (9, 10, ux), (1, 2, uy), (3, 8, vx), and (4, 5, vy). We
display nodes vertically and time horizontally, each link being represented by a vertical
line at its beginning that indicate its extremities, and an horizontal line that represents
its duration.

While the first one has been studied extensively in the recommendation lit-
erature, the second is very recent. However, they present similar charac-
teristics (time-based ratings, easily usable content-based information, size
magnitude) which makes them comparable. Several other datasets gener-
ally used for such experiments do not present those suitable characteristics
(Epinions, Ciao) or were no longer publicly available (Flixster, Douban).
The MovieLens 20M dataset comprises of 20,000,263 interactions, involving
138,493 users and 27,278 movies over the course of 20 years (from January
9th, 1995 to March 31st, 2015). The datasets contains two types of inter-
actions: a user u gives a rating r ∈ [0, 5] to item (movie) i at time t, or a
user u assigns textual tags to item (movie) i at time t. Movies have limited
information associated with them, only release year and genres. No demo-
graphic information about the users is present, contrary to other MovieLens
datasets.

We do not use IMDB identifiers to extract more movie information, which
would require NLP3 to come up with good features.

The Goodreads dataset is a recent extract of the book-rating website
GoodReads [26]. For scalability reasons, we focus on a specific genre, the
Goodreads Children dataset. It contains 10,080,558 interactions between

3NLP: Natural Language Processing (tokenisation, lemmatisation)
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462,164 users and 122,741 books, over the course of 11 years (from August
30th, 2006 to November 6st, 2017). Each interaction is of the same form: a
user u gives a rating r ∈ [0, 5] to item (book) i at time t. We remove interac-
tions in the dataset that do not have a rating information, or have a rating but
state the book has not been marked as read by the user. These interactions
account for about 35% of interactions. We end up with 6,393,905 ratings.
Each book also has information attached to it, for example the publication
year, or some notes about awards and distinctions the book gained.

4.2. Content-based features
From the available information in the MovieLens dataset, we obtained

39 content-based features. Among them, 19 were the result of a n-out-of-
one strategy for the genre of the movies (18 possible genres and a "(no
genres listed)" column). 10 features code the decade in which the movie was
released. To reduce the noise in this feature, we decided to group together
all movies that came out before 1940, since they represent a minor fraction
of the dataset. Concerning the user-generated tags, while not resorting to
NLP methods as stated above, we include two features: the total number
of tags (normalized), and, for each pair (user, movie), the number of tags
they have in common. The remaining 6 features are the rating mean, median
and standard deviation, and the minimum, maximum and number of ratings
(normalized). Those last 6 features are computed both for movies and users.

From the Goodreads dataset, we extract 6 features corresponding to the
rating mean, median and standard deviation, and the minimum, maximum
and number of ratings (normalized), 4 features encode the decade in which
the book was released. Just like for the MovieLens dataset, we group books
together if they have been published in 1970 or before. There is no genre
information, since the data are already restricted to the "children" genre,
and so we end up with 10 features.

4.3. Graph and link stream features
Equipped with the link stream model, we devised 21 features, some of

them being close to what can be found in other graphs models, others being
completely original. We detail them in the following, relying on two struc-
tures: a bipartite link stream L = (T, U, I, EL) and the bipartite graph it
induces, G = (U, I, EG).

Neighbourhood-based features. These features explore the relations
between the users and the movies over time. We say that u is a neighbour of
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i if there exists at least one interaction between u and i, in the dataset. The
degree of a node u in the graph G is simply the number of neighbours of u, i.e.
dG(u) = |{i : ui ∈ EG}|. This, however, does not take into account the dy-
namics of a user’s neighbourhood; we focus on the neighbourhood of u ∈ U∪I
at each time t ∈ T : dt(u) = |{i : ∃(t, ui) ∈ E}|. We describe the evolution of
dt(u) with its mean value, d(u) = 1

|T |

∫
t
dt(u)dt = 1

|T |
∑

m∈I |{(t, ui) ∈ EL}|,
and its maximum value, max(dt(u)). Notice that max(dt(u)) is not necessar-
ily equal to dG(u).

We also computed the minimum stream degree min(dt(u)) and the stan-
dard deviation of dt(u), however these two features showed little relevance;
we discard them.

We also compute the assortativity [19] of each link ui ∈ EG, a(ui) =
min(d(u),d(i))
max(d(u),d(i))

, which is the ratio between the degrees of the nodes. In this con-
text, low values of assortativity typically correspond to famous blockbusters
that all users have likely seen.

Inter contact time features. To take into account the dynamics of the
link stream, we use the sequence of durations between two links involving
u, defined as follows. For each user (resp. movie) u ∈ U (resp. I), let
t(u) = (t : (t, ui) ∈ EL ∩ T × I ⊗ {u}) be the ordered sequence of times
at which there is a link involving u. Then, the inter-event times sequence
is the sequence of the differences between two consecutive elements of t(u),
i.e. τ(u) = (ti+1 − ti)|t(u)|−1i=0 . We describe this sequence, for each user (resp.
movie), by its maximum max(τ(u)), minimum min(τ(u)), mean µ(τ(u)) and
standard deviation σ(τ(u)).

Clique-based features. As an exploratory approach to find clusters
of users and items in the bipartite link stream, we rely on cliques in the
link stream model, for lack of an established clustering algorithm. However,
enumerating all the maximal cliques is computationally intractable on large
data. Plus, some cliques (like stars) do not capture relevant information for
recommendation. We then use the methodology described in [25] to sample
maximal balanced bipartite cliques, i.e. cliques involving approximately the
same number of users and items. This kind of object is interesting from a
recommender systems point of view: it corresponds to dense subgroups of
users all rating a substantial number of items.

Formally, (U ′, I ′, [b, e]) is a clique in a link stream if all nodes of U ′ ⊆ U
interact with all nodes of I ′ ⊆ I over [b, e] ⊆ T , i.e. ∀t ∈ [b, e],∀ui ∈
U ′ ⊗ I ′,∃ (t, ui) ∈ EL. A clique is maximal if it is included in no other.
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From our set of sampled balanced maximal cliques, we computed the
following features for each user (resp. movie) u:

• The balancedness of the cliques involving u:

1

|Cu|
∑

(U ′,I′,[b,e])∈Cu

min(|U |, |I|)
max(|U |, |I|)

• The normalized average duration of the cliques involving u:

1

Cu

∑
(U ′,I′,[b,e])∈Cu

|[b, e]|
|T |

• The fraction of cliques containing u:

|{(U ′, I ′, [b, e]) : u ∈ U ∪ I}|
|{(U ′, I ′, [b, e]}|

where Cu = |{(U ′, I ′, [b, e]) : u ∈ U∪I}| is the number of cliques involving
node u, a normalizing factor. All these features tend to describe the sampled
maximal balanced cliques containing u. Intuitively, nodes belonging to a
high fraction of all cliques are typically high-raters.

5. Evaluation setting and recommendation results

5.1. Evaluation Metrics
The main metrics to evaluate the prediction performance of a recom-

mender system are MAE and RMSE [11]. They have been a widespread
proxy for effective recommendations in real-world contexts. The Mean Ab-
solute Error (MAE) is the average error between elements of the ground
truth y and the predicted elements ŷ:

MAE(ŷ, y) =
1

n

n∑
i=1

|ŷi − yi|

For a set of n predictions ŷ for which the ground truth y is known, the
Root Mean Squared Error is defined as:

RMSE(ŷ, y) =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2
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The MAE is a simple metric that is readily interpretable, but is less
sensitive to outliers than the RMSE, for example. The RMSE is less easy to
interpret, however it offers a good tool of comparison to the state-of-the-art,
and is more sensitive to outliers, which is interesting in a prediction context.

We also report our results for the NDCG@k metric, the Normalized Dis-
counted Cumulative Gain for a ranking of k elements. It is formulated as:

NDCG(k) = N

k∑
i=1

2R(i) − 1

log2(1 + i)
,

where R(i) is the graded relevance of item i, and N is a normalizing factor,
such that a perfect ranking has a NDCG value of 1.

5.2. Recommendation results
We perform the recommendation task by feeding our features into Xg-

Boost [8], a prominent tree-based framework for learning the probabilities of
matching users and items in a recommendation context, using the method
from [20]. We tuned XgBoost using Bayesian optimization [22] on the hy-
per parameter space, and obtain optimal results with deep trees and a small
learning rate. Optimality is reached with the parameters presented in Ta-
ble 2. The parameters’ meaning in Table 2 are briefly explained in Table 1.

Hyperparameter Range Meaning
α [0, 1] L1 regularization on feature weights
η [0, 1] Learning rate of the algorithm

min_child_weight [0,∞[
Minimum number of (weighted) instances
to create new leaf in the boosting tree

colsample_bytree [0, 1] Subsample of features to use in each tree

γ [0,∞[
Minimum loss reduction required

to make new leaf in the boosting tree
max_depth [0,∞[ Maximum depth of the trees

subsample ]0, 1]
Ratio of the training dataset

to subsample before building each tree

Table 1: Brief explanation of XgBoost ’s hyperparameters. max_depth directly controls the
complexity of the model, with deep trees more prone to overfitting. The other parameters
control the model’s tendency to be conservative, and are leveraged to reduce overfitting.
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Movielens 20M Goodreads
α 0.3649 9.3515
η 0.1 0.1

min_child_weight 18.6967 11.5504
colsample_bytree 0.9112 0.9541

γ 0.9930 2.7449
max_depth 10 10
subsample 0.9810 0.9959

Table 2: XgBoost parameters which give the best results for our approach, for both
datasets.

We performed a 5-fold cross validation on the dataset, and ran the ex-
periment for 10 hours on a machine with 32 8-cores CPUs and 64 GB of
RAM. We present the results according to our evaluation metrics for both
datasets in Table 3, comparing the performance of our algorithm when us-
ing link streams features along with content-based ones or when using only
content-based features. We see that adding link stream features lead to sig-
nificantly better learning performance than using only content-based features
(bold values).

Our results on the Movielens dataset are on-par with some of the recent
literature [28]. Their authors use a completely different setting (a non-convex
matrix factorization approach) to reach a RMSE of 0.785 on the same dataset.
To the best of our knowledge, the minimum RMSE (best recommendation
score) obtained on the MovieLens 20M dataset was 0.7652 with a deep learn-
ing approach [23]. Let us bring attention on the fact that our model is simpler
and do not rely on years of model tuning. While we are not competitive with
the best results in the literature, we detail some perspectives in Section 7 to
close this gap.

The Goodreads dataset having been released in 2018, there is to date no
similar baseline to compare our results to.

5.3. Discussion of feature importance
In addition to the classic performance metrics presented above, we evalu-

ate the descriptiveness of the link stream features we devise. Figure 2 shows
the relative importance of features as selected by XgBoost , with the link
stream features indicated in red.
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Dataset Metric With stream features
# iter train test

MovieLens
20M

MAE
2134

0.60234 (± 0.00022) 0.63427 (± 0.00012)
RMSE 0.76349 (± 0.00043) 0.80954 (± 0.005)

NDCG@10 0.99212 (± 0.015) 0.97209 (±0.019)

Goodreads
Children

MAE
998

0.5299 (± 0.0002) 0.5899 (± 0.0003)
RMSE 0.6818 (± 0.0002) 0.7561 (±0.0004)

NDCG@10 1.0 (± 0.0) 0.9901 (± 0.019)

Dataset Metric Without stream features
# iter train test

MovieLens
20M

MAE
2134

0.63421 (± 0.00013) 0.644277 (± 8.6e-05)
RMSE 0.82682 (± 0.00017) 0.83961 (± 0.00025)

NDCG@10 0.98212 (± 0.022) 0.94863 (±0.048)

Goodreads
Children

MAE
635

0.63343 (± 0.00042) 0.64986 (± 0.0003)
RMSE 0.7986 (± 0.0005) 0.82652 (± 0.0003)

NDCG@10 1.0 (± 0.0) 0.9772 (± 0.0454)

Table 3: MAE, NDCG@10 and RMSE values for the train and test datasets of both
Movielens and Goodreads, with and without link stream or graph features.

We can see that the introduced link stream and graph features are com-
monly used as split points by the boosting algorithm, which supports the
claim that such features are very descriptive of the structure and dynamics
of the dataset. For MovieLens, out of 20 graph and link stream features, 14
of them have a non-zero feature importance. More importantly, the top-20
most important splitting features include 13 graph and link stream features.

A similar trend is seen on the Goodreads dataset. See Figure 2 for the
details, Figure 2a for Movielens and Figure 2b for Goodreads. Moreover,
while it is a bit too early in this work to extrapolate this result, one might
notice that the three most important features in this context relate to the
intercontact times, just before more classic rating-based features. This makes
an interesting point to back the claim that link streams and graphs are valu-
able conceptual tools for recommender systems theory, their features being
considered as very relevant descriptors of the underlying recommender sys-
tem. Indeed, the feature importance score grows with the number of times a
feature is selected for splitting. For a feature to be a splitting criterion means
it is able to discriminate variations between the data points’ behaviours. In
other words, the link stream features capture a diversity of behaviours in the
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data.
Since graphs and link streams are intuitively visualizable, in terms of

explainability this means that one can compute such features and visualize
subgraphs or substreams of interest, and from then on explain why such
subgraphs are interesting.

6. Related Work

A graph-based vision of collaborative filtering algorithms was introduced,
to the best of our knowledge, in 1999 by Aggarwal et al. [1]. Since then, it
has been explored in several directions, most of which focused on unipartite
graphs which were gathered in a social environment, where links between
user- or item-nodes are explicit, such as a trust network (see [24] for a review
on these social recommender systems). Desrosiers and Karypis [9] presented
path-based methods in a traditional CF setting, which rely on counting short-
est paths between nodes to compute their similarity, and random-walk based
techniques, which evaluate the probability of reaching nodes by a random
walk on the graph.

While finding similar users and grouping them into communities is a
vast subject in social network analysis, it has been attempted with limited
success in the recommendation context. See for instance Bernardes et al. [5]
which use the Louvain algorithm in a collaborative filtering framework and
obtain state-of-the-art results. There are currently no community detection
algorithm in the link streams framework, which calls for theoretical work.

Introducing bipartite networks in a recommending framework was first
proposed in [30]: the recommendation problem was presented as a link pre-
diction problem, a well-studied subject in the complex networks community.
The approach consist in an adequate projection of the bipartite network to
embed the information available into the weight of a unipartite graph. While
there have been several attempts at defining and finding bipartite communi-
ties [2, 18, 4], there are still several challenges to overcome before using them
in a recommender system.

Temporal dynamics has a high impact on recommender system perfor-
mance, mostly because of the concept drift effect: rating mean may change
individually or globally as time elapses [15]. However, before 2010 and this
pioneering paper by Koren, it was mostly ignored as a research avenue. Since
then, ACM RecSys challenge top-3 contestants have succeeded in incorpo-
rating time-based features into an XgBoost prediction framework [20], and a
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dedicated workshop took place at the ACM RecSys 20174.
Several approaches have been proposed to understand the temporal dy-

namics of interactions between entities modelled by a graph, bipartite or not.
See [17, 7, 13] as general references on the topic. The most classic approach
relies on building the graphs for different time slices and study the differ-
ences, losing information in the aggregation process. Some recent literature
has shed some light on the importance of studying concomitantly dynamics
and structure. A simple model proposed to add node and/or edge attributes
to enclose temporal information [3]. It keeps the ability to use traditional
graph tools, some key concepts like density, centrality or neighborhood are
rather overlooked. There has been other attempts in modelling jointly those
two dimensions, such as the MultiAspect graphs model [27] or the study of
path-based centralities [21]. The link streams model is one of them, aiming at
providing tools of wider generality for dynamics structures [16]. The model
was used in a network-security study [25], while some graph algorithms are
progressively adapted to it [12]. Up to our knowledge, our work is the first
attempt at using a time-varying graph model in a recommender system set-
ting.

7. Conclusion and perspectives

Our contribution is a proof-of-concept of incorporating link streams fea-
tures in a classic recommender system environment. We use two large-scale
datasets to explore the contribution they may offer to encode the dynamics of
user-item interactions. We obtain a performance a little bit below the state-
of-the-art, but relying solely on a limited model focusing on link streams
features.

While there are several possible improvements for our content-based fea-
tures, like entity-based merging of tags (or other NLP work), we would like
to focus here on the avenues for future work related to the graph and link
stream-based features.

Defining and listing communities of users, or of users and items, is a
work to be done with the link stream paradigm. It is still an open issue
in the broader time-varying graphs community. Since many recommender
systems rely, either implicitly or explicitly on finding similar-minded users,

4https://sites.google.com/edu.haifa.ac.il/tempreasoninginrs/
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establishing a robust model of communities may prove very useful for recom-
mender systems. An avenue to be explored consists in devising an equivalent
to the graph-based modularity and to pursue the work on nodes’ between-
ness centralities and clustering coefficients, which should also give precious
information on the dynamic of neighbourhoods.

A recent trend in the deep-learning and recommendation literature has
seen the importance of graph-based models being reinforced, with the in-
troduction of Graph Convolutional Networks (GCNs) [6, 14, 29]. They aim
at generalizing the very efficient convolutional methods devised for 2D data,
which enables the embedding of graph information. However, while parts of
the best models rely on random walks on local neighbourhoods, they also use
very few graph-based features compared to other data (for instance, only one
graph feature versus thousands of visual features in [29]). We are confident
that link stream features could be incorporated with limited work into a GCN
model. Given GCNs’ performance, the current gap between link streams and
pure deep learning approaches may be closed.

Besides performance metrics, we think that link streams features and
algorithms contribute to improving recommender systems by offering more
justifiability of the recommendations, since there is always a rather simple
underlying model which can be called upon to explain why an item was
proposed to a user. As a drawback, there is the newness of the concept,
which still lacks some conceptual tools. We hope our experiment may prolong
the fruitful exchanges of ideas between the recommender system and social
network analysis communities.
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Figure 2: Feature importance as selected by XgBoost . Link stream features are indicated
in red. Feature importance is calculated as "the number of times a variable is selected for
splitting, weighted by the squared improvement to the model as a result of each split, and
averaged over all trees" [10].
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