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ABSTRACT

In the last few years, the technological evolution in the field of wireless sensor networks was impressive, which made them

extremely useful in various applications (military, commercial, etc.). In such applications, it is essential to protect the network

from malicious attacks. This presents a demand for providing security mechanisms in these vulnerable networks. In this paper,

we design a new framework for intrusion detection in cluster-based wireless sensor networks. Our detection framework is

composed of different protocols that run at different levels. The first protocol is a specification-based detection protocol that runs

at intrusion detection system (IDS) agents (low level). The second one is a binary classification detection protocol that runs at

cluster head (CH) node (medium level). In addition, a reputation protocol is used at each CH to evaluate the trustworthiness

level of its IDSs agents. Each CH monitors its CH neighbors on the basis of a specification detection protocol with the help

of a vote mechanism applied at the base station (high level). We evaluated the performances of our framework in the presence

of four well-known attacks: hello flood, selective forwarding, black hole, and wormhole attacks. We evaluated specifically the

detection rate, false positive rate, energy consumption, and efficiency. Simulation results show that our detection framework

exhibits high detection rate (almost 100%), low number of false positives, less time to detect the attack, and less energy

consumption. Our intrusion detection framework outperforms other schemes proposed in the literature in terms of detection,

false positive rate, and energy consumption. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Wireless sensor networks (WSNs) are being used in a

variety of applications such as military monitoring, detec-

tion of forest fires, and human vital functions monitoring.

These sensors are autonomous and very small in sizes,

and they can be deployed in a random manner in a

monitored field. Despite the services they provide and the

advantages they bring, WSNs have several constraints

related to energy consumption, computational capability,

and memory storage. These specific characteristics must

be taken into account when we deploy any of these appli-

cations into the corresponding devices.

Security is one of the most important issues in WSNs as

sensors are often deployed in a hostile and insecure environ-

ment such as a battlefield. In addition, the nature of limited

resources on sensor nodes restricts the use of conventional

security techniques in sensor networks [1].

Cryptographic technique can protect WSNs against

external attackers by ensuring data integrity of the ongoing

communication and applying packets authentication from

the source, which is classified into content-based and

stream-based methods [2]. Key management is an impor-

tant issue in all encryption-based security systems [3],

where several researchers work on this field by providing

a secure scheme that takes into account the energy con-

sumption of the node [3,4].

However, cryptographic technique cannot detect an

internal attacker that is aware of the cryptographic keys.

In this context, intrusion detection system (IDS) allows a

detection of a suspicious activity within the network by

analyzing a target node and triggers an alarm when this

node exhibits a malicious behavior. The IDS remains the

best mechanism to identify and eject the intruder within

the network itself.

In WSNs, IDS topology can be classified as follows [5]:

(i) distributed approach and (ii) hierarchical approach. In

the distributed approach, intrusion detection load is divided

among the sensor nodes, which may collaborate with

each other to form a global intrusion detection mechanism.
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This architecture is more suitable for flat WSNs. In a flat

architecture, the sender relies on multi-hop communication

to reach the remote location (base station), leading to a high

communication overhead. On the other hand, the hierarchical

approach has been proposed for multilayered WSNs named

cluster-based wireless sensor network (CWSN). In this

approach, a network is divided into clusters where cluster

heads (CHs) aggregate data collected from the member

nodes. At the same time, all CHs can cooperate with the

central base station to form a global IDS. An example of

the clustering topology for WSN can be seen in Figure 1.

This architecture exhibits a low communication overhead

and prolongs the network lifetime. In this paper, we study

the problem of intrusion detection on CWSN. We propose

an efficient and lightweight intrusion detection framework

that suits the application requirements in terms of fast

detection time, detection rate, number of false positives,

and energy consumption. Our intrusion detection framework

uses a set of embedded protocols running at different levels

(cluster members, CH, and base station) to detect with high

accuracy four well-known attacks: hello flood, selective

forwarding, black hole, and wormhole attacks. According

to the simulation results, our detection framework outper-

forms other frameworks proposed in the literature in terms

of detection, false positive rate, and energy consumption.

The remainder of this paper is organized as follows: In

Section 2, we give some background and related work. In

Section 3, our intrusion detection framework is proposed.

In Section 4, we provide simulation results and performance

analysis of our scheme. Finally, we summarize the main

results and give some perspectives that we envisage to carry

out in Section 5.

2. BACKGROUND AND RELATED
WORK

In this section, we highlight some related works and

background necessary for understanding our propositions.

We organize this section in four subsections. In the first

one, we summarize some intrusion detection works that

we found in the literature by describing their main

shortcomings. In the second subsection, we describe some

routing attacks and, especially, selective forwarding, black

hole, hello flood and wormhole attacks. In the third

subsection, we give some background information on the

supervised learning algorithm support vector machines

(SVMs). In particular, we describe how SVM can be used

in either centralized or distributed fashion. We finally give,

in the last subsection, some relevant information about

clustering protocols in wireless networks. In particular,

we describe the hybrid energy-efficient distributed cluster-

ing (HEED) algorithm [6], which was selected as a base of

our clustering protocol used in our intrusion detection

framework.

2.1. Intrusion detection in WSN

Currently, there are limited researches that use the IDS to

identify the malicious behavior within the network. The

authors in [7] are among the first who use the mechanism

of intrusion detection in WSN. This research work is based

on naturally occurring events and the analysis of fluctua-

tions in sensor reading [8]. In [9], the authors propose a

model that relies on the number of packets being dropped

to detect black hole and selective forwarding attacks. The

authors in [10] analyzed the packets by using both detec-

tion policies (i.e., anomaly detection based on SVM and

a set of attacks signature) to detect the routing attacks with

high accuracy. However, the major drawbacks of these

schemes [9,10] are related to not taking into account that

the IDS node can also be a malicious node and that the

CH node is an attractive target of attackers because of their

relevant data. In [11], the authors propose an intrusion pre-

vention and detection framework in a one-hop clustering

topology for WSNs. In the intrusion prevention phase,

the authors propose a cryptographic technique to prevent

the external threat to attack the networks. In the intrusion

Figure 1. Clustered wireless sensor network topology.
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detection phases, each IDS monitors the nodes that are

located within its radio range (one hop). The detection

framework uses only a rule-based detection to identify

the malicious node. In their experiments’ results, the

authors claim that using one-hop clustering for intrusion

detection permits to all the IDS nodes within the same

cluster to detect the malicious node when it occurs. In this

scheme, the authors do not evaluate the performance of

their framework in terms of energy consumption. In [12],

the authors propose a mechanism of intrusion detection

and isolation of malicious nodes. In their detection mecha-

nism, the CH monitors its cluster member by using a set of

rules related to a specific attack behavior. When the

intruder occurs, the IDS isolates the attacker nodes and

records malicious nodes in its isolation table. In their hier-

archical topology, all CHs within the network are managed

by a node called a primary CH (PCH). This later is an

attractive target of the attackers. In order to avoid this

issue, the CH and the cluster members monitor this node.

According to the simulation results, their scheme permits

to consume less energy compared with the schemes pro-

posed by the authors in [13]. The major drawback of both

detection frameworks proposed in [11,12] is the detection

policies applied by IDS nodes, which are based only on a

rule-based detection. Using only the rule-based approach

for the detection process leads to low detection rate when

several kinds of attacks occur. In [14], the authors propose

a lightweight intrusion detection technique for clustered

sensor nodes based on IDS framework developed by the

authors in [15]. In this technique, the monitoring node

has two detection engines identified as local agent and

global agent. The former monitors only their own commu-

nication (e.g., sent and received messages and sensed

data), and the latter observes the neighbors’ communica-

tion. The global agent uses a rule-based approach with

two-hop neighbor knowledge for the anomaly detection,

and it sends alarms to the CH when the intrusion occurs.

Both monitoring nodes use signature-based detection,

which are computed and generated by the CH. The authors

attempt to provide a cooperative mechanism between IDS

agents that is based on trust priority in order to reduce

the false alerts raised by the intruder. Nevertheless, the

drawback of this scheme is the large increase of the size

of the signature database, which in turn leads to an over-

load of the node.

As shown in Figure 2, detection policies for the intru-

sion in WSN can be classified into two main techniques:

(1) Signature-based detection or misuse detection: This

approach is based on comparing the observed

behavior to a set of attack signatures that are stored

in the node’s memory. If a match occurs, the analyzed

node is defined as an attacker. This technique is quick

and reliable to detect known attacks [16]. However, it

cannot identify unknown attacks and hence requires

constant signature updates to be reliable.

(2) Anomaly detection: This approach is based on first

modeling the normal node behavior and then identi-

fying anything that deviates from this model as

anomalous. This technique is composed of two

categories:

• Binary classification-based detection: This cate-

gory uses a supervised learning algorithm to

model the normal behavior. The advantage of this

technique is its ability to detect unknown attacks,

but its high computational cost leads to a rapid

decrease of the node’s lifetime. As a consequence

and in order to mitigate this cost, the technique

must be embedded in a node that has considerable

power resources. Among detection techniques

proposed in the literature for WSNs, we find neural

networks [17], SVM [10], and Markov chain

approach [18].

• Specification-based detection: This approach

works by simply specifying a normal behavior

using a set of rules. The advantage of this tech-

nique is the ability to detect unknown malicious

behaviors with low computational cost. However,

reliability of this detection approach relies on

continuous updates of rules over time.

Figure 2. Detection techniques.
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2.2. Routing attacks

The intruder could realize one of the four following

attacks: selective forwarding, black hole, hello flood, and

wormholes. We describe in the following these different

attacks.

(1) Selective forwarding: In this case, the attacker stops

forwarding certain packets and starts dropping

them. This attack is therefore detected by calculat-

ing the packet-drop rate (PDR).

(2) Black hole: In this attack, the intruder pretends to be

in the shortest path to the CH by using a high-power

transmission. In this case, the intruder will be able

to receive the messages and subsequently swallows

the corresponding packets (drops all receiving

packets). This attack can be detected by computing

the PDR and the received signal strength intensity

(RSSI).

(3) Hello flood: A malicious node broadcasts hello

packets by generating a high signal strength com-

pared with other sensor nodes. In this case, other

legitimate nodes in the network will send their

packets to the broadcasting node. As a result, the

packets will then be dropped, spoofed, or altered.

This attack can be detected by computing the RSSI.

(4) Wormholes: According to the work undertaken by

the authors in [19], wormhole attacks are classified

into passive or active attacks. In our research, we

focus on active wormholes. In particular, the worm-

hole attacks tend to pretend to be one hop away

from the CH by using high signal strength. As a

consequence, the attacker forwards the messages

received from a legitimate node to another attacker

as illustrated in Figure 3. In this case, both

malicious nodes take part in the network routing

protocol. In Figure 3, note that M1 and M2 are the

endpoints of wormhole tunnel and M1 generates a

high signal strength in order to convince a node that

is close to the CH (one hop away from CH). Node A

wants to send its packets to the CH either by follow-

ing the valid route (nodes B and C) or a malicious

one (nodes M1, E, and M2). In both cases, node A

chooses the lower-cost route via M1–M2 worm-

holes (shown in solid arrows) because M1 pretends

to be close to the CH. Therefore, all packets

received by M1 from A are forwarded directly to

M2 and are not sent to E. In this case and in order

to detect this attack, we simply monitor the signal

strength. In addition, nodes located in the same

neighborhood of this attack do not receive the

packets from this malicious node; hence, the

packet-dropping rate becomes high. As illustrated

in Figure 3, the IDS1 agent hears the packets sent

by M1 with a high RSSI. In addition, this monitor-

ing node does not hear the message that must be

forwarded by E to M2. With the RSSI and PDR,

M1 will be detected as a malicious node that is

carrying out a wormhole attack.

2.3. Support vector machines

Support vector machine is a supervised learning

method developed by Vapnik in 1995, and it is used for

classification and regression analysis. The aim of the

SVM classifier is to construct a hyperplane that separates

data into two classes defined by the number of support

vectors. These vectors define the boundary of each class.

In situations where SVM cannot separate data into two

classes (nonlinear separation), it solves this problem by

mapping input data into high-dimensional attributes spaces

using a kernel function [20]. As a result, it allows a linear

separation. We note that, in our research, we focus only

on two-class problems. The binary SVM classification

provides a decision function [21]:

f a; x; bð Þ ¼ sgn
X

m

i¼1

yiaik xi; xð Þ þ b

!

¼ � 1f g (1)

Here, k(xi,x) is the kernel function, and a are the

Lagrange multipliers, which can be found by solving the

following nonlinear optimization equations:

max
X
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X

m

i¼1

X

m
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X
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>
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SVM can be used either in a centralized or distributed

fashion.

In the first case, the SVM, which is embedded at the

base station, collects the packets from all nodes and then

trains an SVM classifier. This approach forces a node to

send a considerable amount of data to a remote location,

which leads to a high communication overhead and subse-

quently decreases the lifetime of the sensor nodes.

In the distributed approach, the cost of energy is re-

duced. The support vectors, which are much less than the

input data, are computed at each node. These key vectors

are then exchanged between nodes with the exception of

the centralized approach where packets are sent to remoteFigure 3. Active wormhole attack.
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nodes. As a consequence, the network lifetime is increased

as this approach meets the energy consumption constraint.

In our anomaly detection model, a distributed SVM

learning between CHs is applied to detect the anomaly

behavior.

2.4. Clustering

A hierarchical topology divides the sensor network into

clusters, each one having a CH. The objective of this archi-

tecture is to help the deployment of protocols (especially

routing) and save the energy that enhances the survivabil-

ity of the network. This is achieved by designating a CH

node the responsibility of forwarding a packet (which con-

tains the aggregated data received from cluster members)

to the base station rather than having all nodes send their

sensed data to a remote location (base station).

Among the large number of cluster-based routing

protocols proposed in the literature, we cite the following:

LEACH [22], PEGASIS [23], and HEED [6]. The aim of

HEED protocol is to use a combination of the residual

energy and an intra-cluster communication cost to elect

the CH. In our study, a modified version of this routing

protocol is selected (by using only the residual energy) to

embed our intrusion detection framework.

In HEED, the authors defined two kinds of nodes:

“uncovered” and “covered.” In this case, the first node

announces itself to become a CH by broadcasting an

announcement message to other nodes. This process

occurred when the execution algorithm is completed with-

out electing a CH. The “covered” node is a cluster member

who selects a lower-cost CH according to the overheard

message sent by the CH. To this end, a node can be

elected to become a CH by using the following probability

formula:

CHprob ¼
Eresidual

Emax

(3)

where Eresidual and Emax are the residual and maximum

energy respectively in the node.

3. PROPOSED FRAMEWORK

In our framework, the intrusion detection process is carried

out at three levels as detailed in the following. In the low

level, a set of nodes called IDS agents monitor the

communication of their neighbors and report their

feedbacks to their CH for further detections. To identify

any suspected behavior, these agents use the specifica-

tion-based detection technique. This technique relies on a

set of rules do detect and prevent the malicious behavior

(more details in (2) of Section 3.1). Because of energy

constraints and because one bit transmitted in WSNs

consumes about as much power as executing 800 to 1000

instructions [24], the agent node has to limit the amount

of information that is exchanged between him or her and

the CH.

In the medium level, a powerful CH uses SVM training

technique to detect any anomaly. This approach allows

separating data into two classes (normal and anomalous).

It is called a binary classification. Given that no node is

assumed to be trustworthy, a reputation mechanism is

applied at the CH in order to evaluate the trustworthiness

of their IDSs membership. Detection process occurring

between level one (IDS agents) and level two (CH) is

illustrated in Figure 4.

In the high level, each CH monitors its CH neighbors on

the basis of a specification detection technique and sends a

ballot form to the base station containing the suspected

CH. The base station is used as the counter to collect the

Figure 4. Detection process occurring between intrusion detection system (IDS) and cluster head (CH) agents. SVM, support

vector machine.
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votes that are generated by CHs in order to take a final de-

cision on any suspected node that may be found. Detection

process occurring between levels two (CH) and three

(base station) is illustrated in Figure 5.

In the following, we give more details about the differ-

ent protocols of our framework.

3.1. Sensor (low) level intrusion detection

In each cluster and for each communication link, there

must be at least one IDS agent for collecting and analyzing

the packets according to the set of rules within the radio

range. As shown in Figure 4 (IDS agent), data gathering

and intrusion detection modules are the most important

components of this agent. These modules are detailed in

the following:

(1) Data gathering module. Because of the broadcast

nature of wireless networks, IDS nodes gather the

packets within their radio range [14] and pass it to

the intrusion detection module for process analysis

as shown in Figure 4.

(2) Intrusion detection module. This module follows a

specification-based detection protocol to detect and

prevent the malicious nodes. The purpose of this

protocol is to categorize the target behavior as nor-

mal or abnormal according to a set of rules. In our

case, there are four rules related to each attack.

The rule for detecting “selective forwarding” attack

can be defined as the PDR, which is greater than a

certain threshold (dsf). The rule for detecting “hello

flood” is the value of RSSI that exceeds a certain

predefined threshold (drssih). The rule for detecting

a “black hole” is defined as the number of PDR

(which is greater than dbh threshold) and the excess

in signal strength (higher than drssibh threshold).

Finally, the rule for detecting “wormhole” attack is

the excess in signal strength (higher than drssiwo
threshold), and none of the nodes, which are located

in the same neighborhood of this malicious node,

forwards a received packet sent by this adversary

(by computing the PDR which excess dwo

threshold). We note that, in an area where the links

are very unstable or collisions occur, all the nodes

located in this area will have an important packet

loss. In our detection approach, when the nodes in

this area are an attacker, its packets dropping rate

will be higher compared with its neighbors (i.e.,

node located within its radio range).

All these rules used for attacks detection are illustrated

in Figure 6.

As illustrated in Figure 4, when abnormal behavior is

detected according to the selected rule, a VOTE message

is submitted to the majority vote block (located at a CH)

to make a vote process. This message includes the

suspected node and the attack type. When a vote exceeds

a certain threshold, the CH will not assign any time slot

to this malicious node and will be removed from the

cluster. However, when the detection evidence is not very

conclusive (no match occurs), a CHECK message is for-

warded by the IDS agent to the anomaly detection module

(located at the CH also) for further detections. This mes-

sage includes the analyzed node with the PDR and RSSI.

3.2. Cluster (medium) level intrusion

detection

Inspired by the work of authors in [6], our clustering

algorithm, which was implemented under TOSSIM Simu-

lator [25], elects at each cluster a CH that has more power

resources to manage and aggregate data received from the

cluster members. As illustrated in Figure 4 (CH agent), this

powerful node comprises three modules: data gathering,

anomaly detection, and reputation modules. They are

detailed in the following:

(1) Data gathering module. This module is responsible

to collect the CHECK messages sent by the IDS

agent. This message includes the address of the

Figure 5. Detection process occurring between cluster head (CH) and base station. PDR, packet-drop rate; RSSI, received signal

strength intensity.
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node analyzed by IDS agent and the following

features: PDR and RSSI. These features are then

forwarded to the anomaly detection module for the

training and classification process.

(2) Anomaly detection module. Anomaly detection

procedure is divided into three steps:

• Step1: Features selection. This is an important

factor that increases the classification accuracy,

reduces the false positive, and speeds up the train-

ing time. In this research, the PDR and RSSI are

used as input data for the training process.

• Step2: SVMs training process. The anomaly

detection uses a distributed learning algorithm for

the SVM training to classify data as normal or

anomalous (a binary classification problem). Each

CH trains the SVM locally, then computes a set of

data vectors called support vectors that are generally

less in number than the input data used during the

learning process. These vectors will be sent to an

adjacent CH that is located in the same radio range.

Each CH that receives the support vectors from their

CH neighbors updates its corresponding informa-

tion by unifying the received data and its own sup-

port vectors. They will then retransmit the resulted

set of support vectors to the nearby CHs.

• Step3: Binary classification protocol. When the

training process is completed, each CH classifies

new incoming data according to the attacks and the

normal pattern. Any deviation from the normal

behavior is considered as anomalous. In this case,

an UPDATE message (including a new sign of

attack) is sent back to their IDSmembers to compute

the new rule of this attack as illustrated in Figure 4.

The packet frame of all exchanged messages (CHECK,

VOTE, and UPDATE) is illustrated in Figure 7.

(3) Reputation-based module. When an IDS agent

detects an attack, it sends a VOTE message to its

CH as illustrated in Figure 4. This message includes

the suspected node and the type of the attack. The

CH node uses a majority vote block to determine

if the suspected node is an intruder or not, while a

beta reputation protocol has to evaluate the confi-

dence level of IDS agents [26]. If a vote exceeds

the predefined threshold, the suspected node is

ejected from the network and the reputation of the

IDS nodes that detect the attack will be increased.

Otherwise, the reputation of IDSs will be decreased.

We note that for each cluster, the threshold is n/2,

Figure 6. The detection rules of the four attacks.
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where n is the number of IDS agents per each

cluster. Reputation-based protocol takes a step

further in helping to identify compromised nodes

as early as possible [27].

The reputation of the IDSimaintained at its corresponding

CH is defined as follows [26]:

Ri ¼ b ai þ 1;bi þ 1ð Þ (4)

Here, ai and bi represent the normal and suspected

behaviors, respectively, of IDSi claimed by CH. The updating

of this two parameters (i.e., ai and bi) can be found in [26].

The trust metric is defined as the level of trustworthi-

ness of an IDS node, which can be computed as follows:

Ti ¼ E Ri½ � (5)

where E[R] is the statistical expectation of the reputation

function. The Trust value is classified by the following

mapping function:

M Tið Þ ¼
high Ti≥TH

low Ti < TH

�

(6)

After computing the trust value, each CH sets this value

according to the aforementioned mapping function to

indicate the trust level requirement. Only IDSs having

a high trust value can trigger the detection process.

Otherwise, they will be defined as normal node and not

able to play the IDS role. As a result, a community of

trustworthy IDS nodes will be generated.

3.3. Intra-cluster-heads (high) level

monitoring

The CH is an attractive target of an attacker because it

contains relevant data. As a consequence, the intruder uses

all its capacity to launch an attack against this hot point. In

order to avoid this issue, each CH monitors its CH

neighbors. The CH is equipped with data gathering module

as in the cluster level intrusion detection and another

module, which is intrusion detection. The base station is

equipped with a vote mechanism module. These modules

are illustrated in Figure 5 and described as follows:

(1) Data gathering module. Each CH captures the

packets from other CHs that are situated in the same

radio range then computes the RSSI and PDR. Sub-

sequently, this information will be forwarded to the

intrusion detection module for monitoring purpose

as shown in Figure 5.

(2) Intrusion detection module. Each CH monitors its

nearby CHs by adopting a specification-based

detection protocol as used before by IDS agents.

Figure 7. Packet format of (a) CHECK, (b) VOTE, and (c) UPDATE messages.
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According to the rules related to each attack

(refer to (2) of Section 3.1 about these rules), if an

abnormal behavior occurs, the monitoring CH sends

a ballot form that includes the suspected CH and the

attack type to the base station as shown in Figure 5.

The base station performs a voting mechanism in

order to identify suspect nodes. In particular, if

more than half of votes are in favor of attack, the

CH will be excluded from the network and a new

CH will be elected.

4. PERFORMANCE EVALUATION

In our experiment, we used TOSSIM simulator [25], a

simulator for TINYOS application. The main advantage of

this simulator, compared with other tools such as NS2 [28],

is the fact that we can easily embed the source code written

in NESC on real sensor nodes (with TINYOS operating

system). However, the TOSSIM simulator does not have

the ability to model the energy dissipated during the execu-

tion of the application. To this end, an improved version of

the tool was proposed by Harvard University called

POWERTOSSIM [29] allowing the simulation of nodes’ en-

ergy consumption and hence the determination of the net-

work’s lifetime.

4.1. Simulation assumptions

We used in our simulations 168 nodes deployed randomly

in a square area of 88 * 88m2. We notice that the network

was composed of eight clusters with one CH in each. All

sensors are static. In order to avoid collisions, a time

division multiple access (TDMA) protocol is used. We

use the chipcon CC1000 [30] as a transceiver, and each

node transmits its packets at a frequency between 433 and

868MHz. All the key parameters of the simulation are

summarized in Table I.

The optimal thresholds for each detection attack were

decided by computing the detection and false positives

rates, and then, a trade-off between these two metrics that

meet our requirements (i.e., high detection and low false

positives rates) is determined. We note that these thresh-

olds were determined by carrying out several simulations.

The summary of these thresholds are illustrated in Table I.

The purpose of our simulations is to investigate the

effect of each attack in the network in isolation and then

all together. In addition, we assume that there are no

attacks at the beginning of simulation. We have varied

the number of IDS nodes per cluster from 1 to 10 in order

to assess the performances of our detection framework for

different configurations. The binary classification detection

protocol used in our simulation is a simple version of SVM

learning algorithm that is able to classify only the four

routing attacks cited before.

In order to evaluate our framework, we used different

metrics:

• Detection rate (DR): defined as the ratio between the

number of correct detected intrusions and the total

number of intrusions.

• False positives rate (FPR) or false alarms: defined as

the ratio between the number of normal connections

incorrectly classified as intrusions and the total

number of normal connections [20].

• Energy consumption (EC): defined as the energy con-

sumed by all sensor nodes and computed as follows:

Et ¼

XN

i¼1
Enodei

N
(7)

where Et is the energy total of the network and N the

number of nodes.

• Efficiency (E): This metric determines the required

time for our IDS agents to detect the occurrence of

the first adversary node. It is computed as follows:

E ¼
ED� ET

Sampling frequency
(8)

where ET is the time of a first malicious behavior starts and

ED is the detection time of the first malicious node,

respectively.

4.2. Results analysis

4.2.1. Hello flood attack scenario

This attack was implemented as a node that has a high

signal strength compared with the other nodes. As shown

in Figure 8(a), when the number of IDSs (i.e., the average

number of IDS agents per each cluster) increases, the

detection rate increases together with the number of false

positives. When the average number of IDSs in each

cluster is four, the detection rate and false positive rate

are close to 98% and 2%, respectively. In addition, as

shown in Figure 8(b), our detection framework requires

Table I. Simulation parameters.

Simulation time 875 s

Simulation area 88 * 88m2

Number of nodes 168

Radio model Lossy radio model

Number clusters 8

Number of IDSs (i.e.,

number of IDS agents

per cluster)

1–10

Routing Modified hybrid energy-efficient

distributed clustering algorithm

MAC TDMA

Radio range 15m

Sensor initial energy 5 J

dsf 64%

drssih �41 dBm

dbh, drssibh 94%, �47 dBm

drssiwo, dwo �44 dBm, 99%

9



less time to detect the hello flood attack when the average

number of IDSs in each cluster is four (the efficiency is

close to 2 s). As a consequence, an optimal number of IDSs

is a crucial characteristic that makes our scheme effective.

Finally, we conclude that when an optimal number of

IDS agents per each cluster is determined (four agents

per cluster), our framework exhibits a high detection rate

and low number of false alarms, and requires less time to

detect this attack.

4.2.2. Selective forwarding attack scenario

The selective forwarding attack is recognized when a

node drops a considerable number of packets compared

to legitimate node. The detection rate and the number of

false alarms are related to the number of IDS agents per

each cluster. As shown in Figure 9(a), both metrics

increase when the number of agents increases. Therefore,

the optimal number of IDSs per each cluster for detection

of selective forwarding with less occurrence of false posi-

tive is equal to six. In addition, according to this optimal

number of agents, our detection framework requires 2 s to

detect the selective forwarding attack as shown in Figure 9

(b). Therefore, a trade-off between the number of IDS

nodes per each cluster and false positives must be consid-

ered in order to suit our application requirements.

4.2.3. Black hole attack scenario

This attack was implemented as a node that has high

signal strength and drops all receiving packets. The

detection performance of our scheme under black hole

attacks is illustrated in Figure 10(a). Our detection

framework yields a good detection of black hole attacks,

exceeding 96% when the average number of IDSs per each

cluster is equal to five. This later is an optimal number of

agents, under black hole attacks, that meet our application

requirements in terms of detection rate and low number of

false positives. The required time of an IDS agent to detect

this adversary reaches almost 1.5 s when the number of

IDS agents per each cluster is equal to 10, as illustrated

in Figure 10(b). However, a high number of false alarms

occurred when we select 10 agents per cluster. As a result,

the optimal number of IDS nodes per each cluster that

meets our application requirements in terms of fast detec-

tion time, detection rate, and the number of false alarms

is equal to five.

4.2.4. Wormholes attack scenario

This attack was implemented as both the node that

generates a high signal strength as well as the nodes

located in the same neighborhood of the attack that do

not receive the message from this adversary. The detection

rate reaches almost 100% when the number of agents

increases as shown in Figure 11(a). In this case, the

optimal number of IDS agents per cluster that provides a

trade-off between the detection rate and the number of

false alarms under wormhole attacks is equal to five. The

detection of wormhole attack requires a considerable

Figure 8. Hello flood attack scenario: (a) detection and false

positives rates and (b) efficiency. IDS, intrusion detection system. Figure 9. Selective forwarding attack scenario: (a) detection and

false positives rates and (b) efficiency. IDS, intrusion detection

system.
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amount of time compared with other detection attacks, as

illustrated in Figure 11(b). Using six agents per cluster

yields to a detection time reaching 4.5 s. As a conclusion,

the optimal number of IDS agents per cluster under

wormhole attacks for low number of false positives, a high

detection rate, and fast detection time is equal to six.

4.2.5. Multiple attacks scenario

In this section, we evaluate the performances of our

framework when various kinds of attackers appear within

the WSN. First, we evaluate our IDS framework under

black hole and selective forwarding attacks with one

proposed by the authors in [9] in terms of detection rate.

Second, we compare our detection framework when all

the attacks cited earlier appear (i.e., hello flood, selective

forwarding, black hole, and wormhole attacks). Here, we

compare its performances against another scheme pro-

posed in the reference [14] in terms of detection rate, false

positives rate, and efficiency. In addition, in order to

determine the energy efficiency of our model, we compare

the results with the ones obtained in the scheme [31]. As

shown in Figure 12, our detection framework performs a

better detection against black hole and selective forwarding

attacks than the scheme proposed in [9], specifically when

the number of IDSs (i.e., the average number of IDS agents

per each cluster) is important. In this case, the number of

false alarms is related to the number of IDS nodes per each

cluster. As a result, increasing the number of IDS agents

results in an increase in the rate of false positives. We must

therefore consider a balance between the low false

positives rate and high detection rate metrics. As result,

the optimal number of IDSs per cluster meeting our appli-

cation requirements is equal to six. As shown in Figure 13

(a), our intrusion detection framework is effective against

all attacks (cited earlier) when the number of IDS agents

per cluster increases. However, the number of false

positives will affect the performance of our framework

when the number of IDSs per cluster is important (exceed

six agents). Therefore, we must consider a balance

between the number of IDS agents and the false positive

rate. As a result, the optimal number of IDS agents per

each cluster that meets our application requirements is

Figure 10. Black hole attack scenario: (a) detection and false

positives rates and (b) efficiency. IDS, intrusion detection system.

Figure 11. Wormhole attack scenario: (a) detection and false

positives rates and (b) efficiency. IDS, intrusion detection system.

Figure 12. Comparison of our framework under selective for-

warding and black hole Attacks. IDS, intrusion detection system.
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equal to five. The detection and false positives rates are

close to 98% and 2%, respectively. As illustrated in

Figure 13(a), both schemes exhibit a high detection and

low false alarms rates. Otherwise, our scheme performs a

better detection and a low number of false alarms compared

with the scheme in [14] when an optimal number of IDS

agents per each cluster is selected (five agents per each

cluster). In other side, according to this optimal number of

agents, the required time of IDS node to detect the first

malicious node in the network is close to 4 s as illustrated

in Figure 13(b), which is suitable for our application require-

ments. Finally, we conclude that using an optimal number of

IDS agents at each cluster, our intrusion detection framework

exhibits a low number of false positives, a high detection

rate, and fast detection time.

We can observe in Figure 13(c) that our proposed detec-

tion framework requires less energy to detect all the attacks

that are given earlier in comparison with the approach used

by the authors in [31]. This improvement has been

achieved because of two main reasons: the first is that we

use a clustering topology that aims to select only one node

per cluster (CH) that forwards the aggregated data to the

base station rather than all nodes sending their sensed data

to a remote location (base station). The second reason is

the fact that each IDS agent relies on a policy that mini-

mizes the packets transmission that in turn will save energy

consumption. As a conclusion, we can state that our

scheme improves the network lifetime.

5. CONCLUSION AND FUTURE
WORKS

In this paper, we propose an efficient and lightweight intru-

sion detection framework against common routing attacks

that have high severity damage in WSNs. The aim of our

framework was to apply a set of intrusion detection

protocols on cluster-based WSNs that run at different

levels (i.e., at the sensor node level, CH, and base station

levels) in order to identify and prevent any adversary node

disturbing the network. In particular, at a sensor node level,

rule-based detections are implemented at the IDS agents to

identify any incoming attack. At the same time, at a CH

level, the binary classification detection embedded at each

CH aims to update the rules of the IDS agents. In addition,

a reputation protocol is used at each CH to evaluate the

trustworthiness level of its IDSs member. At a high level,

the CH agent sends an intrusion report on the suspected

CH to the base station that in turn will perform a voting

mechanism about the suspected node. Simulation results

show that our scheme presents superior performances for

detecting attacks (such as hello flood, selective forwarding,

black hole, and wormhole attacks) compared with other

schemes. This is mainly specific for networks with an

optimal number of IDS agents per cluster. In this case,

the IDS agent will generate fast detection time with low

number of false alarms. Simulation results confirmed the

lightweight of our detection framework in terms of energy

used and show that our scheme uses less energy than other

model proposed in current literature.

The intrusion detection is the best solution to detect and

prevent any malicious node that aims to disturb the net-

work. The proposed detection solution can be very useful

in a military application for the protection of the relevant

data collected by the sensor against intruder that attempt

to alter a data. In addition, the extended version of our

intrusion detection approach can be used to monitor human

intrusion in a battlefield area and track the positions of

moving target. We can also imagine further practical

applications, such as applying our detection framework in

a forensic environment. In this case, the IDS collects the

forensic evidence and monitor any anomaly occurrence

or abuse attempt.

In the near future, we will expand the detection range of

our framework by adding a sophisticated distributed SVM

training model that has the capability to detect any

Figure 13. Multiple attacks scenario: (a) detection and false

positives rates, (b) efficiency, and (c) energy consumption. IDS,

intrusion detection system.
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attack. Few detection approaches are implemented on a

large scale in computer networks because they are

impractical and would increase the delay within the

networks. In addition, in this study, we do not take into ac-

count the context of mobile WSNs. Therefore, in our future

works, these two limitations will be handled by carry out

new simulations.
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