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An Efficient and Lightweight Intrusion Detection
Mechanism for Service-Oriented

Vehicular Networks
Hichem Sedjelmaci, Sidi Mohammed Senouci

and Mosa Ali Abu-Rgheff

Abstract—Vehicular ad hoc networks (VANETs) are wireless
networks that provide high-rate data communication among mov-
ing vehicles and between the vehicles and the road-side units.
VANETs are considered as the main wireless communication
platforms for the intelligent transportation systems (ITS). Service-
oriented vehicular networks are special categories for VANETs
that support diverse infrastructure-based commercial infotain-
ment services including, for instance, Internet access, real-time
traffic monitoring and management, video streaming. Security is
a fundamental issue for these service networks due to the relevant
business information handled in these networks. In this paper,
we design and implement an efficient and light-weight intrusion
detection mechanism, called efficient and light-weight intrusion
detection mechanism for vehicular network (ELIDV) that aims to
protect the network against three kinds of attacks: denial of ser-
vice (DoS), integrity target, and false alert’s generation. ELIDV
is based on a set of rules that detects malicious vehicles promptly
and with high accuracy. We present the performance analysis of
our detection mechanism using NS-3 simulator. Our simulation
results show that ELIDV exhibits a high-level security in terms
of highly accurate detection rate (detection rate more than 97%),
low false positive rate (close to 1%), and exhibits a lower overhead
compared to contemporary frameworks.

Index Terms—Intrusion detection, service attacks, service-
oriented vehicular networks.

I. INTRODUCTION

W ITH THE development and advancement of wireless

communication technology, researchers conceptualized

the idea of vehicular communication networks, also known as

vehicular ad hoc networks (VANETs). These networks aim to
turn cars into intelligent machines that communicate with each

other (V2V) or with an infrastructure (V2I) in order to improve

traffic safety and comfort of driving [1]. VANETs applica-

tions can be categorized into two classes: road-traffic safety

and service-oriented applications. With service-oriented appli-

cations, road-side units (RSUs) are deployed along the roads for
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users to request any location-based service (finding restaurants,

downloading a map, locating a gas station or a parking space,

etc.), internet-based services (multimedia, instant messenger),

or real-time traffic concerns. It is expected that service-oriented

vehicular networks attract a great deal of investment in large-

scale deployment of wireless infrastructures [1], [2].

The success of such service-oriented vehicular networks

depends mainly on the underlying communication system,

and particularly, the information security since these networks

are exposed to attacks generated and handled by these net-

works [3]. The Intrusion Detection System’s (IDSs) techniques

show that they are very effective in protecting the network

against both internal and external attacks [4]–[8]. Therefore,

in this paper, we design and develop an efficient and light-

weight intrusion detection mechanism for vehicular networks

(ELIDVs) that aim to protect the network against malicious

vehicles. In this research work, we focus to detect three kinds

of attacks: 1) denial of service (DoS) that aims to disturb the

network operation; 2) integrity target that alters the message

that is exchanged between legitimate vehicles or provides false

information (FI) such as false locations; and 3) false alert’s gen-

eration that broadcasts a false alert message. ELIDV relies on

a set of detection rules related to each attack to model a nor-

mal (and anomaly) behavior of a vehicle. Furthermore, with

the help of the proposed detection mechanism, we developed

a vehicle’s behavior evaluation (VBE) protocol that evaluates

the trustworthiness level of a vehicle according to its behav-

ior and the available information it provides. We have designed

a light-weight detection framework with no need to any addi-

tional hardware resource (e.g., firewall) to achieve a high level

of security. In addition, ELIDV is extensible for new function-

alities that would allow detecting more complex attacks.

We note that, to the best of our knowledge, we are the first

dealing with the intrusion issue on service-oriented VANETs,

and the detection of the most dangerous attacks that could occur

in such networks. In fact, most of the works such as [1], [2],

[9] apply cryptography techniques to prevent external attackers

penetrating the network.

This paper is organized as follows. In Section II, we describe

the categories of attacks that can take place on service-oriented

vehicular networks and highlight some intrusion detection

schemas for VANETs proposed in the current literature. In

addition, we introduce the network model that we attempt to

secure. Section III presents details about our intrusion detection
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mechanism ELIDV followed by the VBE protocol. The latter

is capable of evaluating the trustworthiness level of each vehi-

cle in the network. Section IV provides NS3 simulation results.

Finally, in Section V, we conclude the paper and give some

perspectives that we envisage to carry out in the near future.

II. BACKGROUND AND RELATED WORK

In this section, we describe main attacks that target service-

oriented networks and attempt to detect these attacks using our

proposed framework, namely, Integrity target, DoS, and False

alert’s generation attacks. Then, we summarize some relevant

intrusion detection schemes presented in the literature and dis-

cuss their main shortcomings. Finally, we describe the network

architecture that we attempt to secure.

A. Common Attacks on Services-Oriented Vehicular Networks

We present three common categories of attacks that may

target services-oriented vehicular networks and explain their

characteristics.

1) Integrity Target Attack: Such an attack aims to alter the

message that is exchanged between legitimate vehicles or pro-

vide FI such as location. We can cite Sybil attack that we

described as follows.

Sybil attack: In vehicular networks, the vehicles usu-

ally discover their neighbors by periodically broadcast-

ing cooperative awareness messages (CAMs), in which

they claim their identities and positions [10]; thereby, a

Sybil node aims to create multiple identities with provid-

ing false locations. Furthermore, such threat could also

launch a variety of attacks such as DoS or simulate a fake

crash, congestion, etc.
2) DoS Attack: The malicious vehicle that launches such an

attack aims to disturb the network operation or the used rout-

ing protocol. Among the main dangerous DoS attacks, we cite

black hole attack, which is briefly described below.

Black hole attack: The vehicle that carries out such an

attack aims to drop all the received packets from legiti-

mate vehicles.

3) False Alert’s Generation Attack: In this case, the mali-

cious vehicle sends an alert message to its k-hop neighbors

(RSUs, vehicles) to urge them to take some evasive actions.

The idea of the attacker is to send a false alert message in order,

for instance, to clear the road for itself or create a traffic jam

in the road. We summarize, in the following table, some alert

messages.

B. Related Work

IDSs have proved their efficiency to detect intruders with

high accuracy compared to cryptography mechanisms [4]–[6].

Recently, several security schemes have used such a sys-

tem to address security issues in vehicular networks. In [6],

the authors propose a security mechanism to detect and then

evict the malicious vehicles from the network. To address

the intrusion detection issue, they have developed a malicious

node-detection system that relies on anomaly-based detection.

The latter uses an entropy approach to model a normal behav-

ior (NB) of a monitored vehicle and any deviation from this

model is detected as an intrusion. This mechanism aims to

detect two attacks: DoS and an attack that collects and dis-

seminates FI (i.e., integrity target attack). According to their

simulation results, these attacks were detected with a high

accuracy. However, the performance of their scheme decreases

when the number of attacks is high. In addition, the colli-

sions rate increases when the density increases. In [8], the

authors propose a new detection framework called Trust-aware

Collaborative Learning Automata-based Intrusion Detection

System (T-CLAIDS) that uses a learning automat technique for

anomaly detection. This technique has the ability to model a

normal and abnormal pattern with a high accuracy. In this work,

the authors aim to detect intruders that collect packets from a

legitimate vehicle and disseminate false copies of such infor-

mation (i.e., integrity target attack). In their simulations, the

authors prove that their scheme is able to detect up to around

90%–95% of malicious packets. Nevertheless, embedding such

learning algorithm within a vehicular network is computation-

ally expensive and could generate a significant delay, which

makes it inappropriate in such networks specifically for safety

applications.

In [7], the authors introduce a data-centric intrusion detection

scheme to detect the malicious vehicle that generates a false

alert, e.g., a false crash. In their approach, a set of predefined

rules is used to model the behavior of the vehicle after it sends

an alert. Then, the expected behavior and the action that per-

forms by the vehicle after sending alert are compared. When

there is no correspondence, this vehicle is identified as mali-

cious that generates a false alert. In their simulation, the authors

prove that their approach generates a low overhead compared to

other security scheme proposed in the literature. However, the

authors did not evaluate the detection accuracy of their scheme

when such attacks occur.

C. Network Architecture of Service-Oriented VANETS

The architecture of the service-oriented VANET (as illus-

trated in [2] and [11]) is composed of two layers. The first

layer comprises the onboard vehicles and the RSUs wireless

communication devices, for communications either between

vehicle and road-side infrastructure (V2I) or between vehicles

themselves (V2V) using a dedicated short-range communica-

tions (DSRC) standard [12]. The second layer is composed

of service provider (SP) server and a central authority (CA).

Examples for the SP server are traffic control analysis centre

[11], multimedia content service, and location-based service

[2]. RSUs are connected to the SP server and CA through a

wired communication and uses transport layer security (TLS)

protocol [13].

Communication devices, onboard vehicles, and the RSUs

exchange data using multihop routing protocols. In this paper,

we use a greedy forwarding scheme based on unicast approach,

where the forwarder node is selected according to its capability

to provide a higher progress toward the final destination (i.e.,

RSU) [14]. This scheme also uses a store-and-forward (SNF)

mechanism, which has the ability to store the information and
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Fig. 1. Guard vehicle neighbors of a link v1 − v2.

forwards it periodically until it finds the next neighbor or the

final destination. The choice of the forwarding period is crucial

as it impacts the bandwidth resource and the end-to-end delay.

Therefore, the SNF period should take into account the appli-

cation’ requirements (i.e., low bandwidth consumption and low

end-to-end delay).

III. ELIDV

IDSs are the most reliable mechanisms to detect internal

attacks that are aware of the network’s cryptography key. In this

paper, we propose an efficient and light-weight intrusion detec-

tion mechanism, where IDS agents require a low overhead to

detect and prevent, with a high accuracy, three attack categories

that are intended to disrupt the networks communication. We

embed ELIDV in flat topology that uses a unicast greedy and

forwarding protocol.

We first estimate the number of intrusion detection agents

that are located within the link’s radio range. We then present

our detection policies based on rules related to each attacks

cited above. Finally, we describe our VBE protocol that has

the ability to assign a malicious level (ML) to malicious vehi-

cles. Based on the ML, the vehicle is categorized into one of

the following classes: trustworthy, uncertain, or untrustworthy

node.

A. Estimation of the Number of Intrusion Detection Agents

In our proposed detection scheme, each vehicle has the abil-

ity to activate an intrusion detection agent in order to monitor

its neighbors on a promiscuous mode and apply detection rules

related to each attack. The promiscuous mode means that since

vehicle v1 is within the radio range of vehicle v2, it can overhear

communications to and from v2 as illustrated in Fig. 1.

In this section, we analyze the minimum number of vehicles

that have the ability to play the role of an intrusion detection

agent, i.e., could monitor a link (v1 − v2). We call this agent a

guard vehicle.

Using the greedy forwarding protocol, the farthest vehicle

from a communicating vehicle (v1) forwards the transmitted

packets. Therefore, if vehicle v2 is a forwarder node, it should

be located mostly on vehicle v1’s radio-range boundary as

illustrated in Fig. 1.

Let x be the distance between v1 and v2, and we assume that

all the vehicles have the same radio range (r). For any distance

x, the radio coverage area where guard vehicles are located is

the area of the rhombus ABCD subtracted from the area of the

sectors ABC and ADC which is calculated as follows [15]:

A(x) = 2r2cos−1

( x

2r

)

− 2x

√

r2 −
x2

4
. (1)

The average number of guard vehicles for each link is

equal to E[A(x)] ∗ d, where d is the network vehicles density

and E[A(x)] is the expectation of a function A(x), which is

computed as follows:

E [A(x)] =

r
∫

0

A(x)dG(x). (2)

G(x) is the probability distribution of x, which is given by

G(x) =

⎧

⎨

⎩

0, x ≤ 0

x2

r2
, x > 0

E [A(x)] =

r
∫

0

2x

r2

(

2r2cos−1

( x

2r

)

− 2x

√

r2 −
x2

4

)

dx

⇔ E [A(x)] ≈ 0.29πr2.

The average number of guard vehicles, which depends on the

network vehicles density d is given by

0.29πr2d. (3)

As a result, we conclude that there is at least one guard vehi-

cle at each link to monitor the vehicles that are within its radio

range, and the number of these monitoring vehicles depends on

the network vehicles density.

B. Rules-Based Intrusion Detection Technique

1) Detection of DoS Attacks

Black hole attack’s detection: Black hole attack drops all

received packets from legitimate vehicles. Therefore, to detect

such attacks, each guard vehicle (G) monitors the behaviors of

its neighbors (e.g., G and G′ monitor the sender v1 and a relay

node v2). Furthermore, the greedy forwarding selects a capable

forwarder to provide a higher progress toward the destination

[14]. Thereby, the sender v1 knows the position of the relay

vehicle v2 and can use promiscuous mode to monitor whether

the relay forwards the packets it received or not. In case v1
could not determine whether v2 forwards the packets or not,

due to the incertitude caused by a high mobility and collisions,

it broadcasts a monitoring alert to guard vehicles to monitor

the link between v1 and v2. The guard vehicle (G) captures and

stores packets going out of vehicle v1 and monitors whether v2
forwards these packets. Therefore, when G finds that v2 does

not forward any packets from v1, it concludes the following

possibilities may have occurred: 1) the forwarded packets could

not be observed due to packets collision; 2) vehicle v2 does not

find any neighbors to forward packets and hence a SNF mech-

anism is launched; or 3) vehicle v2 carried out a black hole
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attack. To determine whether collision or a malicious behavior

(MB) is taking place, a cooperative detection is launched. In this

detection, the guard vehicle cooperates with its guard neigh-

bors (located within radio range of link v1 − v2) to determine

whether v2 forwards the packets sent by v1. When SNF period

is elapsed and all the guard vehicles claim that a vehicle v2
does not forward any packets from v1, v2 will be labeled as

a black hole attacker. The SNF period depends on the greedy

forwarding protocol that is used (see Table II).

2) Detection of Integrity Target Attacks

Sybil attack’s detection: According to the works in [10],

[16], and [17], detection of Sybil attacks usually relies on one

of these three detection approaches: radio resource testing,

identity registration, and position verification. Our detection

mechanism applies a position verification approach to prevent

the occurrence of such attack. To estimate the position of a sus-

pected vehicle and hence detect such attack, we propose two

detection algorithms that rely on signal strength intensity (SSI)

and packet’s round trip time (RTT) to determine accurately the

distance (or location) of a vehicle.

The guard vehicle monitors the SSI generated by its neigh-

bors (SSIn) and computes the distributed SSI model (SSId)

using a shadowing radio propagation model [10] as follows:

Pr(L)

Pr(L0)
= −10β log

(

L

L0

)

+XdB . (4)

XdB is a Gaussian random variable with zero mean and a

standard deviation σdB , and β is called the path-loss exponent

[10]. L0 is a reference position.

L is the distance from the guard vehicle G with a position

(xvG, yvG) to suspected vehicle v1 with a position (xv1
, yv1

),

computed as follows:

L =

√

(xvG−xv1
)
2
+ (yvG−yv1

)
2
. (5)

The guard vehicle G obtains the suspected node’s coor-

dinates (xv1
, xv1

) through the periodic exchanges of CAM

messages. The distributed model SSId at a distance L from the

suspected vehicle is computed as follows:

SSId(L) = E

(

Pr (L)

Pr (L0)

)

:

= −10β log

(

L

L0

) (6)

where E is the statistical expectation function.

To check whether the suspected vehicle-claimed position is

correct, the result of (7) should follow a Gaussian distribution,

i.e., it should lie within Mean(S)− 3 ∗σ(Si) and Mean(S) +
3 ∗σ(Si) [10], [18], where σ is the standard deviation

Si = |SSIdti − SSInti| , i = {1, . . . , n} (7)

Mean(S) =

n
∑

i=1

Si

n

σ(Si) = Si − Mean(S).

TABLE I

ALERTS AND EXPECTED BEHAVIOR [7]

Both SSId and SSIn are computed at each time period ti,

and n is the number of observations. When Si does not follow

a Gaussian distribution, the vehicle v1 is suspected to provide

a false location, hence could carry out a Sybil attack. In order

to confirm such attack, the packet RTT is computed as in [19],

according to the following steps.

The guard vehicle G with a position (x′

vG, y′vG) sends to

a monitored vehicle v1 a request packet. This vehicle should

immediately reply with its position (x′

v1
, y′v1

), as it receives

this packet. Then, G computes the RTT between G and v1,

RTTG−v1
. G checks whether RTTG−v1

satisfies (8)

RTTG−v1
=

2 ∗L

C
+∆t (8)

where L is the distance from G to v1 given by (5) and C is the

speed of light. ∆t is the time delay incurred by vehicle v1 due to

collusions, and processing the incoming packet (∆p) [19]. The

guard vehicle estimates the probability of collision (PC), which

depends on the vehicle density and speed. A model to estimate

this probability is proposed in [20]. When PC = 0 and ∆t =
∆p, otherwise ∆t = ∆p+ back-off time. In the reply packet

sent by vehicle v1, it adds, with its position, the ∆p and back-off

time values.

If (8) does not hold, v1 is detected as a node that provides

a false location. As a result, it will be identified as a Sybil

attacker.

3) False Alert’s Generation Attacks Detection: The detec-

tion of such attacks is fundamental for road safety. Here, we

focus on alerts that are generated for safety application, which

are described in Table I. In the following, we describe our detec-

tion policy to identify the malicious node. The vehicle v1 sends

CAM messages periodically to a vehicle v2 that includes its

coordinate (xcamv1
, ycamv1

) and the time when a particular

message is generated (tcam).
However, when an event occurs, such as crash or road con-

gestion, vehicle v1 sends alert messages to v2 that include the

alert type and the same information as in a CAM message [i.e.,

time (talarm) and v′1s coordinates (xalarm v1
, yalarm v1 )]. Node

v2 computes the following parameters t1, d1, s1 before an alert

is issued and then computes these parameters again as t2, d2, s2
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after the alert generation in order to monitor the behavior

of v1 and detect whether the generated alert is valid. These

parameters are defined as follows.

a) t1 is the period that v1 spends during the generation of

a CAM and subsequent alert message, d1 is a distance

traveled during this period, and s1 is the average speed.

These parameters are computed as follows:

t1 = talarm − tcam

d1 =

√

(xalarmv1
− xcamv1

)
2
+ (yalarmv1

− ycamv1
)
2

s1 =
d1

t1
.

b) t2 is the period that v1 spends during a generation of an

alert message and subsequent CAM, d2 is a distance trav-

eled during this period, and s2 is the average speed. These

features are computed as follows:

t2 = t′cam − talarm

d2 =

√

(x′
camv1

− xalarmv1
)
2
+ (y′camv1

− yalarmv1
)
2

s2 =
d2

t2
.

Vehicle v2 applies the values of the computed parameters

to compare the behavior of vehicle v1 after an alert is issued

with the expected action provided by the authors in [7] and

illustrated in Table I. For instance, when PCN, SVA, or RHCN

alerts are raised, v2 checks v1’s speed: s1 (before crash detec-

tion) and s2 (after crash detection), and whether v1 changes a

lane (or route). In case the speed s2 is not decreased and/or

it traverses the same lane (or route), v2 ignores such alert

and v1 will be identified as a malicious vehicle. The expected

behaviors when the remaining alerts are raised are given in

Table I.

It’s important to note that v2 could provide wrong coor-

dinates information (i.e., false position), such behavior may

lead to a Sybil attack. The detection of the Sybil is explained

above.

C. Vehicle’s Behavior Evaluation Protocol

During the network lifetime, a malicious vehicle could

switch to and operate as a legitimate [7]; hence, the behavior of

the node oscillates between a legitimate and malicious patterns.

Thereby, it is not necessary to disconnect a malicious vehicle

from VANET immediately when it exhibits a MB. Furthermore,

we assume that a malicious vehicle could carry out several

attacks discussed above.

The VBE protocol assigns a ML to a node that carries

out malicious activities through processes explained in the

following.

1) Vote Process: Malicious vehicles could cooperate

between each other and claim that a legitimate vehicle exhibits

an attack or vice versa. Therefore, in order to overcome this

issue, a vote mechanism is applied. Thereby, when a guard vehi-

cle vi suspects a node as malicious, it forwards a ballot vote to

nearby RSU encrypted with a session key KSRSU−vi
. This bal-

lot vote contains the identity of vi, the identity of the suspected

vehicle vj , type of detected attack, and the time when the attack

was detected. When the RSU is not within guard vehicle’s radio

range, a store and forward mechanism is launched as explained

above. The RSU carries out a vote mechanism to check the

detection’ reliability claimed by a guard vehicle since this latter

could provide a false detection, i.e., claim a legitimate vehicle

as malicious and hence leading to increase the false positive

rate.

Furthermore, during the passage through RSU’s radio

range, the monitored node can oscillate between a legiti-

mate and malicious modes, so the RSU collects the feedbacks

from guard vehicles related to this vehicle and computes

the attack probability of each detection period ∆time as

follows:

Pattack(∆time) =
detection rate

nb_total
(9)

where detection rate is the number of guard vehicles that detect

vehicle vj as malicious during a period ∆time, and nb_total

is the number of vj’s guard vehicles neighbors during this

period. When Pattack(∆time) > 0.5, the suspected vehicle vj
is declared as malicious, otherwise guard vehicle vi is desig-

nated as a node that provides a false detection. In the following,

we explain how to compute a reputation related to each vehicle

and their related ML.

2) Reputation and Monitored Vehicles’ Categorization:

Due to the high mobility of vehicles and the large scale

of VANETs, traditional reputation mechanisms applied in

MANET cannot be used. Therefore, we propose a reputation

mechanism adapted to vehicular networks. In this mechanism,

each RSU computes the reputations of the vehicles that are

located within its radio range, and the CA aggregates the repu-

tations of all vehicles within the network and assigns a ML to

each node that exhibits intrusion attack.

When the RSU confirms the attack that a suspected

vehicle exhibits (i.e., Pattack(∆time) > 0.5), both guard’s

good reputation and suspected vehicle’s bad reputation are

increased. Otherwise, the guard’s bad reputation is increased.

Furthermore, when a vehicle exhibits a legitimate behavior dur-

ing its passage through the RSU’s range, its good reputation is

increased.

According to [7], it is more important to detect FI (e.g.,

Sybil attacks, false alerts, and false detections) than to detect

a MB (e.g., black hole attacks) since FI can cause chaos in

the network, i.e., increase the false positives and create a fake

congestion. As a result, the vehicle that provides FI, its bad rep-

utation should be increased rapidly compared to the one who

exhibits a MB. Furthermore, the guard vehicle that provides a

correct detection (CD), its good reputation should be increased

rapidly compared to the one who exhibits a legitimate behavior.

Based on these arguments, exponential and linear functions are

used to represent a vehicle that provides FI (or CD) and exhibits

a MB (or NB), respectively. Consequently, the reputation of

vehicle vj at RSU level is computed using (10), where the
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good and bad reputations are defined as GRepvj
and BRepvj

,

respectively,

BRepvj
1 = α1expFI + β1 BRepvj

2 = α2MB + β2

BRepvj
= BRepvj

1 + BRepvj
2

GRepvj
1 = α1expCD + β GRepvj

2 = α2NB + β2

GRepvj
= GRepvj

1 + GRepvj
2

Repvj
= (BRepvj

− GRepvj
) (10)

here α1, β1, α2, β2 ∈ [0, 1].
The RSU stores the reputation Rep of each vehicle located

within its radio range in the Reputation_database as (vehicle vj ,

Repvj
) and periodically forwards this list to the CA. This latter

aggregates the reputation of each vehicle in the network and

computes the ML using (11) and (12), respectively. Afterward,

the ML is compared with a trust formula in (13), proposed in

[21]. We note that ML ∈ [0, 1]

Rep_totalvj
=

∑n

k=1
Repvjk
n

(11)

where n is the number of RSUs that compute the reputation of

vehicle vj
{

if Rep_totalvj
< 0, vj is a trustworthy node

Otherwise, MLvj
= E[Rep_totalvj

].
(12)

Here, E is the statistical expectation of the reputation func-

tion Rep_total
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

MLvj ∈ [0.71] The vehicle vj is categorized as

untrustworthy node

MLvj ∈ [0.30.7] The vehicle vj is categorized as

uncertain node

MLvj ∈ [0, 0.3] The vehicle vj is categorized as

trustworthy node.

(13)

IV. PERFORMANCE EVALUATION

We evaluated the performance of ELIDV via simulations

performed using NS-3.17 [22]. In this section, we discuss the

experiment’s methodology, highlight our simulation environ-

ment setup, and present our main results.

A. Experiment’s Methodology and Metrics

ELIDV is compared with the intrusion detection frameworks

proposed in [6]–[8]. Specifically, we computed the detec-

tion rate, false positive rate, and the overhead. These metrics

together with the simulation results from NS-3.17 are used to

evaluate the performance of ELIDV. We varied the number of

malicious vehicles from 5% to 50% of overall vehicles.

The metrics that we simulated are as follows.

1) Detection rate measures the percentage of correctly iden-

tified malicious vehicles and their categorization in appro-

priate lists.

2) False positive rate measures the ratio of the number

of legitimate vehicles that are incorrectly classified as

malicious over the total number of legitimate vehicles

TABLE II

SIMULATION PARAMETERS

3) Overhead computes the cost for securing the commu-

nications and detecting intruders. This metric measures

the amount of information generated by the vehicle, i.e.,

communication overhead.

Main simulation parameters are summarized in Table II and

were chosen to be as realistic as possible. Our results are

based on averaging the simulation readings obtained from 15

simulation runs.

B. Results Analysis

In this section, we compared ELIDV’s performances with

local revocation protocol by voting evaluators (LEAVE)

[6], data-centric misbehavior detection (DCMD) [7], and T-

CLAIDS [8]. In our simulations, we injected separately the

attacks cited above and investigated the effects of each attack in

isolation by varying the number of intruders from 5% to 50%

of overall nodes. We summarized, hereafter, the most important

results.

1) Detection Rate: Fig. 2 shows the proposed intru-

sion detection mechanism ELIDV exhibits a high detection

rate when the attacks considered in our paper occurred.

Furthermore, ELIDV outperforms other detection frameworks

[6]–[8] in terms of attacks detection. In the worst case (i.e.,

the number of attackers is equal to 50% of overall nodes), the

detection rate of ELIDV is equal to 98.4%, 98.66%, and 97.33%

when DoS, integrity target, and false alert’s generation attacks

occurred, respectively. These results are achieved thanks to the

cooperative detection between the guard vehicles on one hand

and the detection rules related to each attack for modeling the

legitimate behavior of the nodes.

2) False Positive Rate: Fig. 3 shows when the number of

intruders increases, the false positive rate increases.

Furthermore, the VBE influences the ELIDV performances.

This is evident when considering the performance of frame-

work that did not use VBE protocol (see Fig. 3) where the

false positives increase rapidly, specifically when the number

of intruders approaching 50% of overall nodes. As a result,

we can claim that by using VBE protocol, the number of

false positives is increasing slowly even when the number

of intruders increased. According to Fig. 3, we can see that

ELIDV outperforms the detection frameworks [6]–[8] in terms

of low false positive. When the number of intruders is 50% of

overall nodes, the false positive rate of ELIDV is 1.33%, 0.6%,

and 1.33% for DoS, integrity target, and false alert attacks,

respectively. This result is achieved thanks to VBE protocol,

which distinguishes with a high accuracy, the malicious vehicle
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Fig. 2. ELIDV’s detection rate under (a) DoS; (b) integrity target; and (c) false alert’s generation attacks.

Fig. 3. ELIDV’s false positive rate under (a) DoS; (b) integrity target; and (c) false alert’s generation attacks.

Fig. 4. Comparison of overhead generated by the detection frameworks.

3) Overhead Analysis: Our intrusion detection mechanism

has the ability to detect an important number of attacks com-

pared to the detection frameworks mentioned above. On one

hand, we can see in Fig. 4(a) that ELIDV and DCMD generate

approximately the same overhead. However, DCMD frame-

work detects only one type of attack, which is a false alert
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attack. On the other hand, as illustrated in Fig. 4(b), LEAVE

and T-CLAIDS frameworks require a high overhead to iden-

tify the attackers since they use an anomaly-based detection

technique to monitor the behavior of the target vehicle, which

is greedy in terms of computing and communication process.

As a result, we can conclude that ELIDV requires a low over-

head (between 4.1 and to 4.5 kB) compared to LEAVE and

T-CLAIDS frameworks. This result is achieved thanks to the

following reason: guard vehicles rely on a policy that minimizes

the amount of exchanged information between each other and

transferred to the RSU. In fact, only the suspected vehicle’s id,

guard vehicle’ id, and the type of detected attack are exchanged.

V. CONCLUSION

The security in service-oriented VANETs is a challenging

issue. In this paper, we proposed and implemented ELIDV,

a new intrusion detection mechanism, that has the ability

to detect both internal and external attacks and differ from

the contemporary detection schemes and that only use cryp-

tography algorithms to enhance the privacy and protection

for the networks from external attacks. ELIDV detects three

kinds of family attacks: DoS, Integrity target, and false alert’s

generation. Our detection mechanism relies on a light-weight

detection technique that uses a set of rules, compared to

contemporary detection mechanisms [6], [8] that use a heavy

algorithm such as anomaly-detection to model a legitimate

vehicle’s behavior. Furthermore, using a newly proposed VBE

reduces the false positive rate that could incur in the network.

This protocol has the ability to evaluate the behavior of the

monitored vehicles during their passage through the network

and assign a ML to each vehicle according to the attacks they

generate. According to our simulation results, the ELIDV

mechanism exhibits a high accuracy of attack detection rate

(more than 97%) and low false positive rate (close to 1%). In

addition, ELIDV generates a low overhead. These results are

achieved when the number of vehicles and intruders are equal

to 300 and 50% of overall nodes, respectively.

Now, our goal in the CarCoDe project [23] is to embed

ELIDV in real-time vehicular network test bed and compare

the simulation and experimental results.
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