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In the context of aquifer thermal energy storage, we conducted a hydrogeophysical experiment emulating the functioning of a groundwater heat pump for heat storage into an aquifer. This experiment allowed the assessment of surface electrical resistivity tomography (ERT) ability to monitor the 3D development over time of the aquifer thermally affected zone. The resistivity images were converted into temperature. The images reliability was evaluated using synthetic tests and the temperature estimates were compared to direct temperature measurements. Results showed the capacity of surface ERT to characterize the thermal plume and to reveal the spatial variability of the aquifer hydraulic properties, not captured from borehole measurements. A simulation of the experiment was also performed using a groundwater flow and heat transport model calibrated with a larger set-up. Comparisons of the simulation with measurements highlighted the presence of smaller heterogeneities that strongly influenced the groundwater flow and heat transport.

2/36

Introduction

The reduction of fossil fuel consumption is an objective for preserving non-renewable energy resources and reducing the impact of global warming. In this context, renewable and sustainable energies are promoted, e.g. Energy Efficiency Directive 2012/27/EU (European Council, 2012).

Smart systems that use heat pumps to transfer heat to or from the ground can take advantage of the thermal stability of the subsurface to reduce energy consumption (Lo Russo et al., 2009;[START_REF] Vanhoudt | An aquifer thermal storage system in a Belgian hospital: Long-term experimental evaluation of energy and cost savings[END_REF][START_REF] Sarbu | General review of ground-source heat pump systems for heating and cooling of buildings[END_REF]. Beyond the different existing systems, ground source heat pumps present an inherent thermal resistance with boreholes, while groundwater heat pumps (GWHP) directly use groundwater that presents a relatively stable temperature over seasons. GWHP provide space heating or cooling, domestic hot water production, and are even used to store thermal energy, depending on the season and/or on the specific needs of the infrastructure [START_REF] Allen | Low-enthalpy geothermal energy resources from groundwater in fluvioglacial gravels of buried valleys[END_REF]Lo Russo and Civita, 2009). GWHP function through an open loop between two wells or groups of wells drilled in a shallow aquifer. During summer and/or any space cooling periods, water is extracted from the so-called cold well to cool down the infrastructure with the help of heat exchangers (geocooling). The thermal energy in excess, captured by heat exchangers, is then transferred to groundwater before its re-infiltration into the so-called warm well [START_REF] Gringarten | A theoretical study of heat extraction from aquifers with uniform regional flow[END_REF][START_REF] Ausseur | Stockage couplé de calories et de frigories en aquifère par doublet de forages[END_REF][START_REF] Voigt | Heat transfer in aquifers with finite caprock thickness during a thermal injection process[END_REF]. In winter, the GWHP functions in a reverse mode: water is pumped from the warm well and heat is transferred from groundwater to the building.

Groundwater is then re-injected into the cold well with a lower temperature [START_REF] Ausseur | Stockage couplé de calories et de frigories en aquifère par doublet de forages[END_REF][START_REF] Ampofo | Review of groundwater cooling systems in London[END_REF]. Theoretically, the heat stored in the aquifer during space cooling periods allows an energy reduction for space heating and inversely with the cold stored during space heating periods for space cooling. Such systems are called aquifer thermal energy storage systems [START_REF] Sommer | The impact of aquifer heterogeneity on the performance of aquifer thermal energy storage[END_REF][START_REF] Sommer | Thermal performance and heat transport in aquifer thermal energy storage[END_REF][START_REF] Bridger | Influence of geologic layering on heat transport and storage in an aquifer thermal energy storage system[END_REF][START_REF] Possemiers | Application of multiple-point geostatistics to simulate the effect of small-scale aquifer heterogeneity on the efficiency of aquifer thermal energy storage[END_REF]. GWHP working in shallow aquifers requires a relatively small ground surface area by comparison to ground source heat pumps. Thus the thermally affected zone (TAZ) is limited to a volume around boreholes [START_REF] Sarbu | General review of ground-source heat pump systems for heating and cooling of buildings[END_REF]. However, the induced temperature variations in the aquifer likely modify the medium properties such as the chemical composition and water quality [START_REF] Bonte | Temperature-induced impacts on groundwater quality and arsenic mobility in anoxic aquifer sediments used for both drinking water 30/36 and shallow geothermal energy production[END_REF][START_REF] Jesußek | Impacts of subsurface heat storage on aquifer hydrogeochemistry[END_REF]. Those changes might in turn impact the system efficiency but also the biodiversity, the microbial activities and consequently the ecosystem functions [START_REF] Griebler | Potential impacts of geothermal energy use and storage of heat on groundwater quality, biodiversity, and ecosystem processes[END_REF]. GWHP implementation. Models of groundwater flow and heat transport are often calibrated with empirical values or from local measurements in boreholes (Lo Russo and Civita, 2009;[START_REF] Liang | Modeling and performance evaluation of shallow ground water heat pumps in Beijing plain, China[END_REF][START_REF] De Paly | Optimization of energy extraction for closed shallow geothermal systems using linear programming[END_REF][START_REF] Mattsson | Advanced compact device for the in situ determination of geothermal characteristics of soils[END_REF][START_REF] Raymond | A review of thermal response test analysis using pumping test concepts[END_REF], ignoring the heterogeneity of the hydrogeological medium. Monitoring the 4D evolution of the TAZ through time is then particularly relevant. The relative proximity of the TAZ to the surface enables a monitoring with noninvasive geophysical methods [START_REF] Hermans | Geophysical methods for monitoring temperature changes in shallow low enthalpy geothermal systems[END_REF].

Electrical resistivity tomography (ERT) is particularly sensitive to the porous medium temperature [START_REF] Rein | Influence of natural time-dependent variations of electrical conductivity on DC resistivity measurements[END_REF][START_REF] Revil | Electrical conductivity in shaly sands with geophysical applications[END_REF][START_REF] Hayley | Low temperature dependence of electrical resistivity: Implications for near surface geophysical monitoring[END_REF]. Moreover, ERT applied in time-lapse (TL) provides spatially distributed information on the changes over time of the porous medium and may target salinity, water content or temperature (for a review on TL ERT see [START_REF] Singha | Advances in interpretation of subsurface processes with time-lapse electrical imaging[END_REF]. Thus, TL ERT is specifically appropriate to monitor heat plume development [START_REF] Hermans | Geophysical methods for monitoring temperature changes in shallow low enthalpy geothermal systems[END_REF].

Acquisition systems can work autonomously, allowing the repeated measurements required to achieve sufficient temporal resolution to follow the 3D TAZ development. The method is also minimally invasive and requires low implementation costs compared to a dense network of boreholes.

So far, the ability of ERT to monitor heat plumes has been demonstrated in 3D in a laboratory experiment at a scale of a few tens of centimeters [START_REF] Giordano | Laboratory scale geophysical measurements aimed at monitoring the thermal affected zone in Underground Thermal Energy Storage (UTES) applications[END_REF]. Field 2D set-ups confirmed its relevance for monitoring heat storage, tracing experiments and borehole heat exchanger either from surface and/or cross-boreholes measurements [START_REF] Hermans | A shallow geothermal experiment in a sandy aquifer monitored using electric resistivity tomography[END_REF][START_REF] Hermans | Quantitative temperature monitoring of a heat tracing experiment using cross-borehole ERT[END_REF][START_REF] Giordano | Time-lapse electrical resistivity imaging of the thermally affected zone of a Borehole Thermal Energy Storage system near Torino (Northern Italy)[END_REF][START_REF] Cultrera | Modelling an induced thermal plume with data from electrical resistivity tomography and distributed temperature sensing: a case study in northeast Italy[END_REF]. However, 2D interpretation can be limited by out-of-theplane or shadow effects during inversion which can limit the quantitative assessment of temperature [START_REF] Nimmer | Three-dimensional effects causing artifacts in two-dimensional, cross-borehole, electrical imaging[END_REF]. This effect is probably partly responsible for discrepancies observed between ERT-derived temperatures and direct cross-boreholes measurements by [START_REF] Hermans | Quantitative temperature monitoring of a heat tracing experiment using cross-borehole ERT[END_REF]. The use of 3D surveys and subsequent inversion can largely improve imaging of complex 3D subsurface objects (e.g., [START_REF] Van Hoorde | 3D electrical resistivity tomography of karstified formations using cross-line measurements[END_REF].

In this paper, we image the development of the TAZ during a heat injection and storage experiment using a 3D ERT survey. The accuracy of ERT-derived temperature estimates is explored through synthetic cases that emphasize the method's sensitivity to target depth and thickness. Results show the ability of surface TL ERT to monitor the 3D development of the TAZ in a shallow aquifer. We 

Field experiment

Hydrogeological context

The study site is located on the alluvial plain of the Meuse River at Hermalle-sous-Argenteau, 13 km north-east from Liège, Belgium. From borehole logs analysis, the subsurface medium can be divided into four lithological units. The first layer is composed of loam and presents a thickness of about 1 m. Below, the second unit is constituted of sandy loam, gravels and clay to a depth of 3 m. Between 3 and 10 m depth, the third layer is composed of gravel and pebbles in a sandy matrix. This third layer hosts the alluvial aquifer. It can be divided in two main units: the upper aquifer, between 3 and 6 m depth, composed of sandy gravels and the lower aquifer, between 6 and 10 m depth, characterized by coarser and cleaner gravels. The water table lies approximately at a depth of 3.2 m. Below 10 m depth, the basement of the aquifer consists of low permeability carboniferous shale and sandstone (Fig. 1).

Figure 1: a) Scheme of the experimental set-up and structure of the underground medium (modified from [START_REF] Klepikova | Heat tracer test in an alluvial aquifer: field experiment and inverse modelling[END_REF]. b) The experiment timeline shows the duration of the heat injection and the DTS measurements as well as the moment of ERT acquisitions.

The site topography is almost flat and the natural hydraulic gradient in the aquifer is approximately 0.06% with a north-east direction [START_REF] Brouyère | Etude et modélisation du transport et du piégeage des solutés en milieu souterrain sariablement saturé[END_REF]. Previous experiments showed that the aquifer is characterized by a high average permeability and by a horizontal and vertical heterogeneity [START_REF] Dassargues | Modeling baseflow from an alluvial aquifer using hydraulic-conductivity data obtained from a derived relation with apparent electrical resistivity[END_REF][START_REF] Derouane | Delineation of groundwater protection zones based on tracer tests and transport modeling in alluvial sediments[END_REF][START_REF] Brouyère | Etude et modélisation du transport et du piégeage des solutés en milieu souterrain sariablement saturé[END_REF]. In particular, the upper and the lower parts of the aquifer, ranging respectively in [3][4][5][6] m depth and [6-10] m depth present a respective effective porosity of 4% and 8% as estimated from tracer test experiments [START_REF] Brouyère | Etude et modélisation du transport et du piégeage des solutés en milieu souterrain sariablement saturé[END_REF]. Direct measurements of Darcy fluxes were performed to estimate the groundwater flow variations with depth. The lower part of the aquifer present Darcy fluxes in the range of [1][2][3][4][5][6][7][8]x10 -3 m/s, about one order of magnitude higher than in the upper layer where values range in [1][2][3][4][5][6][7][8][9][10]x10 -4 m/s [START_REF] Wildemeersch | Coupling heat and chemical tracer experiments for estimating heat transfer parameters in shallow alluvial aquifers[END_REF]. In a previous multiple tracer tests experiment, the monitoring of the 6/36 3D spreading of a heat plume resulting from the injection of heated water in the aquifer also showed lateral variations of the medium hydraulic properties [START_REF] Klepikova | Heat tracer test in an alluvial aquifer: field experiment and inverse modelling[END_REF], strengthened by 2D cross-borehole ERT and DTS measurements [START_REF] Hermans | Quantitative temperature monitoring of a heat tracing experiment using cross-borehole ERT[END_REF]. They confirmed the higher flow in the lower part of the aquifer and the lateral heterogeneity of the aquifer that presents zones of preferential flow [START_REF] Hermans | Quantitative temperature monitoring of a heat tracing experiment using cross-borehole ERT[END_REF]. Similarly, the thermal properties of the aquifer vary with depth as assessed during the ThermoMap project [START_REF] Bertermann | ThermoMaparea mapping of superficial geothermic resources by soil and groundwater data[END_REF]. The thermal conductivity was estimated at 1.37 and 1.86 W/mK and the volumetric heat capacity at 2.22 and 2.34 MJ/m³K in the layers located respectively at depths between 3 to 6 m and 6 to 10 m.

Heating and injection procedure

Water was pumped from the aquifer at the pumping well PP (Fig. 1a), its initial temperature was 13.4°C and the pumping flow rate was fixed to 3 m³/h. The water was then heated using a mobile water flow heater (Swingtec AQUAMOBIL DH6 system) before being re-injected with a flow rate of 3 m³/h. The heated water was injected in the borehole Pz 15 between 4.5 and 5.5 m depth (Fig. 1).

Pz 15 is located in between two boreholes (Pz 13 and Pz 17) screened on the whole aquifer depth allowing DTS measurements (Fig. 1). The water was heated to a temperature of 42°C, i.e. with an increase of 28.6°C from the initial aquifer temperature. The hot water injection lasted 6 hours, but at the end of the injection step, water was injected at a temperature of 14.5°C during 20 minutes due to a technical issue with the water heater. Afterward, a heat storage phase lasted 4 days (Fig. 1b). The injected hot water volume is about 18m³ that can be used to estimate the order of magnitude of the heat plume development. The thermal plume can be assumed to develop in a 3 m height cylinder in the upper part of the aquifer that presents a porosity of 4%. Thus, the thermally affected zone should present a maximum volume of 450 m³ (ignoring conduction effects), developing in a cylinder of about 14 m diameter.

3D electrical resistivity data acquisition

Electrical resistivity measurements were performed from a grid of electrodes located at the surface to monitor the 3D heat plume evolution in the aquifer. 126 electrodes were placed along 6 profiles of 21 electrodes centered on the injection well and parallel to the natural flow direction (Fig. 1a). Along each profile the electrodes spacing was 2.5 m for the 17 central electrodes. Two electrodes at either end of each profile were spaced 5 m apart. That arrangement of electrodes was selected to allow a finer resolution around the injection well together with a greater penetration depth than profiles with equidistant electrodes. Some electrodes located on the northern side of the profiles 1 to 3 could not be hammered into the ground since the field is crossed by a concrete bike path. Thus, 1 or 2 electrodes were missing on those profiles (Fig. 1a). The electrode profiles were separated by 3 m so the electrode 7/36 grid covers the whole space available to image the plume without degrading the resolution perpendicular to the profiles. Data were acquired with gradient and dipole-dipole protocols along each profile (2D data acquisition). Cross-line measurements were also acquired [START_REF] Van Hoorde | 3D electrical resistivity tomography of karstified formations using cross-line measurements[END_REF], but ignored during inversion due to their low quality. We used an ABEM Terrameter LS connected to a relay switch ES10-64 allowing the acquisition in one shot of the whole data set for the entire electrode grid. A first data acquisition was performed the day before the heated water injection for reconstructing the background image. During the heat storage period 16 acquisitions were performed; once every six hours (Fig. 1b). For the background acquisition, reciprocal measurements were acquired for the whole data set to estimate the measurement error [START_REF] Labrecque | The effects of noise on Occam's inversion of resistivity tomography data[END_REF].

Reciprocal measurements correspond to a swap of the electrodes used for current injection and voltage measurements during the "normal" acquisition. A complete normal data set consisted in 3045 voltage measurements. For the time-lapse acquisition, the amount of reciprocal data was reduced to 1119 to speed up the acquisition. The acquisition delay was set to 0.3 s and the acquisition time was 0.5 s. The acquisition duration was 2.5 and 1.5 hours for the background and the time-lapse acquisitions, respectively.

Borehole measurements

Single-ended optical fibers were inserted in the Pz13 and Pz17 boreholes located on both side of the injection borehole (Fig. 1a). The optical fibers allow a direct monitoring of the temperature variations in the aquifer during the experiment, performed with an AP Sensing Linear Pro Series N4386. The distributed temperature sensing (DTS) measurements provide a spatial sampling of 0.2 m and a temporal resolution of 2 min. Since the aquifer vertical extension is relatively small (7 m) we choose to preserve the spatial resolution provided by the spatial sampling provided by the DTS. Instead, we preferred reducing the temporal resolution so we applied a running average through time over a 20 min window. Two sections of the optical fibers were placed respectively in a chilled and a warm water bath. The cold bath was maintained near 0°C (about 13°C cooler than the aquifer) by regularly adding ice. The baths' temperature was monitored with Pt100 sensors. The cable ends were placed at the bottom of the boreholes due to the small diameter of boreholes compared to the critical bend radius of optical fibers. Thus the differential attenuation of the light along the single-ended cables could not be estimated [START_REF] Hausner | Calibrating single-ended fiber-optic Raman spectra distributed temperature sensing data[END_REF]. Nevertheless, the calibration baths allowed to correct the estimated temperatures, guaranteeing their temporal consistency throughout the experiment. DTS measurements were used for checking the relative temperature change 𝛥𝑇 from the initial state and not for an absolute monitoring of the aquifer temperature. The air temperature increased by 15°C at the end of the experiment. However, this effect is attenuated with depth and, although we can observe a difference at a depth of 1 m in the DTS measurements, no temperature variation below 3 m (saturated zone) is visible.

3 Groundwater flow and heat transport model

Settings of the hydrogeological model

We used the 3D groundwater flow and heat transport model HydroGeoSphere (HGS) [START_REF] Therrien | HydroGeoSphere: a threedimensional numerical model describing fully-integrated subsurface and surface flow and solute transport[END_REF] developed by [START_REF] Klepikova | Heat tracer test in an alluvial aquifer: field experiment and inverse modelling[END_REF] for the Hermalle-sous-Argenteau experimental site to simulate numerically our experiment and compare temperatures derived from ERT and measured directly with DTS to the simulation. This deterministic model has been constructed and calibrated based on historical data [START_REF] Dassargues | Modeling baseflow from an alluvial aquifer using hydraulic-conductivity data obtained from a derived relation with apparent electrical resistivity[END_REF][START_REF] Derouane | Delineation of groundwater protection zones based on tracer tests and transport modeling in alluvial sediments[END_REF][START_REF] Brouyère | Etude et modélisation du transport et du piégeage des solutés en milieu souterrain sariablement saturé[END_REF] and a multiple tracer experiment, including heat tracer [START_REF] Wildemeersch | Coupling heat and chemical tracer experiments for estimating heat transfer parameters in shallow alluvial aquifers[END_REF][START_REF] Hermans | Quantitative temperature monitoring of a heat tracing experiment using cross-borehole ERT[END_REF].

The model geometry corresponds to the one described by [START_REF] Klepikova | Heat tracer test in an alluvial aquifer: field experiment and inverse modelling[END_REF], except that we refined the grid around the injection well to accurately model the experiment. In several aspects their experiment differs from the one presented here. They injected the heat tracer at the base of the Pz 9 borehole (Fig. 1a), so in the lower unit of the aquifer that is hydraulically more conductive. Furthermore, Pz 9 is screened over the whole thickness of the aquifer (Table 1) allowing heat propagation upward along the borehole. Their experimental design was adapted to constrain the hydraulic conductivity values on the whole aquifer section. In our experiment the temperature changes occurred in the upper part of the aquifer where heat was injected. Therefore, our data were more sensitive to the spatial variability of hydraulic conductivity distribution in the upper area. Moreover, they injected the heated water at a rate of 3 m³/h during 24 hours and 20 minutes, while pumping at a constant discharge rate of 30 m³/h in the pumping well (Fig. 1) in order to speed up the heat propagation in the aquifer. Therefore their experiment supplied information on the hydraulic properties in the whole domain in between the injection borehole Pz 9 and the pumping well (Fig1).

In our case, we injected and stored the heat in the Pz 15 borehole so our experiment is more sensitive to hydraulic properties distribution in a smaller region surrounding that borehole. The inversion process ran by [START_REF] Klepikova | Heat tracer test in an alluvial aquifer: field experiment and inverse modelling[END_REF] sought the hydraulic conductivity distribution of the Hermalle site aquifer, in between the Pz 9 and the pumping well PP from a monitoring of the temperature changes in the upper and lower part of the aquifer from 11 observation boreholes. They estimated the hydraulic property values with the pilot point method to parametrize the inversion (Fig. 2). Here we use their resulting model to simulate the heat transport in the aquifer with the characteristics of our experiment. The model includes the density effects due to temperature changes [START_REF] Graf | Variable-density groundwater flow and solute transport in porous media containing nonuniform discrete fractures[END_REF]. 

Temperature estimates from the HGS model

The temperature variations from the HGS model show a TAZ with a half-sphere geometry in the upper part of the aquifer (Fig. 3). In the lower part of the aquifer, the TAZ presents a tail along the X axis (towards NE which is the main flow direction; Fig. 3 c,d). The higher hydraulic conductivity 10/36

and the greater porosity in the lower part of the aquifer (Fig. 2 a) favors heat propagation with groundwater flow through convection. 8 h after the beginning of the injection, the diameter of the TAZ showing a 𝛥𝑇 of 4°C at a depth of 4.5 m is about 5 m and is slightly more elongated in the X direction. The lower diameter of the model TAZ compared to the above estimate for a cylinder of 14 m diameter can be explained by the fact that the model predicts a deeper propagation of the TAZ.

Moreover, in the lower part of the aquifer the porosity is set higher in the model than the one used for the cylinder volume evaluation. 47 h after the injection started, the dimension of the model TAZ showing a 𝛥𝑇 of 4°C is slightly reduced to a diameter of about 3 m at a depth of 4.5 m. However at that time, 𝛥𝑇 in the middle of the TAZ is significantly lower, e.g. from 12°C after 8 h (Fig. 3 c) to 4°C for the same position after 47h (Fig. 3 d). where 𝛹 𝑑 (𝑑, 𝑚) measures the data misfit, 𝛹 𝑚 (𝑚) defines model constraints for the inversion regularization and 𝜆 is the damping factor that balances the weight of the regularization. We used the EIDORS software for solving the inversion of the ERT data [START_REF] Polydorides | A Matlab toolkit for three-dimensional electrical impedance tomography: a contribution to the Electrical Impedance and Diffuse Optical Reconstruction Software project[END_REF][START_REF] Adler | EIDORS Version 3.8[END_REF].

The data misfit 𝛹 𝑑 (𝑑, 𝑚) is evaluated between observed measurements 𝑑 (electrical resistances) and calculated data 𝑓(𝑚) computed from a model of resistivity 𝑚. Model and data are both expressed using their base 10 logarithm.

For the reconstruction of the medium background, before the introduction of perturbation through heat injection, the absolute values of the medium resistivity are sought and the data misfit is expressed as:

𝛹 𝑑 (𝑑, 𝑚) = ∑ |𝑑 𝑖 -𝑓 𝑖 (𝑚)| 2 |𝜖 𝐵,𝑖 | 2 𝑁 𝑖=1
, Equation 2where 𝜖 𝐵 are weighting factors accounting for the uncertainty of the measurements.

For time-lapse inversions, the inversion seeks the variations of resistivity from the background model.

The measure of the data misfit is here defined using the difference between the background data 𝑑 0𝑖

(the subscript 0 refers to the background data) and the monitored data 𝑑 𝑖 :

𝛹 𝑑 (𝑑, 𝑚) = ∑ |(𝑑 𝑖 -𝑑 0𝑖 ) -(𝑓 𝑖 (𝑚) -𝑓 𝑖 (𝑚 0 ))|² |𝜖 𝑇𝐿,𝑖 |² 𝑁 𝑖=1 12/36
Equation 3

where 𝑚 0 stands for the model parameter distribution of the background state and 𝜖 𝑇𝐿 corresponds to the time-lapse data weighting.

The insertion of prior information on the medium structure is performed by 𝛹 𝑚 (𝑚) in the inversion to stabilize the inverse problem:

𝛹 𝑚 = ||𝑊 𝑚 (𝑚 -𝑚 0 )|| 2 , Equation 4
where 𝑊 𝑚 represents the regularization matrix that is here the identity matrix [START_REF] Tikhonov | Solution of incorrectly formulated problems and the regularization method[END_REF]. The background image 𝑚 0 was the result of a first inversion seeking the resistivity values of a medium constituted by four horizontal layers as highlighted by borehole logs analysis and previous ERT experiments [START_REF] Hermans | Facies discrimination with electrical resistivity tomography using a probabilistic methodology: effect of sensitivity and regularisation[END_REF]. The four layers correspond to a superficial unit above 1 m depth, below the unsaturated zone extends to 3 m depth, then to a depth of 10 m lies the aquifer over the bedrock. The depth of the interfaces are taken from borehole logs analysis. In the time-lapse reconstruction scheme, 𝑚 0 corresponds to the background image that refers to the initial state of the medium.

The computation of 𝑓(𝑚) is performed using a 3D finite element model built using the Netgen software (Schöberl, 1997). The unstructured mesh is refined close to the electrodes for a better accuracy of the resistance estimation, while elements are coarser further away from the electrodes allowing a reduced computation time. A regular coarse mesh was designed for the inversion in order to reduce the number of model parameters and thus stabilize the inversion procedure.

The inversion is performed using an iterative Gauss-Newton scheme and at each step a linear search against data misfit seeks the optimum value of the regularization parameter 𝜆that minimizes the weighted residuals 𝜒:

𝜒 = √ 1 𝑁 𝛹 𝑑 (𝑑, 𝑚).
Equation 5

The inversion is stopped either when the inversion converges, that is when further iteration do not provide a better data fit 𝜒, i.e. no reduction of the objective function 𝛹(𝑚) is observed, or when the desired misfit 𝜒 = |1 -𝜉| is reached, with 𝜉 = 10⁻². Such a stopping criteria avoids over-fitting data 13/36

and the presence of artefacts in the resulting image [START_REF] Kemna | Tomographic inversion of complex resistivity: theory and application[END_REF]. The data analysis and the method used to determine the error models weighting the data misfit are described in the appendix A.1.

ERT conversion to temperature images

Temperature variations in the aquifer induce a change of the medium electrical properties, i.e. the resistivity and its inverse the conductivity. The conductivity variations from the initial state and the temperature changes are related by a linear petrophysical relationship so temperature images can be derived from ERT [START_REF] Hermans | Geophysical methods for monitoring temperature changes in shallow low enthalpy geothermal systems[END_REF]. We consider that bulk conductivity variations in the aquifer are due to changes of the fluid conductivity that depends on fluid salinity and temperature variations.

We checked that chemical perturbations produced by temperature changes have a negligible effect on the fluid salinity [START_REF] Hermans | Quantitative temperature monitoring of a heat tracing experiment using cross-borehole ERT[END_REF]. Thus, the conductivity increase can be quantitatively Temperature change from the initial state 𝛥𝑇 images can be constructed from the observed variations of the bulk conductivity 𝜎 𝑏 by converting them with [START_REF] Hermans | Geophysical methods for monitoring temperature changes in shallow low enthalpy geothermal systems[END_REF]2015):

𝛥𝑇 = 1 𝑚 𝑓 ( 𝜎 𝑏,𝑇𝐿 𝜎 𝑏,𝐵 𝜎 𝑓,𝐵 𝜎 𝑓,25 -1) + 25 -𝑇 𝑖𝑛𝑖𝑡 Equation 7
𝜎 𝑏,𝐵 and 𝜎 𝑏,𝑇𝐿 correspond respectively to the bulk conductivity of the background state and of a timelapse acquisition. 𝜎 𝑓,𝐵 = 0.0614 𝑆 𝑚 ⁄ represents the fluid conductivity at the initial state and was estimated from Eq. ( 6) with an initial temperature of 𝑇 𝑖𝑛𝑖𝑡 = 13.44°𝐶. That initial temperature value corresponds to the average of the temperatures measured along both boreholes using DTS before the heat injection. The estimate of the initial conductivity of the fluid was validated with a value of 𝜎 𝑓,𝐵 = 0.0598 𝑆 𝑚 ⁄ by direct measurement with a CTD probe in the injection borehole.

Sensitivity analysis of the ERT-derived temperature images

We ran synthetic simulations computed from models of a cylindrical plume with different thicknesses and positions in the aquifer in order to evaluate the sensitivity of the electrode array to the target depth and thickness. The temperature increase in the cylinder was fixed to 17°C and the cylinder diameter to 8 m based on the outcomes of the HGS model. The cylinder was centered on the injection borehole Pz 15 (Fig. 1). The tested cylinder heights varied between 1.5 m and 5 m. The cylinder upper limit positions checked was of -3 m and -4 m so it is always located below the unsaturated zone (Fig. 4).

On all images, we observe that the inversion allows a fairly correct reconstruction of the target shape when the target is located close enough to the electrodes (approximately the distance corresponding to the electrode spacing) or sufficiently thick to be detectable (at least the electrode spacing). We note that the target upper limit is always overestimated by about 2 m and that the amplitude of 𝛥𝑇 decreases with depth. The region of higher 𝛥𝑇 in the reconstructed target is also shifted upward the center of the actual target. Moreover, the temperature increase leaks out of the synthetic target delimitation, except in the shallow region where artifacts induce a reduction of the electrical conductivity (Fig. 4). Quantitatively we can compare the estimated temperature increase at the level of the injection borehole Pz15 to the synthetic target as summarized in Table 2. We note that when the target is relatively shallow, that is for an upper limit at -3 m, the increase of the target thickness greatly helps determining more closely the target true temperature. However if the target is only 1 m deeper, the target thickness increase does not allow accurate estimates of the target temperature.

Table 2: Percentage of the temperature increase estimated by ERT from the synthetic target increase for different cylinder height and upper position.

Height \ Upper limit 1.5 m 2.5 m 4 m 5 m -3 m 24 % 44 % 67 % 78 % -4 m 17 % 30 % 41 % 46 % The target blur and the global temperature underestimation are related to the regularization that favors a smooth change from the background model. The smoothing effect hinders a precise location of the target and thus an overestimation of the target depth. Moreover, the estimation of 𝛥𝑇 at depth is degraded by the reduction of the ERT sensitivity with depth (Fig. 4). From those tests, we infer that the geometry of the plume (its size and depth) is fairly estimated, with an overestimation of the plume vertical position when the target depth and thickness correspond to the electrode inter-distances. Furthermore, images underestimate the actual temperature changes in the aquifer. Smoothing effects 5 Results from field data

Background images

The 3D inversion of the background ERT data set provides the distribution of the subsurface resistivity with a root mean square of the data misfit of 1.03%. The results are presented by 2D vertical cross-sections corresponding to each acquisition profile (Fig. 5). The images show the vertical variations of the electrical resistivity corresponding to the four lithological units. The superficial conductive layer with a thickness of 1 m and a resistivity of about 115 Ω.m corresponds to the loam unit. Between 1 and 3 m deep the medium presents heterogeneous variations of resistivity with zones of a few meters length showing a resistivity higher than 400 Ω.m and locally values reaching 1000 Ω.m while the surrounding medium presents a resistivity of 250 Ω.m. Here the resistive regions might be interpreted by lenses of clean unsaturated gravels in a medium of sandy loam and gravels.

Below, in the aquifer layer at a depth between 3 and 10 m the medium presents a median resistivity of 180 Ω.m with some more conductive areas notably below profiles located on Y= 6 and 9 m where the resistivity is around 100 Ω.m. Those conductive anomalies are likely an effect of the pumping well metallic-casing. We note that we do not distinguish any clear resistivity variations related to the different nature of the aquifer upper and lower units. Previous ERT experiments discriminated between the upper and lower regions through a higher resolution cross-borehole survey [START_REF] Hermans | Quantitative temperature monitoring of a heat tracing experiment using cross-borehole ERT[END_REF], or through a specific analysis developed for discriminating the different facies of the medium [START_REF] Hermans | Facies discrimination with electrical resistivity tomography using a probabilistic methodology: effect of sensitivity and regularisation[END_REF], which were not used in this study. Finally, the lower layer located below 10 m depth in the bedrock shows a median resistivity of 280 Ω.m. Those values are in accordance with previous ERT investigations on the site [START_REF] Hermans | Facies discrimination with electrical resistivity tomography using a probabilistic methodology: effect of sensitivity and regularisation[END_REF]. The black crosses correspond to the electrodes.

Time-lapse conductivity variation images

Since conductivity variations vary linearly with temperature we choose to represent that property instead of resistivity variations over selected time steps (8 h and 47 h after the injection started) on sections of the 3D model (Fig. 6). A conductive plume, with a variation between 10 and 30% from the initial state, is observed in the upper part of the aquifer (Fig. 6c to f). The region showing a conductivity increase higher than 10% presents an oval geometry with a horizontal extent of about 5 m along the X axis and 10 m in the Y direction (Fig. 6a andb). The plume is not centered on the injection borehole, but is slightly shifted along the X axis, in the same direction as the natural groundwater flow. The region with the highest conductivity change is also slightly shifted in the Y direction. The global shape of the zone affected by conductivity changes does not significantly evolve with time, but the conductivity further increases more than 50 hours after the end of the injection. A 18/36 second conductive target is observed at Y=0 m, below the first profile which is lacking central electrodes. We interpret this more conductive zone as an artifact related to a lower sensitivity in that region due to the missing electrodes (Fig. 6). The images also present regions with a conductivity decrease from the initial state, mostly in the shallow region but also at depth below profile 1 and at the extremity of the central profiles. In the shallow region, they might be related to changes in the medium saturation above the aquifer. Below, we interpret them as artifacts that are strengthened by our less conservative choice of error model (see Appendix A.1). ERT-derived 𝛥𝑇 images show a similar shape and evolution of the TAZ as the conductivity variation images (Fig. 7). On those images, 𝛥𝑇 is fixed to 0°C in regions showing negative contrasts of conductivity since we interpret them as artifacts. The TAZ with a 𝛥𝑇 increase of 4°C from the initial state presents an oval shape in the horizontal plane at Z=-4.5 m with a length of 10 m in the Y direction and a width of 5 m along the X axis (Fig. 7a,b). As on the conductivity variation images, the shift along the X and Y directions of the TAZ with a highest 𝛥𝑇 is observed (Fig. 7c,d,e,f).

From the synthetic tests, we deduce that the TAZ oval shape is not an effect of the electrode design or inversion, but reflects the actual shape of the TAZ. This highlights the usefulness of ERT in providing information on the plume anisotropy. ERT-derived 𝛥𝑇 images show a relatively shallow TAZ upper limit, in the region where the method sensitivity is still adequate for detection. However, as observed from the synthetic inversions, the TAZ upper limit deduced from ERT might be overestimated by 2 m. The TAZ should indeed be confined below the water table (3 m depth, Fig. 1).

Similarly to the synthetic cases, it is difficult to properly image the shape of the TAZ in the lower part of the aquifer from ERT inversions, due to the low sensitivity (Fig. 4). Quantitatively, 8 hours after the beginning of injection, the derived 𝛥𝑇 reaches locally 12°C in the upper part of the aquifer between the injection borehole and the electrode profile at Y=9 m (Fig. 7). 40 hours later, that region shows a higher 𝛥𝑇 value of 14°C. However, a difference of only 2°C is in the range of uncertainty observed in the synthetic tests, it is thus difficult to confirm this 2°C increase. Nevertheless, we note the persistence of a TAZ on the ERT-derived 𝛥𝑇 images with a similar shape 8 h and 47 h after the injection (Fig. 7). Predictions from the HGS model and ERT-derived 𝛥𝑇 results are represented on cross-sections to ease their comparison (Fig. 8). The edges correspond to the TAZ showing a 𝛥𝑇 of 4°C from the initial state, at different times after the injection. Estimates derived from ERT show a coarser TAZ with a shape preserved all along the experiment, probably due to the smoothing effect of the inversion as demonstrated by the synthetic tests. They illustrate the gradual plume shift along the X and Y directions. Predictions from the HGS model show a smaller TAZ confined at the level of the hot water injection. The dimension of the predicted TAZ shrinks progressively and vanishes after 58 h.

Compared to ERT-derived 𝛥𝑇contours, the HGS predictions show also a stronger influence of the 21/36 natural groundwater flow that transports the plume in the X direction, notably in the lower part of the aquifer. Note that the natural flow was estimated from a regional model [START_REF] Brouyère | Etude et modélisation du transport et du piégeage des solutés en milieu souterrain sariablement saturé[END_REF] and has a larger influence in our experiment than in the one used for calibration given the lower pumping rate (Table 1). Finally, the HGS predicted plumes do not show the significant anisotropy with an elongation in the Y direction in the horizontal plane observed on the ERT results. 

Direct temperature measurements

DTS direct temperature measurements in the aquifer show that the temperature variation from the initial state 𝛥𝑇 reaches 20°C in the upper part of the aquifer, while in the lower part 𝛥𝑇is about 10°C with a local increase to 15°C (Fig. 9). From the end of the injection, 𝛥𝑇 decreases abruptly at depth below 5 m, while in the upper part 𝛥𝑇 decreases gradually with time. We also note that measurements performed at Y=9.85 m show a larger and stronger print of the TAZ than measurements performed at Y=5.35 m. Thus DTS measurements confirm the plume shift in the Y direction observed from ERT. During the injection, the heat plume propagates at depth until the bottom of the boreholes (Fig. 9). However, the heat increase in depth might be related to local convection around boreholes and not due to heat propagation through the whole aquifer [START_REF] Hermans | Quantitative temperature monitoring of a heat tracing experiment using cross-borehole ERT[END_REF][START_REF] Klepikova | Heat tracer test in an alluvial aquifer: field experiment and inverse modelling[END_REF]. 

Comparison of temperature dynamics

The dynamics of 𝛥𝑇 from direct measurements, ERT estimates and the HGS predictions are compared at the level of the measurement and injection boreholes (Pz 13, 15, 17 Fig. 1) at a depth of 4.5 m (Fig. 10). That depth corresponds to the highest temperature measured with DTS (Fig. 9). Direct 𝛥𝑇 measurements are acquired using DTS data for Pz 13 and Pz 17 and a CTD probe for the injection borehole Pz 15 (Fig. 1). ERT-derived 𝛥𝑇estimates correspond to values extracted from the voxels of the 3D models obtained by the inversion of each data sets acquired after the hot water injection. The probe located in the injection well (Y=7.5 m, Fig. 10b) shows an average 𝛥𝑇 value of 27°C during the injection phase. Then 𝛥𝑇 decreases sharply to 0.5°C and softly increases to a peak value of 19°C due to the injection of cold water. 𝛥𝑇decreases then gradually to a value of 7°C at the end of the experiment. Those direct measurements confirm the persistence of the TAZ all along the experiment as observed with ERT (Fig. 7,8,10). DTS measurements in neighboring wells do not show the same rebound pattern but instead a faster 𝛥𝑇 decrease at the end of the injection phase. In 24/36 the measurement borehole at Y=5.35 m, direct 𝛥𝑇measurements reach 20°C during the injection phase and decrease to 3.5°C at the end of the experiment (Fig. 10a). The second measurement borehole at Y=9.85 m shows a different dynamic with a higher 𝛥𝑇 value that reaches 23°C during the injection phase but decreases to a lower value of 0.5°C at the end of the experiment (Fig. 10c).

ERT-derived 𝛥𝑇 clearly miss to capture the dynamics of the temperature decrease within the TAZ.

𝛥𝑇 values are underestimated a few hours after the injection phase and overestimated later (Fig. 10).

In general, all 𝛥𝑇 curves derived from ERT are rather stable, although showing a slight decreasing trend, compared to the direct 𝛥𝑇 measurements. In particular ERT-derived 𝛥𝑇 remains higher at the end of the experiment (𝛥𝑇of 6°C and 7.5°C in borehole at Y=5.35 m and Y=9.85 m respectively, Fig. 10). Those observations confirm the results of the synthetic tests, showing that the survey design is mostly sensitive to the global temperature change around the well.

The comparison of the HGS model prediction with the 𝛥𝑇 direct measurements shows that the model globally underestimates 𝛥𝑇 values compared to direct measurements (Fig. 10). The HGS model predicts lower 𝛥𝑇 values at the end of the injection phase in the three boreholes of 12.5°C, 24°C and 13.5°C for a Y position of 5.35, 7.5 and 9.85 m respectively (Fig. 10a). At the end of the experiment the HGS model predicts a 𝛥𝑇 value of 1.5°C in the injection borehole, confirming its inability to represent the TAZ persistence. At that time, in both measurement boreholes show similar 𝛥𝑇 values of about 1°C.

Discussion

The experiment performed here demonstrates the capacity of ERT to deliver useful information about the 4D evolution of a thermal plume in a shallow aquifer. ERT-derived 𝛥𝑇 images supply information on the plume anisotropy in a horizontal plane and its persistence all along the experiment (Fig. 7,8, 10). The plume anisotropy is attested with synthetic tests but cannot be deduced from direct measurements as boreholes close to the injection well are lacking along the X axis. However, direct measurements in the injection well confirm the TAZ persistence through time (Fig. 10b). So the Quantitatively, the ability of ERT to image the dynamics compared to direct measurements is also limited since we note an underestimation of ERT-derived 𝛥𝑇 values a few hours after the injection phase and an overestimation later. This is a direct consequence of the regularization, as highlighted by the synthetic inversions [START_REF] Singha | Accounting for spatially variable resolution in electrical resistivity tomography through field-scale rock-physics relations[END_REF]. In practice, a small plume with high temperature yields the same image as a large plume with a lower temperature. Combined with the slow dynamic characteristic of a storage experiment, it generates ERT images with limited amplitude variations, but with the correct trend.

Due to regularization, ERT-derived 𝛥𝑇 images also present a shift in the vertical position of the plume and a coarse shape of the TAZ, both identified with synthetic tests. The effect of blur could be attenuated by reducing the acquisition time, by acquiring a limited amount of reciprocal data [START_REF] Rucker | Investigating motion blur and temporal aliasing from time-lapse electrical resistivity[END_REF]. Other regularization method such as covariance constraints or minimum-gradient support might help overcome the smoothing effect and improve the delineation of the TAZ (Hermans et al., 2016b;[START_REF] Fiandaca | Generalized focusing of time-lapse changes with applications to direct current and time-domain induced polarization inversions[END_REF][START_REF] Nguyen | Data-driven selection of the minimumgradient support parameter in time-lapse focused electric imaging[END_REF]. Furthermore, ERT lacks sensitivity in the 26/36 horizontal dimension due to the electrode inter-distance and the volume integrative sounding of the method. Observed changes with ERT are therefore representative of an average temperature variation in a 3D volume that prevents the reconstruction of an accurate TAZ shape and temperature estimate.

The decrease of the ERT sensitivity with depth also hinders delimiting precisely the TAZ in the deeper region. This is further complicated due to the higher groundwater flux easing the plume transport as shown in the HGS model and DTS measurements (Fig. 2,3,9). Discrepancy with direct measurements, providing local information of the medium properties surrounding the boreholes might be partly explained by perturbations in water circulation related to boreholes drilling and screening. Indeed, we suspect that strong temperature variations observed in the lower part of the aquifer during the hot water injection might be due to internal flow (Fig. 9). The integrative nature of ERT might also affect the comparison with local measurements. The latter, coupled to the adverse effects of inversion also hinders ERT-derived 𝛥𝑇 images to reflect properly the TAZ dynamic. However, beyond the production of ERT-derived 𝛥𝑇 images, discrepancies in the sensitivity of ERT and DTS could be exploited to better constrain hydraulic properties of the aquifer close to the injection borehole, considering they supply complementary insights on the medium properties. The information about the TAZ shape development from ERT can help conceptualizing the spatial variability of hydraulic properties in the aquifer, while direct measurements furnish a quantitative estimate of the temperature variations. So coupled inversion fitting simultaneously the surface resistance measurements and the direct temperature acquisitions is worth considering to evaluate accurately the TAZ location and geometry [START_REF] Pollock | Fully coupled hydrogeophysical inversion of a laboratory salt tracer experiment monitored by electrical resistivity tomography[END_REF]. The coupled inversion would remove the regularization smoothing and would help refining the hydraulic property distribution around the injection well, which strongly affects predictions. Alternatively, the set-up of a stochastic inversion by model falsification such as a prediction focused approach would also benefit from the complementary nature of ERT and DTS data (Hermans et al., 2016a[START_REF] Hermans | Uncertainty quantification of medium-term heat storage from short-term geophysical experiments using Bayesian Evidential Learning[END_REF]. Such a methodology presents the advantage that the developed analysis directly focuses on the prediction of the TAZ with the different measurement types, also avoiding any regularization.

Conclusion

Although a quantitative estimation of temperature was not possible in this experiment, due to the inherent limitations of inversion, our study demonstrates the pertinence of the minimally invasive 4D ERT method to provide qualitative, complementary insights on the development of a thermal plume in a shallow aquifer. The ERT-derived 𝛥𝑇 images obtained here inform about the anisotropic shape of the thermal plume and its persistence all along the experiment. Hence, the method indicates the presence of local heterogeneities at the vicinity of the injection well and the aquifer heat storage capacity confirmed by direct measurements. The anisotropic behavior cannot be validated using direct temperature measurements as it would have required a denser network of boreholes close to the injection well (Fig. 1). Thus, ERT measurements provide crucial information for the set-up of groundwater heat pumps (GWHP), which requires an accurate knowledge of the spatial variability of the aquifer's hydraulic and heat capacity properties. So, the insertion of a correct distribution of the hydraulic properties in the hydrogeological model has to be performed for estimating the likely shape and extension of the TAZ for different GWHP injection regimes. Surface ERT could be used as a control tool for monitoring the successful functioning of GWHP in operation.

However, the sensitive analysis we performed show that the ERT sensitivity to the plume decreases strongly with the plume depth and depends also on its dimension. Thus, the qualitative characterization of the TAZ performed through ERT inversion is strongly influenced by the TAZ depth. Indeed, the method struggles to provide the shape of the TAZ in the lower part of the aquifer.

In our case, most of the TAZ is really shallow, reaching the groundwater table 3 m deep, so the method is sensitive to changes induced in the subsurface by the TAZ development. Nevertheless, for a deeper TAZ, the electrode design should be adapted to explore the medium at greater depths. This can be done by using a larger distance between electrodes but at the cost of a lower spatial resolution. resistance data were sorted to remove outliers and the data were selected so they presented a repetitive error lower than 1% and a reciprocal error lower than 5% for each time step. The total number of filtered data at each time step was reduced from 3045 to 1948 measurements. For the estimate of an error model of the time lapse inversions, normal and reciprocal data at a given time were compared to the background measurements [START_REF] Lesparre | A new approach for time-lapse data weighting in ERT[END_REF]. The normal difference between times t0 and ti as 𝛥𝑙𝑜𝑔𝑅 𝑁 = 𝑙𝑜𝑔𝑅 𝑁,𝑖 -𝑙𝑜𝑔𝑅 𝑁,0 , and the reciprocal difference as 𝛥𝑙𝑜𝑔𝑅 𝑅 = 𝑙𝑜𝑔𝑅 𝑅,𝑖 -𝑙𝑜𝑔𝑅 𝑅,0 were used in the time lapse inversions because the data fit were in the logarithmic 

  compare our results with direct temperature measurements which demonstrates the ability of ERT to supply complementary insights about the sub-surface spatio-temporal dynamic. The ERT-derived temperatures show a general agreement with direct observations, although important discrepancies are observed in the amplitude of the measured variations. The latter are mainly explained by the different representative volumes of the two techniques and the limitations related to the regularized ERT inversion. A groundwater flow and heat transport model calibrated during a previous experimental set-up at a larger scale, is also computed. Its comparison with direct and ERTderived temperature measurements underline the presence of local heterogeneities at the vicinity of the injection well which should be incorporated in the flow and transport model.

Figure 2 :

 2 Figure 2: Spatial variability of the hydraulic conductivity K (m/s) models in XY planes for the lower (a) and upper (b) parts of the aquifer obtained from the inversion of transient temperature responses[START_REF] Klepikova | Heat tracer test in an alluvial aquifer: field experiment and inverse modelling[END_REF].

Figure 3 :

 3 Figure 3: Temperature variation from the initial state estimated by the HydroGeoSphere model, 8 h and 47 h after the injection started on cross-sections in a horizontal layer at -4.5 m (a, b), on crosssection at the level of the injection borehole along the electrode profiles (c, d) and perpendicular to

  interpreted in terms of temperature change using the linear relationship:𝜎 𝑓,𝑇 𝜎 𝑓,25 = 𝑚 𝑓 (𝑇 -25) + 1Equation 6where 𝜎 𝑓,𝑇 stands for the fluid conductivity at a temperature 𝑇 and 𝑚 𝑓 corresponds to the fractional change of the fluid conductivity per degree Celsius around the reference temperature 𝑇 = 25°𝐶. From water samples taken on site the trend between the temperature and the fluid conductivity was estimated to be 𝑚 𝑓 = 0.0194 and the fluid conductivity at 𝑇 = 25°𝐶 was evaluated at 𝜎 𝑓,25 = 0.0791 𝑆 𝑚 ⁄[START_REF] Hermans | Quantitative temperature monitoring of a heat tracing experiment using cross-borehole ERT[END_REF].

Figure 5 :

 5 Figure 5: Electrical resistivity cross-sections extracted below each electrode profile from the 3D model. The black hashed or solid lines represent the injection and measurement boreholes projection.

Figure 6 :

 6 Figure 6: Conductivity variations 8 h and 47 h after the injection started with respect to the background measurements in a horizontal layer at -4.5 m (a, b), on cross-section at the level of the injection borehole along the electrode profiles (c, d) and perpendicular to the electrode profiles (e, f).The green circles and lines represent the injection and measurement boreholes. The black dotted lines and crosses correspond to the electrodes.

Figure 7 :

 7 Figure 7: Temperature variation from the initial state estimated from ERT 8 h and 47 h after the injection started in a horizontal layer at -4.5 m (a, b), on cross-section at the level of the injection borehole along the electrode profiles (c, d) and perpendicular to the electrode profiles (e, f). The green circles and lines represent the injection and measurement boreholes. The black dotted lines and crosses correspond to the electrodes.

Figure 8 :

 8 Figure 8: Evolution of the plume shape over time, with a contour line at 𝛥𝑇 = 4°C. The colored lines represent estimates from ERT and the hashed colored lines predictions from the HGS model. Data are presented on cross-sections in a horizontal layer at -4.5 m (a), at the level of the injection borehole along the electrode profiles (b) and perpendicular to the electrode profiles (c). The black circles (a) and lines (b,c) represent the injection and measurement boreholes. The black dotted lines (a) and crosses (b,c) correspond to the electrodes.

Figure 9 :

 9 Figure 9: Temperature variation from the initial state estimated with the DTS all along the aquifer section at the measurement boreholes Pz17 (a) and Pz13 (b).

  Similarly, predictions correspond to values extracted from the HGS model voxels at different simulation times.

Figure 10 :

 10 Figure 10: Temperature variations from the initial state at a depth of 4.5 m at the level of Y=5.35 m (a), Y=7.5 m (injection borehole), b) and Y=9.85 m (c). The red zone represents the duration of the heat injection. ERT estimates are obtained from the 3D time-lapse inversions. Model predictions were computed with the HGS model.

  performed experiment provides an interesting insight on the aquifer storage heat capacity not expected by the HGS model. The revealed anisotropy in the XY direction by ERT might indicate the presence of a preferential water flow path bypassing hydraulic barriers. Such a preferential flow path in the upper part of the aquifer can be related to clay lenses channeling groundwater flow in the Y direction. Despite TL ERT supplying smoothed results due to regularization, the method has the capacity to provide useful insights about local hydraulic conductivity heterogeneity. The suspected local heterogeneities have a strong influence on the groundwater flow and hence on heat transport. However, those small heterogeneities are not taken into account in the existing HGS model. The hydraulic parameters used for the simulation should be adjusted around the injection well to reproduce the plume evolution. Indeed, the hydraulic parameters were determined during a previous experiment representative of a larger scale. The integration of hydraulic parameter variations at that smaller scale into the model could help reproducing the horizontal anisotropy of the TAZ development revealed by ERT. In this specific experiment, although ERT identifies the trend, it does not accurately identify the temporal fluctuations of 𝛥𝑇. Indeed, DTS measurements show a significant 𝛥𝑇 decrease in both monitored boreholes, while ERT only indicates a slight decreasing trend (Fig. 10). The agreement is better in the injection well. Such examples illustrate the difficulty in comparing data representative of 𝛥𝑇changes in different volumes. On the one hand, heat loss towards the atmosphere might have favored the 𝛥𝑇 decrease observed with DTS within wells. On the other hand, since ERT acquisitions are sensitive to temperature changes in a large volume, their estimates might better reflect the matrix heat storage and release. DTS and CTD measurements are bathed in the borehole water and thus not directly connected to the conditions in the aquifer. In addition, the injection of unwanted cold water further complicated the distribution of temperature in the aquifer, creating an anomaly below the resolution of ERT.

For

  the background image, an error model 𝜖 𝐵 was fit to the measured difference |𝑅 𝑁 -𝑅 𝑅 | between the normal 𝑅 𝑁 and reciprocal resistance 𝑅 𝑅 after removing outliers and bining by ⟨𝑅⟩. The error𝜖 𝐵 varies linearly with resistance (Fig. A.1 a, Slater et al., 2000): 𝜖 𝐵 = 𝑎 𝐵 + 𝑏 𝐵 ⟨𝑅⟩,

  Figure A.1: Measured and model error from the normal and reciprocal acquisition for the background (a) and the time-lapse (b) inversions.

Table 1 :

 1 Main differences between the experiment of[START_REF] Klepikova | Heat tracer test in an alluvial aquifer: field experiment and inverse modelling[END_REF] and the one presented in this study.
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and the underestimation of the aquifer parameters using TL-ERT are well known and results from the regularization procedure in the inversion [START_REF] Singha | Accounting for spatially variable resolution in electrical resistivity tomography through field-scale rock-physics relations[END_REF].

Figure 4: Temperature variation estimates from synthetics built as a vertical cylindrical heat plume.

The cylinder thickness is of 1.5 (a, b), 2.5 (c, d), 4 (e, f) and 5 m (g, h) and its upper limit is at -3 m (a, c, e, g) and -4 m (b, d, f, h). The green lines indicate the shape of the cylindrical target, the black crosses correspond to the electrodes.

Appendix A.1 Data analysis and error model

We assume that the data (resistance measurements) are uncertain due to noise and that the latter is composed of a random component and a systematic one correlated over time. The effect of systematic error, including modeling errors, can be canceled out by subtraction when working with datadifferences inversion [START_REF] Labrecque | Difference inversion of ERT data: a fast inversion method for 3-D in-situ monitoring[END_REF]. The weighting factors 𝜖 𝐵 and 𝜖 𝑇𝐿 for the background and time-lapse inversions have to be correctly evaluated. As suggested by [START_REF] Slater | Cross-hole electrical imaging of a controlled saline tracer injection[END_REF] and [START_REF] Lesparre | A new approach for time-lapse data weighting in ERT[END_REF], we use the analysis of normal to reciprocal disparities. First, The error model parameters 𝑎 𝐵 , 𝑏 𝐵 , 𝑎 𝑇𝐿 and 𝑏 𝑇𝐿 were estimated by fitting the measured errors as a function of ⟨𝑅⟩ (Fig. A.1). For the time-lapse error estimate, ⟨𝑅⟩ also expresses as stated in Eq. A.2.

Error data were divided into classes of ⟨𝑅⟩ with four bins per decade of 𝑅 𝑖 , logarithmically equally spaced. For each bin the average µ and the standard deviation 𝜎 were estimated [START_REF] Koestel | Quantitative imaging of solute transport in an unsaturated and undisturbed soil monolith with 3D ERT and TDR[END_REF].

The choice of the error threshold on which the error model is fitted impacts the data weighting and so the residuals 𝜒 that are used as a stopping criteria (see Eq. 5). We choose to fit both error models to µ + 𝜎 2 ⁄ (Fig. A.1) in order to be more sensitive to conductivity variations due to the hot water injection.