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ABSTRACT 

Despite the widespread recognition of the importance of monitoring, only a few studies have 

explored how estimates of vital rates and predictions of population dynamics change with additional 

data collected along the monitoring program. We investigate how estimates of survival and 

individual growth, along with predictions about future population size, change with additional years 

of monitoring and data collected, using as a model system freshwater populations of marble (Salmo 

marmoratus), rainbow (Oncorhynchus mykiss), and brown trout (Salmo trutta L.) living in Western 

Slovenian streams. Fish were sampled twice a year between 2004 and 2015. We found that in 3 out 

of 4 populations, a few years of data (3 or 4 sampling occasions, between 300 and 500 tagged 

individuals for survival, 100–200 for growth) provided the same estimates of average survival and 

growth as those obtained with data from more than 15 sampling occasions, while the estimation of 

the range of survival (i.e., the difference, over all sampling occasions considered, between maximum 

and minimum survival estimated in a sampling occasion) required more sampling occasions (up to 22 

for marble trout), with little reduction of uncertainty around the point estimates. Predictions of 

mean density and variation in density over time did not change with more data collected after the 

first 5 years (i.e., 10 sampling occasions) and overall were within 10% of the observed mean and 

variation in density over the whole monitoring program. 
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1 INTRODUCTION 
The estimation of vital rates and life-history traits and how they vary with habitat and population 

factors are crucial both for our understanding of population dynamics, risk of extinction, and 

evolution of traits in natural populations, and for informing management strategies in conservation 

programs (Frederiksen, Lebreton, Pradel, Choquet, & Gimenez, 2014; Letcher et al., 2015; 

Smallegange & Coulson, 2013). To understand how variation in vital rates and life histories of 

organisms among individuals and through time emerge and how that variation contributes to 

population dynamics and risk of extinction, we typically need long-term monitoring studies that 

include contrasting environmental conditions (Elliott, 1994), longitudinal data (Thomson, Cooch, & 

Conroy, 2009), and statistical models that can tease apart environmental and biological contributions 

to the observed temporal (and spatial, in case of meta-populations or multiple populations) variation 

in vital rates, life histories, and population dynamics (Letcher et al., 2015). 
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When the goal is informing management strategies for the conservation of species, monitoring is the 

process of collecting information about state variables (e.g., abundance, size, and vital rates) at 

different points in time and space for detecting changes in those variables through time, over space, 

and among individuals (Gerber, Beger, McCarthy, &Possingham, 2005). The purpose of a scientific 

investigation should drive model formulation and the type and amount of data collected (Elderd & 

Miller, 2016). It follows that defining “long-term” for monitoring is always context-dependent and 

often challenging, since how long the monitoring of natural populations must be carried out depends 

on the generation time and longevity of the organisms, the characteristics of the environment in 

which the species lives, and the goals of the monitoring program. For conservation programs, 

sufficient knowledge to address most practical problems related to conservation and management of 

endangered species will usually be obtained within a few years or generations of the monitored 

species, after which the cost of monitoring should begin outweighing the expected benefits with 

regard to management strategies and overall decision making (Possingham, Fuller, & Joseph, 2012). 

Within a population, habitat factors—both extrinsic (e.g., weather, food) and intrinsic (e.g., 

population density, type of competition among organisms)—and their interaction, determine a large 

part of the temporal variation in vital rates, in recruitment, and population size, age-, and 

sizestructure (Jonsson & Jonsson, 2011). If the fundamental parameters of an ecological system are 

constant, that is, if habitat factors vary little through either time or space, then we rarely need long-

term monitoring for learning in the context of conservation biology (Possingham et al., 2012). On the 

other hand, highly stochastic environments such as those characterized by the occurrence of 

extreme events (Vincenzi, 2014) require decades-long monitoring to capture the effects of extreme 

events on vital rates, life histories, population dynamics, and risk of population extinction (Vincenzi, 

Mangel, Jesensek, Garza, & Crivelli, 2017). Besides, serendipitous findings and an appreciation of the 

effects of subtle variation in life histories in natural populations of long-lived species on individual 

and population processes may only come after many years of monitoring, although one might expect 

new knowledge to be gained in ever decreasing increments (Possingham et al., 2012). Lastly, 

especially for small populations, many years of data may be necessary to reduce the uncertainty 

around the estimation of vital rates due to sample size effects (Reynolds, 2012). 

Only a few studies have investigated how estimates of vital rates and predictions of population 

dynamics change with additional data collected through the monitoring program, and what are the 

minimum or—when factoring in the costs in money and time of monitoring— optimal years of 

monitoring or amount of data collected for estimating vital rates and predicting population dynamics 

(Caughlan & Oakley, 2001). For instance, Gerber et al. (2005) studied how long we should monitor 

the recovery of an over-fished stock to determine the fraction of that stock to reserve; they found 

that the optimal monitoring time frame is rarely more than 5 years. After 5 years, the expected 

benefit of reduced uncertainty about the parameters of the system was negligible compared to the 

expected gain from earlier exploitation. 

In the present study, we investigate how estimates of survival and body growth, along with 

predictions about future population size, change with additional years of data collected from 

monitoring programs. We use as a model system freshwater populations of marble (Salmo 

marmoratus), rainbow (Oncorhynchus mykiss), and brown trout (Salmo trutta L.) living in Western 

Slovenian streams. These trout populations have been monitored (tag-recapture) since 2004 as part 
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of the ongoing conservation program for the endangered marble trout (Crivelli, Poizat, Berrebi, 

Jesensek, & Rubin, 2000). 

We estimated average and time-specific survival probabilities and average growth trajectories for 

each year of sampling, that is, with cumulative tag-recapture data up to 2006, 2007, and so on up to 

2014, and then used models of population dynamics to study how predictions of mean population 

size and its temporal variation change with additional years of sampling data. Due to the similarity of 

the monitored species (all belonging to the family Salmonidae) and their restricted geography 

(Western Slovenia), our results are more descriptive than prescriptive. We encourage the 

undertaking of similar analyses by other conservation scientists and practitioners, with the objective 

of providing general guidelines on the minimum duration of monitoring programs, amount of data 

collected, or individuals tagged and recaptured for goals ranging from the estimation of vital rates to 

prediction of population dynamics and risk of extinction. 

2 MATERIAL AND METHODS 

2.1 Study area and species description 

We estimated survival probabilities and growth trajectories, and predicted population dynamics for 

the marble trout (Salmo marmoratus) populations of Lower Idrijca [LIdri_MT] and Upper Idrijca 

[UIdri_MT] (Vincenzi, Mangel, et al., 2016), rainbow trout (Oncorhynchus mykiss) population of 

Lower Idrijca [LIdri_RT] (Vincenzi et al., 2019), and brown trout (Salmo trutta L.) population of Upper 

Volaja [UVol_BT] (Vincenzi, Jesenšek, & Crivelli, 2018). In LIdri, marble trout [LIdri_MT] live in 

sympatry with rainbow trout [LIdri_RT] (Vincenzi, Crivelli, Jeseňsek, Rossi, & De Leo, 2011; Vincenzi et 

al., 2019). Both UIdri_MT and UVol_BT live in allopatry. LIdri_RT was created in the 1960s (Vincenzi 

et al., 2019) and UVol_BT in the 1920s (Vincenzi et al., 2018) by stocking rainbow and brown trout, 

respectively. Both populations have been self-sustaining since their creation. 

Marble trout is a freshwater salmonid fish of high conservation concern, due to its restricted 

geographical distribution and the risk of hybridization with alien brown trout. Only eight natural and 

two re-introduced populations of genetically pure marble trout remain, all in streams in the river 

basins of Soca, Baca, and Idrijca in Slovenia, persisting above barriers that have prevented the 

upstream movement of brown trout or marble-brown trout hybrids (Vincenzi, Mangel, et al., 2016). 

Marble trout spawn in November– December. Marble trout females typically reproduce at age 3 and 

older, and at a minimum size of 200 mm, and males age 2 and older. 

Freshwater resident brown trout live in well-oxygenated waters. Depending on growth and life 

histories, resident brown trout achieve sexual maturity anywhere from 1 to 10 years. In the Northern 

Hemisphere, the usual time for breeding in most populations is between November and January and 

brown trout may spawn over several years.  

Rainbow trout is a north Pacific species (Gall & Crandell, 1992). Rainbow trout in the Adriatic basin of 

Slovenia typically start spawning at age 1 (current authors, unpublished data), spawn over several 

years, and grow much faster in size than brown and marble trout.  

2.2 Sampling 

Populations were sampled bi-annually in June and September. The first sampling for LIdri_MT, 

LIdri_RT, and UIdri_MT was in June 2004 and in September 2004 for UVol_BT. Sampling protocols are 
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described in greater details in Vincenzi, Mangel, et al., 2016) and Vincenzi et al. (2018). If captured 

fish had length L > 115 mm, and had not been previously tagged or had lost a previously applied tag, 

they received a Carlin tag (Carlin, 1955), and age was determined by reading scales. Fish are 0+ 

(juveniles) in the first calendar year of life, 1+ in the second year and so on. Sub-yearlings of marble, 

rainbow, and brown trout are smaller than 115 mm in June and September, so fish were tagged 

when at least aged 1+. The adipose fin was also removed from all fish captured for the first time 

(starting at age 0+ in September), including those not tagged due to small size at age 1+. Therefore, 

fish with intact adipose fin were not sampled at previous sampling occasions at age 0+ or 1 + . 

We estimated density of fish older than 0+ using a twopass removal protocol (Carle & Strub, 1978) as 

implemented in the (R Development Core Team, 2014) package FSA (Ogle, 2015). Total stream 

surface of the monitored area (1,084, 1,663 and 746.27 m2 for LIdri, UIdri and UVol, respectively) 

was used for the estimation of fish density (in fish ha−1). 

2.3 Statistical analysis of survival and growth 

Our goal was to investigate how estimates of (a) average and time-specific survival probabilities and 

(b) average body growth and (c) predictions of population dynamics change with each additional year 

of sampling data, where Yf is the last year of monitoring/data collection in September. As simulations 

of population dynamics often prevent the use of null-hypothesis testing, and multiple comparisons 

increase the “researcher degrees of freedom,” including the choice of convenient hypotheses to test 

(Gelman & Loken, 2013), we present and discuss our results on variation in survival, growth and 

population dynamics from a qualitative point of view, that is, without formal null-hypothesis testing. 

For each population, the first models were estimated with Yf = 2005, that is, using data up to from 

September 2005. For the analysis of survival, we used both June and September data, while for the 

analysis of growth we used only September data.  

2.3.1 Survival 

Two relevant probabilities can be estimated from a capture history matrix: φ, the probability of 

apparent survival, and p, the probability that an individual is captured given that it is alive (Thomson 

et al., 2009). We used the Cormack–Jolly– Seber (CJS) model as a starting point for the analyses 

(Thomson et al., 2009). We tested the goodness-of-fit of the CJS model with the program Release 

(Burnham, Anderson, White, Brownie, & Pollock, 1987). We modeled the seasonal effect (Season) as 

a simplification of full-time variation, by dividing the year into two periods: June to September 

(Summer), and September to June of the following year (Winter). Since length of the two intervals 

(Summer and Winter) was different (3 and 9 months), we estimated probability of apparent survival 

on an annual scale. 

To compare model results when different data were used, models tested included either only the 

constant term (i.e., average apparent survival over all the sampling intervals) or sampling occasion. 

For probability of capture p, following Vincenzi, Mangel, et al., 2016) we tested models with either 

Age, Season, Cohort or sampling occasion as predictors, along with the capture model with no 

predictors (i.e., constant probability of capture). 

For each population, we used Akaike Information Criterion (AIC) for model selection (Akaike, 1974). 

For each Yf, we obtained average survival probabilities over the whole sampling period (2004 to Yf) 

and for each sampling interval from the respective best models of (a) average over the whole 

sampling period 2004 to Yf and (b) for each sampling interval from 2004 to Yf. We carried out the 
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analysis of survival using the package marked (Laake, Johnson, & Conn, 2013) for R (R Development 

Core Team, 2014). 

2.3.2 Growth 

The standard von Bertalanffy Growth Function (vBGF; von Bertalanffy, 1957)is  

 

where L∞ is the asymptotic size, k is a coefficient of growth (in time−1) and t0 is the (hypothetical) age 

at which length is equal to 0.  

In the vast majority of applications of the vBGF, L∞, k and t0 have been estimated at the population 

level starting from cross-sectional data, without accounting for individual heterogeneity in growth 

due to genetic, environmental and stochastic factors. However, when data include measurements on 

individuals that have been sampled multiple times, failing to account for individual variation in 

growth may lead to biased estimations of asymptotic size and mean length-at-age (Vincenzi, Crivelli, 

Munch, Skaug, & Mangel, 2016; Vincenzi, Mangel, et al., 2014). 

In the present study, we used the formulation of the vBGF specific for longitudinal data of Vincenzi, 

Mangel, et al. (2014), in which L∞ and k may be allowed to be a function of shared predictors and 

individual random effects. However, in this study, we limited our analyses to models including only 

the intercept (i.e., the overall mean) and individual random effects, that is, we did not include group 

effects (e.g., sex, cohort). In the estimation procedure, we used a log-link function for k and L∞, since 

both parameters must be non-negative. We set: 

 

 

where u῀ N(0, 1) and v ῀N(0, 1) are the standardized individual random effects, σu and σv are the 

standard deviations of the statistical distributions of the random effects, i is the individual. Since the 

growth model operates on an annual time scale (i.e., the use of multiple data points per individual 

within a year would require a different growth model) and more data on tagged fish were generally 

available in September of each year, we used September data for modeling lifetime growth. 

Models were fitted with the Automatic Differentiation Model Builder (ADMB), an open-source 

statistical software package for fitting nonlinear statistical models (Fournier et al., 2012). ADMB can 

fit generic random-effects models (module ADMB-RE) using an Empirical Bayes approach using the 

Laplace approximation (Skaug & Fournier, 2006). 

We also tested whether there were noticeable differences in vBGF models when estimating model 

parameters using a standard nonlinear regression fitting routine with no random effects (nls function 

in R) or using ADMB-RE. We carried out this analysis to determine whether the fitting of a random-

effects model is recommended even when only mean growth trajectories at the population level are 
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needed, thus in the case when the fitting of a standard non-linear regression model may represent a 

theoretically viable procedure. 

 

2.4 Population dynamics 

We simulated population dynamics of marble, rainbow and brown trout using individual-based 

models that include the most critical vital rates for the population dynamics for salmonids, that is, 

reproduction, juvenile survival (from 0+ to 1+), and survival of fish older than 0+. 

Previous studies on the same marble (Vincenzi, Mangel, et al., 2016)), rainbow (Vincenzi et al., 2019), 

and brown trout (Vincenzi et al., 2018) populations have found that recruitment in all these 

populations was driving most of the variation in population density of fish older than juveniles. 

Investigations in fish farms have suggested minimum size for gonad development and reproduction 

in marble trout (~200 mm) and rainbow trout (~150 mm). However, pedigree reconstruction in four 

marble trout populations, including LIdri_MT and UIdri_MT (Vincenzi et al., 2017; Vincenzi et al., 

2019), and in the rainbow trout population of Lower Idrijca (LIdri_RT) (Vincenzi et al., 2019), showed 

that marble and rainbow trout can occasionally reproduce at smaller sizes, and reproductive success 

as number of juveniles produced appears to be independent of parents' size. Thus, for simulating 

recruitment (i.e., density of 0+ in September) in the model of population dynamics, we did not use 

the model of growth and the model of size-dependent fecundity. Instead, we used the stock-

recruitment Generalized Additive Models (GAM, Wood, 2006) of Vincenzi, Mangel, et al., 2016) for 

marble and rainbow trout and of Vincenzi et al. (2018) for brown trout. These GAM models are in the 

form: 

 

where R(t) is recruitment at year t, Pop is the salmonid population, Ds(t − 1) is the density of potential 

spawners at year t − 1, and s is the nonlinear function linking spawners to recruitment. 

Early survival, and in particular the first overwinter survival, is the major bottleneck for population 

size in freshwater salmonids (Vincenzi, Satterthwaite, & Mangel, 2012). Many years of data, and 

possibly data from multiple populations spanning a wide range of densities (Imre, Grant, & Cunjak, 

2005), are necessary to estimate densitydependent survival early in life (from 0+ to 1+). In our model 

of population dynamics, we used for marble trout the model of density-dependent early survival 

developed in Vincenzi, Mangel, et al., 2016). For both marble trout populations, density-dependent 

survival early in life σ 0 – 1 was modeled as: 

 

where D≥1+is the density of fish of age 1+ and older when juveniles are in the first year of their life. 

For rainbow and brown trout, we randomly (i.e., we did not model autocorrelation) drew at each 

year of the simulation of population dynamics a value from the discrete set of estimated early 

survival probabilities reported in (Vincenzi et al., 2019) for rainbow trout and in Vincenzi et al. (2018) 

for brown trout. 
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For modeling survival of fish older than juveniles, we used the population-specific, time-varying 

survival probabilities estimated in this study. For each population, we simulated 100 years of 

population dynamics using survival probabilities estimated with final year of sampling Yf = 2006, 

2008, 2010, 2012 or 2014. At each time step of the simulation of population dynamics, a survival 

probability was randomly drawn from the logit distribution of estimated survival probabilities, and 

Bernoulli trials were used to determine whether an individual survived or not. Since UVol_BT is a 

source-sink system (Vincenzi et al., 2018), we also modeled the influx of brown trout from the source 

population by doubling the number of fish in each cohort after the first overwinter survival (Vincenzi 

et al., 2018). 

For each replicate, we recorded (a) mean density of fish older than 0+ over simulation time, and (b) 

the coefficient of variation (CV) of population density of fish older than 0+ over simulation time. 

Since freshwater salmonid populations living in Western Slovenia are at contemporary risk of 

extinction only after the occurrence of extreme climate events such as flash floods or debris flows 

(Vincenzi et al., 2017; Vincenzi et al., 2018), we did not include population extinction as response 

variable, as the risk of population extinction would almost entirely depend on the modeled intensity 

and frequency of extreme events (Vincenzi et al., 2008). 

For an ensemble of realizations (100 replicates for a fixed set of parameters), we computed: (a) mean 

and 2.5 and 97.5% quantiles of mean density of fish older than 0+ over simulation time; (b) mean and 

2.5 and 97.5% quantiles of CV of density of fish older than 0+ over simulation time.  

3 RESULTS 
Results are fully reproducible. Data and R code are at https://github.com/simonevincenzi/Limit_sampling.  

Estimates of population densities were variable throughout the time in all four trout populations, 

with the highest coefficient of variation (CV) for LIdri_RT (0.60) and the lowest for UVol_BT (0.17) 

(Figure 1).  

Previous work has found no or minor effects of population density, water temperature, body size or 

sex on survival in marble trout (Vincenzi, Mangel, et al., 2016). For Yf > 2006 (i.e., after 6 sampling   

For Yf > 2006 (i.e., after 6 sampling occasions for marble and rainbow trout, and 5 for brown trout), 

average survival was constant for LIdri_MT, UIdri_MT, and UVol_BT (Figure 2). For LIdri_RT, average 

survival was constant for Yf > 2009 (i.e., after 12 sampling occasions). The distance between point 

estimates of maximum and minimum time-varying survival probabilities increased through time, but 

the 95% CI of maximum and minimum survival probabilities overlapped for each Yf, except in 

UVol_BT (Figure 2)  
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FIGURE 1 Estimated density from observation data over time ± 95% confidence intervals (individuals older than 0+ in 

September of each year) of marble trout in lower (LIdri_MT), (a) and upper (UIdri_MT), (b) Idrijca, rainbow trout in lower 

Idrijca (LIdri_RT), (c) and brown trout in upper Volaja (UVol_BT), (d). Coefficients of variation of point estimates of 

population density between 2004 and 2015 were 0.60 (LIdri_RT), 0.17 (UVol_BT), 0.35 (UIdri_MT) and 0.33 (LIdri_RT). Scales 

on the y-axis are different as estimated densities of rainbow trout and brown trout are much lower and higher, respectively, 

than those of marble trout 

 

FIGURE 2 Point estimates ±95% confidence intervals for average survival (circle), highest (up triangle) and lowest (down 

triangle) survival for a sampling interval for different last year of sampling Yf for marble trout in lower (LIdri_MT, (a) and 

upper Idrijca (UIdri_MT), (b), rainbow trout in lower Idrijca (LIdri_RT), (c), and brown trout in upper Volaja (UVol_BT), (d). 

 Symbol size represents sample size constant 

von Bertalanffy growth function models fitted with standard nonlinear regression (i.e., without 

accounting for individual variability in growth) show estimates of asymptotic size that are typically 

greater than those obtained with random-effects models (Figure 3). In LIdri_MT, the greater 

asymptotic size when estimating model parameters without using random-effects was caused by 
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long-lived individuals that were bigger-at-age than shorter-lived individuals (Figure 3). In LIdri_RT and 

UVol_BT, the estimates of asymptotic size when using models with or without random effects were 

basically the same at any point in time (Figure 3). The estimates of asymptotic size when using the 

random-effects vBGF did not change with Yf, when Yf was >2005 (Figure 3). For all populations, 

estimates of parameters in vBGF models with individual randomeffects with Yf = 2006 or 2014 

described the same average growth trajectories (Figure 4). 

Using time-varying fish survival probabilities estimated at different Yf had little effects on predictions 

of mean population density (Figure 5) and on its coefficient of variation (Figure 6). The simulated 

mean densities were within 10% of the observed mean densities for all trout populations for all Yf 

(Figure 5). The only exception was UVol_BT, for which the simulated mean densities with Yf = 2006 

were 20% lower than the observed mean density over 2004–2015. CV of density from simulations 

was lower than the observed CV over 2004–2015 for LIdri_MT, and similar to the observed CV for the 

other trout populations (Figure 6). 

4 DISCUSSION 
Effective conservation of species requires the estimation of variation in vital rates and life-history 

traits and an understanding of the determinants of the observed variation. Then, vital rates and life 

histories estimated from focal data, findings from published literature, and controlled experiments 

should be integrated into models of population dynamics for prediction and evaluation of scenarios 

of population dynamics, evolution of traits, and management strategies (Elderd & Miller, 2016; 

Evans, Holsinger, & Menges, 2010). However, how long the monitoring programs informing those 

models should go on is often unclear. 

In the present study, we investigated how estimates of vital rates and predictions of population 

dynamics change along the monitoring program with the collection of more data. We found that in 3 

out of 4 populations, a few years of data (3 or 4 sampling occasions, close to the generation time of 

marble trout and ~1.5 times the generation time of rainbow and brown trout) provided the same 

estimates of average survival and growth as those obtained by more than 15 sampling occasions, 

while the estimation of the range of survival probabilities (i.e., ideally the distribution of survival 

probabilities over time, more often the difference between maximum and minimum survival) 

required, as expected, more sampling occasions (up to 22 for marble trout), with little reduction of 

uncertainty around the point estimates. Predictions of mean density and variation in density over 

time did not change with more data after the first 5 years (i.e., 10 sampling occasions) and were 

within 10% of the observed mean and variation in density over 11 years. 
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FIGURE 3 Point estimates ±95% confidence intervals (95 CI) for asymptotic size L∞in the von Bertalanffy growth function 

estimated using standard non-linear regression (circle) or the random-effects model (triangle) for different last year of 

sampling Yf for marble trout in lower (LIdri_MT), (a) and upper Idrijca (UIdri_MT), (b), rainbow trout in lower Idrijca 

(LIdri_RT), (c), and brown trout in upper Volaja (UVol_BT), (d). Size of symbols is proportional to the number of unique 

individuals in the data set. For LIdri_MT, the estimate of asymptotic size when using standard nonlinear regression 

techniques with Yf = 2005 and 2006 (not shown) were (mean [95% CI]): 1,818 mm [(−1899)-5,535] and 1,555 mm [(−577) − 

3,688], respectively 

4.1 Survival 

Previous work has found cohort and time effects on the survival probabilities of freshwater 

salmonids living in Western Slovenian streams. As neither water temperature nor population density 

seemed to explain variation in survival, the observed variation might be ascribed to variation in flow 

rates, trophic conditions or other unobserved or unmeasured properties of the environment 

Vincenzi, Mangel, et al., 2016). Although due to the effects of sample size and of a fairly stable 

environment in Lower Idrijca, Upper Idrijca and Upper Volaja we expected the marginal effect of 

additional data to be increasingly smaller along the monitoring program, we found that even after 6–

8 sampling occasions the estimates of average survival (both point estimates and confidence 

intervals) did not change with additional years of data. The only exception was the rainbow trout 

population of Lower Idrijca—the smallest of the four salmonid populations—, for which the 

estimates of average survival remained stable over time only after using data from 12 sampling 

occasions. In total, capture recapture data from between 300 and 500 tagged fish were sufficient for 

stable estimates of average survival probabilities. Since newly tagged fish entered the data set at 

each sampling occasion, further studies will investigate how many complete life histories are needed 

to obtain stable estimates of average survival probabilities. 

Due to small population sizes, the CIs of the estimates of maximum and minimum survival over a 

sampling interval overlapped in all populations except the brown trout population of Upper Volaja. In 

addition, while maximum survival is expected to have a ceiling determined by habitat conditions and 

the ecology of the species that can be estimated 
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FIGURE 4 Average growth trajectories for body length estimated using the random-effects von Bertalanffy growth function 

models using data collected up to 2006 (black) and up to 2014 (gray) for marble trout in lower (LIdri_MT), (a) and upper 

Idrijca (UIdri_MT), (b), rainbow trout in lower Idrijca (LIdri_RT), (c), and brown trout in upper Volaja (UVol_BT), (d) with a 

few years of data, the estimation of very low survival probabilities such as those caused by flash floods and debris flows 

Vincenzi, Mangel, et al., 2016) may require decadeslong monitoring programs. 

In our analyses, we imposed that data collection for all populations started on the first sampling 

occasion of the real monitoring program for the four trout populations. Other analyses could be run 

by maintaining the same length of the monitoring program (say, four sampling occasion), but setting 

an arbitrary sampling occasion as the first one (say, 2010 instead of 2004). For the two trout 

populations of Lower Idrijca, it might appear that by setting the first sampling occasions later on we 

would quickly capture the biggest difference between maximum and minimum survival probabilities. 

However, probability of capture and probability of survival at each sampling occasion are jointly 

estimated using all data available, and the presence of many degrees of freedom might bias the 

comparison of results when choosing different starting sampling occasions for the analyses. 

Regarding the former, the highest point estimate for maximum survival in a sampling occasion in 

Upper Volaja is larger with the end of sampling in 2009 than in 2010, although intuitively we would 

not expect the highest point estimate for maximum survival in a sampling occasion to ever decrease 

with more sampling occasions. For the latter, among others, sampling becomes more efficient over 

time as technicians and field workers “reliably locate” hiding spots and pools, and the probability of 

losing tags decreases with more practice in setting them. 

The rainbow and marble trout populations showed greater fluctuation in population size than the 

brown trout population. Theoretically, and apart from the effects of extreme events, we would 

expect to need fewer sampling occasions to estimate the maximum difference between maximum 

and minimum survival in a sampling occasion in populations with smaller fluctuations in population 

size. Our results may appear to support the hypothesis; the rainbow trout population showed both 

the largest fluctuations in population size and the longest time to reach a semi-stable distance 

between maximum and minimum survival in a sampling occasion. However, the rainbow trout 

population is also that with the smallest numbers—which are expected to lead to a large coefficient 

of variation in population size—and smallest mean survival, thus, making it difficult to assume 
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causality between non-stationarity of population size and time to reach a semi-stable distance 

between maximum and minimum survival in a sampling occasion. 

4.2 Growth 

Estimates of body growth are fundamental for management. For instance, age-structured stock 

assessment methods are based on sizes-at-age that are often derived from parameters of the von 

Bertalanffy growth model for that species (Katsanevakis & Maravelias, 2008). Size-at-age, which is 

the easiest-to-observe realization of the growth process, often varies considerably among individuals 

living in the same environment. In the four trout populations, the size of the smallest age-1 fish was 

~50% of the size of the biggest age-1 fish. 

 

FIGURE 5 Observed mean population density of fish older than 0+ from 2004 to 2015 (horizontal dashed line) and mean and 

2.5 and 97.5% quantiles of mean density of fish older than 0+ over simulation time for different last year of sampling Yf for 

marble trout in lower (LIdri_MT), (a) and upper Idrijca (UIdri_MT), (b), rainbow trout in lower Idrijca (LIdri_RT), (c), and 

brown trout in upper Volaja (UVol_BT), (d). Scales on the y-axis are different as estimated densities of rainbow trout and 

brown trout are much lower and higher, respectively, than those of marble trout  

Longitudinal data (e.g., tag-recapture) and random effects models greatly facilitate the estimation of 

individual and group (i.e., sex, year-of-birth) variation in growth. In particular, for the two marble 

trout populations, we found that standard nonlinear regression (i.e., models without random-effects) 

provided estimates of asymptotic size that were consistently larger (up to Yf = 2014 for marble trout 

in Lower Idrijca and up to Yf = 2012, ~800 tagged fish, for marble trout in Upper Idrijca) than those 

provided by the random-effects vBGF models. 

In marble trout, the primary type of intra-specific competition for resources seems to be interference 

competition for space (Vincenzi, Crivelli, et al., 2016 ), probably due to their high territoriality. In 

interference competition, bigger individuals (in the case of marble trout, those with access to better 

sites) reduce the access to resources, such as space and food, of smaller individuals, and may also 

live longer than smaller individuals. On the other hand, the estimates of asymptotic size using the 

random-effects vBGF models were little affected by the use of more data when 100 to 200 

individuals of various ages were already included in the data set. Since the vBGF parameters can 

seldom be interpreted separately (Vincenzi, Mangel, et al., 2014), the analysis of the whole growth 
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trajectories is crucial for understanding variation in growth. Also when examining whole growth 

trajectories, we found that the growth trajectories predicted by the random-effects vBGF models 

were almost identical when using data from 3 (100–200 individuals of various ages) or 11 years of 

monitoring.  

4.3 Population dynamics 

Evans et al. (2010) found that parameter uncertainty was responsible for 50–64% of the variation in 

the stochastic growth rate of simulated populations of Florida scrub mint, despite data used to 

estimate vital rates was long term (20 years) and involved thousands of individuals across multiple 

populations. In our model of population dynamics, there were small differences between predicted 

densities when using data from 3 (6 sampling occasions) or 11 (22 sampling occasions); the only 

exception was the brown trout population of Upper Volaja. The low mean population density 

predicted for Upper Volaja when using data from 5 sampling occasions was due to low probabilities 

of survival in Upper Volaja between 2004 and 2007, whose inclusion in the model of population 

dynamics led to predictions of mean population size much lower than those provided by models 

parameterized with more data and more representative environmental conditions. As described in 

Vincenzi et al. (2018), high population densities in Upper Volaja 2004–2005, fast growth of fish born 

in early 2000s, and lower survival in the first years of sampling point to very low population densities 

in late 1990s and early 2000s, probably a consequence of an extreme climate event (e.g., flash flood 

or debris flow) that caused high fish mortalities. Thus, as in the case of the brown trout population of 

Upper Volaja, when the estimates of survival probabilities are not representative of the conditions 

typically experienced by individuals, model predictions can be inaccurate. 

 

FIGURE 6 Observed coefficient of variation (CV) of density of fish older than 0+ from 2004 to 2015 (horizontal dashed line) 

and mean and 2.5 and 97.5% quantiles of coefficient of variation of density of fish older than 0+ over simulation time for 

different last year of sampling Yf for marble trout in lower (LIdri_MT), (a) and upper Idrijca (UIdri_MT), (b), rainbow trout in 

lower Idrijca (LIdri_RT), (c), and brown trout in upper Volaja (UVol_BT), (d) 

In our analyses, we only set survival probabilities as different among models for the same population. 

In our model of population dynamics, parameter uncertainty can be interpreted as a combination of 

both statistical uncertainty, which inevitably comes from parameter estimation, and process 
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variability—i.e., the random draw at any time step of a survival probability can also represent 

variation in exogenous processes that determine variation in vital rates, and recruitment and early 

survival are both density-dependent. 

However, the parameters with the most available data are not necessarily the parameters that have 

the biggest effect on model predictions. In some cases, empirical data may be lacking for parameters 

that can substantially alter model predictions. In our study, we were able to include a model of 

density-dependent early survival only in the models of population dynamics for the two populations 

of marble trout, since even more than 10 years of data were not sufficient to estimate parameters of 

similar models for brown trout and rainbow trout. Since in small populations early survival may 

almost entirely depend on environmental variables such as water temperature, trophic conditions, 

and water flow—whose year-to-year variation are intrinsically tough to predict—data on density and 

models of density-dependent survival may reach the limits of their (little) explanatory power after 

just a few years of monitoring. However, randomly drawing an early survival probability at each time 

step from the set of estimated probabilities did not seem to affect the accuracy of the predictions of 

mean population density. Then, for small populations living in highly variable environments, process 

variability of extreme events, such as stochastic variation in their timing and intensity, is often the 

major determinants of population dynamics (Vincenzi, Crivelli, et al., 2014). For instance, Evans et al. 

(2010) found that much of the variability in the population growth rate of simulated populations of 

Florida scrub mint resulted from process variability, such as random variation in fire history, year 

variation and demographic fates among replicates of population growth. Decades-long monitoring is 

needed to capture the statistical properties of extreme events and of their effects on vital rates and 

life histories. However, this additional data would rarely reduce the uncertainty of “useful” 

predictions of population dynamics for conservation, since those predictions heavily depend on the 

actual realizations of stochastic processes (i.e., a flood that wipes out a fish population might have a 

recurrence interval of 50 years, but in an interval of n years either occur or does not occur). 

Models of recruitment dynamics were able to explain only a small part of the variability in 

recruitment (i.e., <30%). The relative balance between spawning stock size and environmental 

factors as determining recruitment in freshwater salmonids is still debated and probably context-

specific (Einum, 2005; Nicola, Almodóvar, Jonsson, & Elvira, 2008). Recruitment in marble, rainbow 

and brown trout was highly variable over time; the marble and rainbow trout populations of Lower 

and Upper Idrijca were recruitment-driven, as indicated by the strong 1-year lagged correlation 

between density of older than newborn trout and density of newborns (Vincenzi, Mangel, et al., 

2016; Vincenzi et al., 2019). In Upper Volaja, the absence of a correlation between density of older 

than newborn trout and density of newborns was caused by immigration of 0+ and 1+ from the 

source population (Vincenzi et al., 2018). Despite the uncertainty in recruitment models, the 

predictions of mean population density and variation of density over time were accurate. 
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