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Abstract. The security of elderly people living alone is a major issue. A system that detects anomalies can be useful for both
individual and retirement homes. In this paper, we present an adaptive human tracking method built on particle filter, using depth
and thermal information based on the velocity and the position of the head. The main contribution of this paper is the fusion
of information to improve tracking. For each frame, there is a new combination of coefficients for each particle based on an
adaptive weighting. Results show that the tracking method can deal with the cases of fast motion (fall), partial occultation and
scale variation. To assess the impact of fusion on the tracking process, the robustness and accuracy of the method are tested on a
variety of challenging scenarios with or without depth-thermal fusion.

Keywords: head tracking, sensor fusion, particle filter, thermal sensor, depth sensor

1. Introduction

According to the French institute of health educa-
tion (INPES), 9,300 people die each year from falls.
These falls occur mainly at home (78% of falls) and
especially at night (60%) causing physical and psycho-
logical consequences. In accordance with the World
Health Organization (WHO), falling is the second lead-
ing cause of accidental or unintentional injury deaths
worldwide [1]. For these reasons, an automatic system
that could prevent and detect falls and call emergency
services can be useful even for retirement homes.
Actually, many fall detection (FD) and fall preven-
tion (FP) systems have been presented by researchers.
These systems can be classified into three categories
according to the type of the sensor used: wearable
technologies, ambient technologies and a combination

*Corresponding author. E-mail:
alain-jerome.fougeres@ecam-rennes.fr.

of wearable and ambient technologies. Wearable tech-
nologies encompass two different types of hardware:
inertial sensors (e.g., tri-axial accelerometer) and lo-
cating systems (GPS). Ambient technologies include
vision sensors (e.g., cameras), sound sensors (e.g., mi-
crophones), radar sensors (e.g., Doppler radar), in-
frared sensors and pressure sensors (e.g., floor sensors)
or combinations of them [2].

In this paper, we aim to develop a person tracking
algorithm in order to improve the accuracy and the sen-
sitivity of the system proposed in [3] and to reduce the
number of false alarms. Moreover, we would like to
track the elderly person’s activity in order to prevent
falls.

In a previous work [4], a head tracking method us-
ing the fusion of low cost thermal and depth sensors
for home environments whilst preserving privacy was
proposed. The addition of thermal sensor improves the
tracking with depth sensor. For example, thermal infor-
mation adjusts depth detection by discriminating be-
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tween hot objects and cold objects moved after calcu-
lating the background image. The results demonstrate
that fusion improves tracking, namely when segmen-
tation was erroneous. However, it missed partial oc-
cluded falls, and was unable to track fast motions in
real time which are interesting for fall detection. For
these reasons, this paper examines the data fusion to
improve fast motion tracking and partial occlusion us-
ing particle filter (PF) algorithm based on head posi-
tion. Particle filtering is a sequential importance sam-
pling method using a set of particles to estimate the
posterior distribution of a Markovian process, given
noisy observations. The key idea of PFs is to represent
and maintain the posteriori density function by a set of
random samples with associated weights and to com-
pute the state estimate from those samples and their
weights. For each depth-thermal image pair, the head
position is first segmented in the depth image, and then
matched with the thermal image using calibration in-
formation to predict the actual position according to
the previous state. The fusion of thermal and depth in-
formation is used to update this predicted state.

This paper extends the depth-thermal tracking method
based on particle filter, explained in [4], by includ-
ing the velocity of the head in the state vector to im-
prove fast motion. The method was tested on several
sequences, with or without depth-thermal fusion: re-
sults show its robustness and accuracy and also demon-
strate that adaptive measurements of each particle by
using the velocity and the position of the head improve
the fast motion, partial occlusion and scale variation.

The paper is organized as follows: Section 1 con-
tains a general introduction of fall detection system.
Section 2 gives an overview of the state-of-the-art vi-
sion fall detection systems. Section 3 describes the ma-
terial used, the architecture of tracking algorithm, and
proposed methodology to detect falls. Section 4 dis-
cusses the experimental set-up of our dataset, the re-
sults with or without depth-thermal fusion, as well as
the performance evaluation and a detailed discussion.
Section 5 provides conclusion and further research po-
tential.

2. Related work

A fall is defined as an event which results in a per-
son coming to rest inadvertently on the ground or floor
or other lower level. Adults older than 65 years of age
suffer the greatest number of fatal falls [1]. Several FD
systems have been proposed to identify and classify

human activities of daily living (ADL) and to reduce
the risk of elderly falls, the response and the rescue
time. Many studies focusing on FD survey were in-
creased rapidly in the world. For example, Mubashir et
al. [5] chose to classify the FD systems into three cate-
gories: wearable device based, ambience sensor based
and camera (vision) based. However, Igual et al. [6]
chose only two categories: context-aware systems and
wearable devices. While falling detection context is
promising, exciting challenges still occur. In this pa-
per, we will study the most commonly cited works in
the literature according to their advantages and their
drawbacks such as cost, application, installation and
privacy.

Over the last decade, the focus has been on context
aware systems (vision systems especially), because the
person is more independent and not constrained by the
presence and the configuration of the device. Several
methods use particle filters for object tracking and lo-
calization. In [7, 8] the authors describe the applica-
tion of particle filters for tracking moving objects us-
ing background subtraction to track human silhouettes
based on color images. In [9], Rougier et al. have used
the head’s velocity to detect the fall in visual videos
by setting thresholds manually. In the same vein, [10]
have used particle filter for head tracking based on col-
ored histograms. In [11], L. Loza et. al have applied PF
on thermal imagining. Mubashir et al. [5] have used
head position to track the person’s silhouette based on a
Gaussian classifier. In [12] the silhouette was extracted
from video to localize the person which is a common
strategy in the literature. However, these methods pro-
vide false alarms because it is difficult to distinguish a
fall from other similar actions, e.g. sitting down. There-
fore, in [13], Auvinet et al. have added other cameras
to analyze the shape of the person in 3D and avoid hid-
den falls. But elderly people dislike the use of visual
cameras even with local processing. They prefer non-
invasive devices which preserve their privacy accord-
ing to a psychosocial study done by LAUREPS labo-
ratory at University of Rennes 2.

In order to protect user privacy, 3D fall detection
systems using depth sensors were used in a fall de-
tection context. The aim of using a depth camera like
Kinect is to analyze the human shape and extract 3D
features for fall detection [14]. A recent work used
head position detection, extracting from depth im-
ages [15] and the experimental results confirm the fea-
sibility and the effectiveness of the approach for real
world applications. In [16], 3D data are exploited to
perform head detection for a fall detection framework.
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Human silhouettes, obtained by a background subtrac-
tion, are detected and all possible head positions are
searched on contour segments. But in fall detection,
it could not recognize correctly for instance when the
person bent his knee too much to slow down the fall.

To avoid this problem, some works have used other
non-invasive sensors such as thermal sensors. For ex-
ample, Hayashida et al. [17] integrate a thermal in-
frared array sensor to detect falls by computing the
maximal thermal difference between the background
and foreground pixels which is a technique used for
static cameras. The current frame is subtracted from
the model of the background scene and eventually,
the difference, determines the moving objects. How-
ever, the configuration was sensitive to room temper-
ature and brightness. In [18] authors proposed a sys-
tem to recognize human activities, which include falls,
by means of a single thermal infrared sensor. Several
features based on temperature thresholds are proposed
to be evaluated by a Support Vector Machine (SVM)
in the classification. However, in [19, 20] authors have
proposed another type of thermal sensor but relatively
expensive. In [21], a very economical thermal imaging
based input modality is proposed to detect falls using
the optical flow of human movements tested on public
datasets. These proposed methods achieved a good per-
formance but included some confusion in distinguish-
ing between falling and sitting.

The number of studies using analytical methods is
still increasing but there is a new trend in fall detection
which is the use of machine learning methods and the
most popular algorithm in this context is deep learn-
ing. For instance, Quero et al. [22] detected falls from
non-invasive thermal vision sensor (Heimann HTPA
32×31) using Convolutional Neural Networks (CNN).
Wang et al. [23] proposed a fall detection system us-
ing a PCAnet to extract features from color images
and then applied a SVM to detect falls. Nunez-Marcos
et al. [24] proposed a similar approach but, instead
of a PCAnet, they used a modified VGG16 architec-
ture. These methods are promising but usually require
a large dataset to train a classifier and are inclined to
be influenced by the image quality.

In order to efficiently improve results, some papers
combined sensors. Interesting examples are provided
in [25] and [26], for example Kinect and accelerom-
eters, or cameras with microphones plus accelerom-
eters. In [27], human silhouette was extracted using
RGB-D camera. Recently RGB-T systems attracted a
lot of attention, e.g. Wu et al. [28] combined RGB and
thermal data into one vector which, however, intro-

duces redundant information and the use of color in-
formation cannot preserve user privacy.

In this paper, we propose a combination between
depth and thermal sensors, FLIR sensor (80× 60) and
Kinect sensor (640 × 480) respectively. Our method
aims to track the head position in a context of daily
activities classification. We apply particle filter on fu-
sion information, include the position and the velocity
of the head to the state vector and modify the modal-
ity for each particle based on an adaptive weighting of
each frame. In the interest of privacy, we chose not to
use color imaging.

3. Material and methods

The proposed system aims to track the head position
using two types of sensors with different resolutions
which are mounted together. The head position can
be tracked according to an analytical method applying
on a segmented frame. With the calibration step done
before starting processing, the unidirectional thermal-
depth matching can be made throughout all sequences.

In this research, we chose head position as Region
Of Interest (ROI) because it is non-deformable, the
hottest, highest and least hidden part of the body which
can easily be approximated as an ellipse with only few
parameters. Head motion is also a significant marker
for fall detection.

3.1. Cameras and dataset

The fall detection system is based on thermal sen-
sor (FLIR lepton 2.5, Focal length: 5 mm, Thermal
Horizontal Field of View THFOV : 51o, Thermal Ver-
tical Field of View TVFOV : 37.83o, Thermal Resolu-
tion TXres : 80 pixels and TYres : 60 pixels) and a depth
camera (Microsoft Kinect V1, Focal length: 6.1 mm,
Depth Horizontal Field of View DHFOV : 58o, Depth
Vertical Field of View DVFOV : 45o, Depth Resolution
DXres : 640 pixels and DYres : 480 pixels). Figure 1 shows
the sample output images of Kinect and FLIR acqui-
sition system. These sensors can capture 3D and ther-
mal video data under various light conditions. The ex-
tracted dataset can be divided into two principal cat-
egories (ADL and abnormal activities) to experiment
the proposed method. Totally 60 video sequences with
10000 frames are recorded from 5 different human sub-
jects in three different places with or without presence
of obstacles.
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Fig. 1. Camera system

3.2. Framework

Figure 2 illustrates the framework of our proposed
fall detection system. This proposed system can be di-
vided into three principal stages: calibration, segmen-
tation and tracking. The calibration step, which is done
only one time, is executed after attaching the sensors to
the ceiling to be able to match a depth pixel to its corre-
sponding thermal pixel. The segmentation step, based
on acquired images, serves to detect depth foreground
image by subtraction of the background and extract
head position. The tracking step is based on the head
position segmented on the depth image and matched to
the thermal position and improved by the particle filter.

3.3. Calibration

A calibration step is required to calculate the trans-
formation parameters (extrinsic parameters). In the lit-
erature, a conventional black and white chessboard pat-
tern is often used in many existing methods to cali-
brate two cameras or more. To obtain higher accurate
calibration results, this pattern needs to be kept near
the cameras. The orientation could sometimes result in
limiting the number of poses [29]. Besides, this pat-
tern cannot be seen by thermal sensors. For these rea-
sons, we have decided to design a special pattern which
contains several tubes of different heights mounted to-
gether on a board and different resistors fixed on each

Fig. 2. Fall detection framework

Fig. 3. Calibration pattern on thermal image, depth image and color
image respectively from the left

tube. The idea of this pattern is simple. The tubes will
be seen by the depth sensor and the heat emitted by the
resistors will be seen by the thermal sensor. Calibration
pattern is shown on depth, thermal and color images in
Figure 3.

The calibration operation comprises modeling the
image transformation process. This process transforms
points from image coordinates to a common world co-
ordinates system. The idea is to find the relation be-
tween the coordinates of a point in the depth image
with the associated point in the thermal image taking
into consideration the spatial coordinates of each point
(Figure 4). The estimation of the relationship between
these two coordinate systems needs three steps [30]:

(1) The estimation of the transformation of the depth
image coordinates (ud, vd) to the coordinate sys-
tem (xd, yd, zd) of the depth sensor. This can be
done analytically from the intrinsic parameters of
the depth camera, Eq. (1):
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Fig. 4. Calibration system
xd=

(
ud −

DXRes
2

)
2wd tan( DHFOV

2 )
DXRes

yd=−
(

vd −
DYRes
2

)
2wd tan( DVFOV

2 )
DYRes

zd=depth information

(1)

(2) The transformation between the coordinate sys-
tem (xd, yd, zd) of the depth sensor to that (xth, zth, zth)
of the thermal sensor. It can be obtained from the
extrinsic parameters, in our case a rotation matrix
R and a translation matrix T, Eqs. (2, 3 and 4):

R =

cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

 ∗1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

 ∗ cos(β) 0 sin(β)
0 1 0

− sin(β) 0 cos(β)


(2)

T =

dx

dy

dz

 (3)

 xth

yth

zth

 = T + R

 xd

yd

zd

 (4)

where α, θ and β are the Roll, Pitch and Yaw an-
gles [21].

(3) The transformation between the coordinate sys-
tem (xth, zth, zth) of the thermal sensor to the ther-
mal image coordinates (uth, vth) (there are only 2
equations since the pixel value is the temperature
which is not geometric information). This can be
done analytically from the intrinsic parameters of
the thermal camera, Eq. (5):

uth=
TXRes

2zth tan( THFOV
2 )

xth +
TXRes
2

vth=−
TYRes

2zth tan( TVFOV
2 )

yth +
TYRes
2

(5)

In our case, the intrinsic parameters are the values
given by the constructor. So the purpose of the cali-
bration is to estimate 3 parameters of rotation transfor-
mation and 3 parameters of translation transformation
(α, θ, β, dx, dy, dz) respectively using a nonlinear opti-
mization techniques (Levenberg-Marquardt [31]) and
then to generate a one to one pixel correspondence
from the depth to the thermal images (nonreciprocal
correspondence).
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Fig. 5. Silhouette and head position

3.4. Segmentation step

In order to improve the segmentation robustness, we
calculate a reference map based on the mean and stan-
dard deviation of the N first depth images without any
moving objects. Then, we subtract the reference map
from depth image to extract the depth foreground im-
age. For a new frame, each pixel p(i, j) is considered
as foreground so long as it is above a threshold calcu-
lated by the variance of the reference map. Otherwise,
the pixel is classified as background:
if |p(i, j)− re f (i, j)| > 2σ(i, j)
then p(i, j) ∈ Foreground
else p(i, j) ∈ Background
where re f (i, j) is the mean pixel (i, j) from ref-

erence map and σ(i, j) is the standard deviation of
p(i, j).

Next we have one or more areas detected as fore-
ground: we compare these areas and we hold only the
bigger one. Following the choice of the area, we ap-
proximate the body with an ellipse.

Finally, we model the head as a smaller ellipse with
the same orientation of the silhouette ellipse. Human
adult body proportions are brought about by differen-
tial growth of the body segments. From 25 years of age
the head is only approximately one-sixth of the total
body length [32]. Therefore, we fixed the center SC of
the head ellipse H at the 1/6 of half major axis SB from
the upper part of major axis (see Figure 5), Eq. (6):

SC =
5

6
SB (6)

where S is the silhouette ellipse center, B is the up-
per point of the major axis and BC is the head ma-
jor axis knowing that the ratio between major axis and
minor axis is set to 1.2 [7]. The sole use of the seg-

mentation process is not a robust method to track the
head position. False alarms can be trigged for any ob-
ject moved after calculating the reference map. Thus,
the use of a tracker is necessary.

3.5. Tracking process

The aim of the tracking is to estimate the position
of the head during a sequence by considering the last
movement of this ROI. Therefore, we chose a sequen-
tial Monte Carlo method which is Particle Filter (PF)
method. At each frame t, the state vector xt of PF is
defined by the center H, the size L and the orientation θ
of the head extracted by the segmentation step in depth
image, Eq. (7).

x(S 1)t = (xH , yH , L, θ)T (7)

PF method seeks to estimate the hidden state vector
xt from the previous state vector xt−1, depth observa-
tion vectors Zt = {z1, · · · , zt} and thermal observation
vectors Ht = {h1, · · · , ht}.

PF uses a sample of N particles S t =
{

S 1
t , · · · , S N

t

}
to approximate the conditional probability p(xt/Zt,Ht).
Each particle S n

t can be seen as a hypothesis about xt

and is weighted by πt(n) which are normalized. Par-
ticles are resampled according to their weights and
are updated according to new observations (coeffi-
cients) [33]. newobsv(n) is a linear combination of
coefficients tested in different forms (details in sec-
tion 3.6). Thus, the PF does not consider one state vec-
tor but N particles state vectors associated with differ-
ent weights. At each frame, the estimation of the head
position is based on two models, the first model called
AM considers the weighted average of the N particles
and the second model called MM considers the particle
with maximum weight.

To improve the estimation of the head position es-
pecially in cases of fast motion, we added the velocity
(vxH , vyH ) on the state vector, Eq. (8).

x(S 2)t = (xH , yH , vxH , vyH , L, θ)
T (8)

Below, we briefly define the PF algorithm. For each
frame, we resample a new sample of N particles named
S n

t+1, based on the previous state of each particle and
the associated weights in order to prevent the problem
of "particles degeneration" [34]. Next, we predict the



I. Halima et al. / Head tracking using particle filter in a fall detection context 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 6. Segmentation step and PF algorithm

actual state xt+1 according to the propagation of parti-
cles based on the prediction equation, Eq. (9):

S n
t+1 = AS n

t + wt (9)

where A stands for the transition model matrix and
wt is a Gaussian noise. Finally, we update the parti-
cle weight according to observation vectors where we
combine depth and thermal information in newobsv(n)
(see figure 6).

Thus, the steps of iterative PF tracking algorithm
are:

(1) Initialization: Generate a sample of N particles
S 1 =

{
S 1
1, · · · , S N

1

}
based on the probability of

the state vector p(x1), and initialize the weight of
each particle by πt(n) = 1/N.

(2) Resampling: Resample particles to prevent the
problem of particles degeneration, if frame > 1.

(3) Prediction: Propagate particles according to pre-
diction model to predict the state vector xt.

(4) Updating: Update the particle weight πt(n) at
frame t according to observation vectors.
Then normalize the weight:

Table 1
Occluded particle conditionss

Thermal image Thermal image
Flag(n) = 0 Flag(n) = 1

Depth image GT Keep all
Flag(n) = 0 eliminated coefficients

Depth image Resample GD and DD

Flag(n) = 1 particles eliminated

πt(n) =
πt(n)∑N

k=1 πt(k)
(10)

and return to step 2.

3.6. Depth-thermal fusion (first method)

Updating particle weights is a key point of PF and
is specific for each application (see [35] for color in-
formation).

The weight of a particle is defined by Eq. (11):

πt(n) =
1√
2πσ

exp(newobsv(n)/2σ2) (11)

whereσ is theoretically the standard deviation of the
coefficients combination. However, we have chosen a
constant value of σ for computational cost reason.

We have tested several values and we returned the
one that rendered the best result and newobsv(n) is a
linear combination of three coefficients of thermal and
depth observations: a depth distance coefficient DD, a
depth gradient coefficient GD and a thermal gradient
coefficient GT , where:

• DD is the distance between the center of the par-
ticle and the center of the segmented head in the
depth image.

• GD and GT are the gradients along the particle el-
lipse in the depth image and the thermal image
respectively, as inspired by [9].

When updating particle weight, we have observed
that an occluded particle can decrease the performance
of tracking. For example, it can influence the result of
the AM model. To avoid this problem, we have added
a flag to each particle at each frame (Flag (n) = 0 when
the particle n is occluded) and we have eliminated the
coefficient of this particle n on the update step follow-
ing Table 1.

A particle is occluded for a sensor if it is out of the
vision field of this sensor. This can occur especially
after the prediction step.
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Table 2
Importance factor IF values

Test α β γ more impact

C1 1/3 1/3 1/3 equal
C2 1/4 1/2 1/4 β

C3 1/4 1/4 1/2 γ

C4 1/2 1/4 1/4 α

C5 3/8 1/4 3/8 β

C6 3/8 3/8 1/4 γ

In this work, we tested four models of coefficient
combination to update the particle weights in Eq. (11).

The first model (M1) uses only 2 depth coefficients
(DD and GD), Eq. (12):

newobsv
(n)
1 = αD(n)

D + βG(n)
D (12)

where n is the particle index. There is no fusion here
since we use only depth images.

The second model (M2) combines one depth coeffi-
cient (DD) with one thermal coefficient (GT ), Eq. (13):

newobsv
(n)
2 = αD(n)

D + βG(n)
T (13)

The third model (M3) combines the 3 coefficients,
Eq. (14):

newobsv
(n)
3 = αD(n)

D + βG(n)
D + γG(n)

T (14)

We call parameters α, β, γ ∈ [0, 1] importance fac-
tors (IF). The distance coefficient is always considered
because it is very discriminant.

We tested several combinations of static IF in order
to estimate the impact of each coefficient (see Table 2).

3.7. Depth-thermal fusion (second method)

The use of static IF values is a general way to es-
timate coefficient impact because we fix a static value
during the whole sequence. But at certain frames, ther-
mal information can be more important than depth in-
formation and conversely. For instance, when the per-
son is close to furniture that was moved after the refer-
ence map was calculated, the depth observations may
not be relevant, because the silhouette can be merged
with the furniture. Or if the person is close to a heater,
the thermal observation cannot be efficient. Therefore,
we decided to adjust the important factors dynamically

and change the values at each frame according to the
importance of each coefficient using these rules, Eqs.
(15, 16 and 17).

ifmax
(
maxn G(n)

D ,maxn D(n)
D

)
< maxn G(n)

D

then γ = 1/2 and α = β = 1/4

(15)

ifmax
(
maxn G(n)

T ,maxn D(n)
D

)
< maxn G(n)

T

then β = 1/2 and α = γ = 1/4

(16)

ifmax
(
maxn G(n)

T ,maxn G(n)
D

)
< maxn D(n)

D

then α = 1/2 and β = γ = 1/4

(17)

In subsequent sections of this paper, we have com-
pared this model called (M4) with other models de-
fined previously.

4. Experimental results

In this section, we demonstrate the performance of
the proposed algorithm. We have performed several se-
quences of people moving in a room with co-calibrated
static depth and thermal cameras which were fixed in
the ceiling. We have tested our system with the fol-
lowing objectives: (1) compare our proposal work with
segmentation only and depth tracking methods, (2)
evaluate the performance of the fusion algorithm, (3)
evaluate each IF model, and (4) compare IF values.

In all tests, we used the following values: N =
1000 particles, σ = 0.25, and transition model ma-
trix A = I4. We fixed the acquisition frequency to
8 Hz. The ground truth (GT) was established manually
by setting an ellipse on each frame and the processing
was performed using Matlab on Intel(R) Core(TM) i7-
6700HQ CPU, 2.6 GHz.

The criteria for evaluation of our method utilizes two
quantitative metrics (more details in [36]): the local-
ization error (called precision plot) which is defined
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as the average Euclidean distance between the center
locations of the tracked targets and the manually la-
beled ground truths, and the overlap score (called suc-
cess plot) which is the overlap of the ground truth area
and the tracking area.

4.1. Fusion of information

In this section, we illustrate, as described in sec-
tion 3.4 and 3.5, the results of head segmentation
(Eq. (6)), depth version (M1 model) (Eq. (12)) and first
fusion model M2 (Eq. (13)), the difference between
AM and MM models and a comparison between the
first fusion model M2 and second fusion model M3

(Eq. (14)).
Figure 7 shows a representative a normal ADL of

our datasets used in the evaluation experiment. The
first three images in Figure 7 represent the results of
segmentation. These results show that segmentation is
wrong because the size and the position of the head
do not vary whereas the silhouette’s position from the
captor does. In this case, the problem is caused by the
segmented silhouette which does not contain legs. The
second test is based on the depth method mentioned be-
fore. Comparing these results, we can see that the depth
version M1 is totally erroneous because this method
used segmentation to calculate the distance coefficient.
In other words, the depth sensor is useless on its own.
The last three images show the results of the first fu-
sion model M2 which is able to track the head more
accurately as the person moves because it employs a
combination of thermal and depth imaging.

The results of MM and AM models are shown on
Figure 8.a) and 8.b) respectively. We can see that the
AM model provides the closest pose to GT.

In order to evaluate coefficient combination, Fig-
ure 9 shows a comparison of two fusion models a) M2

model and b) M3 model. Visually the second fusion
model provides the closest pose to GT.

To validate these results, we have evaluated these
models according to the precision and success met-
rics. The evaluation results of quantitative measure-
ments over a sequence show in Figure 10 that fusion
of 3 coefficients provides the most accurate results. As
expected, considering three coefficients together gives
better results than using only two coefficients.

4.2. Comparison of static IF models

As mentioned in section 3.6, the third model (M3)
combines the 3 coefficients, (Eq. (14)).

To evaluate the importance of each IF (α, β, γ) , we
have performed different tests of IF values fixed on
Table 2 on several sequences.

Figure 11 illustrates a comparison between these
tests on a normal ADL frame. The visual results show
the impact of IF in estimating the new head position.
Confirming the IF impact during a sequence using
the two quantitative measurements, Figure 12 shows a
clear difference between the performance of C4 (Fig-
ure 11.d) compared to other tests.

4.3. Robustness of adding velocity on state vector

In this study, we present an improved version of an
algorithm initially proposed in our earlier work [4]. In
addition to size and orientation of the head ellipse, we
have added the velocity to the state vector. Figure 13 il-
lustrates a representative scene of fast motion. The first
two images (Figure 13.a) show results of the algorithm
without adding velocity on the state vector. Figure 13.b
shows the impact of velocity especially in fast move-
ment.

4.4. Robustness of adaptive weighting

As mentioned in section 3.7, the fourth model (M4)
adjusts the important factors dynamically and changes
the values at each frame according to the importance of
each coefficient. To evaluate the impact of the adaptive
combination, we have compared this model with the
result of test C4 mentioned in section 4.2. Figure 14 il-
lustrates a comparison between C4 and this model ac-
cording to the success metrics. Figure 14 shows a clear
difference between the performance of M4 compared
to C4.

4.5. Summary

In this research, we started by testing the models
of head estimation. The first model AM, which con-
siders the weighted average of these N particles, pro-
vides the closest pose to GT as opposed to the sec-
ond model MM which considers the particle with max-
imum weight. Then we compared segmentation and
depth versions to the first and second fusion models
(M1 and M2). We concluded that using both thermal
and depth observations improved tracking results.
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Fig. 7. Tracking results on different frames of depth sequence a) Segmentation only, b) Depth version (M1 model), c) First fusion model (M2).
Tracking results are in white, silhouette ellipse is red and GT ellipse is black

Fig. 8. Tracking results on two frames of sequence a) MM model
and b) AM model. Tracking results are white, segmentation ellipse
is red and GT ellipse is black

In order to estimate the impact of each observation,
we assigned an importance factor IF to each coeffi-
cient and we compared 6 different tests of static IF.

Fig. 9. Tracking comparison results between a) first fusion model
(M2) and b) second fusion model (M3). Tracking results are white,
silhouette ellipse is red and GT ellipse is black.

The results were clearly different between each test ac-
cording to the environment at time t. For this reason,
we modified the static IF to dynamic according to the
coefficient value at each frame.

Finally, we added velocity to the state vector to im-
prove the estimation of the head position especially in
cases of fast motion.
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Fig. 10. Quantitative measurements over a sequence. Localization error (a) and the overlap score (b) using the segmentation (red), the depth
version (blue) the M2 model (cyan) and the M3 model (blue)

Fig. 11. Tracking results of 6 IF tests on the same frame a) C1 test, b) C2 test, c) C3 test, d) C4 test, e) C5 test and f) C6 test, tracking results
are white, silhouette ellipse is red and GT ellipse is black.

5. Conclusion

In this paper, we have detailed a tracking approach
based on a particle filter using depth and thermal in-
formation fusion to detect the position of the head of
a person in an indoor environment. Position, velocity,
orientation, and size of the ellipse enclosing the head
are used to predict the new position of the head. Fur-
thermore, adaptive weighting was applied on the mea-
surements of each particle according to the strength
of each coefficient to update the predicted position on
each frame. Consequently, this method solves the up-
dating problem we encountered in previous tracking
works, caused by changes in the background. The pro-

posed framework has been tested in several situations
with different models and compared with other meth-
ods to establish the accuracy of the algorithm. More-
over, results have shown that our system gave the most
accurate tracking results even in critical situations with
very low resolution images.

Our aim is to refine the work presented here and
better address the constraints of fall detection systems.
Going forward, we plan to use deep learning (DL)
methods due to their performances as mentioned in re-
cent works [19, 20] to more accurately recognize hu-
man posture. We will start by 4 postures (standing up,
sitting, lying on the ground and lying on a bed or sofa)
in the context of fall detection and also fall prevention
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Fig. 12. IF quantitative measurement over a sequence. Localization
error of C1 test (blue), C2 test (yellow), C3 test (black), C4 test
(red), C5 test (cyan) and C6 test (blue).

by activity analysis. Before using DL, we will apply
a preprocessing step on depth images to enhance their
quality and avoid losing pertinent information (see Fig-
ure 15).
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