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Abstract: The Internet of vehicles allows connecting vehicles to the Internet to make all data from vehicles available for 
applications aimed towards improving safety and comfort for passengers. Density is one of the most important sensed data to gather. This 
information is mainly obtained through periodic messages broadcast by the neighbouring vehicles. However, the availability of this 
information depends on the Internet. A low penetration rate of Internet of vehicles, or the loss of Internet connection, can significantly 
affect the accuracy of the sensed density. Moreover, the reception rate of the periodic messages seriously drops at short distances caused 
by the broadcast storm problem in high-density scenarios. To address this problem, using inter-vehicular communications, we propose a 
segment-based approach for enhancing the accuracy of the local density estimation. This approach provides a highly accurate estimation 
with low overhead over the maximum vehicles transmission range to all the vehicles. The proposed approach is extensively 
evaluated analytically and by simulation. Performance evaluation results show that our approach SLDE allows about 3% of mean 
error ratio with low overhead over the maximum transmission range.

To address this problem, in this paper, we introduce an original
accurate local density estimation strategy, called segment-based
local density estimation (SLDE). The existing approaches [3–10]
aim to estimate the traffic density of a whole road or section. In
contrast, our proposed approach provides an accurate and efficient
local density estimation approach within the maximum
transmission range, i.e. only the number of vehicles that may affect
the communication quality. SLDE is based on: (i) the segmentation
of the road into a set of segments that are smaller than the
maximum transmission range and (ii) an efficient strategy for the
propagation and the exchange of the density calculated in each
segment. The performance evaluation results demonstrate the
accuracy of the proposed approach and its efficiency regarding the
generated overhead.

This paper is organised into six sections. In Section 2, we
review the most relevant works. In Section 3, we describe the
proposed SLDE strategy. Performance analysis is presented in
Section 4. In Section 5, the simulation results are presented and
finally in Section 6, this paper concludes with outlooks on future
work.

2 Related work
There have been few works addressing local density estimation
despite its numerous applications in VANETs. In this paper, we
review the infrastructure-free solutions where the vehicles estimate
the density using movement patterns or collaboration. The
considered strategies can be divided into two categories: speed-
based strategies [5, 6, 11] and communication-based strategies [7–
10, 12, 13].

Speed-based mechanisms make use of the speed/density
correlation to estimate the road density. In [5], the density
estimation is based on vehicles mobility patterns, which are the
car-following model and the two-fluid model. Density estimation is
used to choose the transmission range dynamically. The authors in
[6] propose the velocity aware density estimation (VADE). In
VADE, each single vehicle tracks its velocity, acceleration, and
traffic density is estimated based on the observed speed and the
traffic flow theory [14]. For instance, if the vehicles move with

1 Introduction
The considerable expansion of Internet of things (IoT) technologies 
made it possible to consider the Internet of vehicles (IoV). This 
technology allows vehicles to communicate with public networks 
using V2X (X: vehicle, road, human, and the Internet) 
communication types and through a variety of communication 
technologies such as IEEE 802.11p and cellular networks [1]. This 
technology is mainly developed for supporting intelligent traffic 
management, intelligent dynamic information service, and 
intelligent vehicle control. In fact, IoV is a typical application of 
IoT technology in Intelligent Transportation Systems (ITS) [1]. 
Indeed, the IoV enables vehicles to collect data regarding roads and 
their surrounding environment, and share it with the interested 
users via Internet. However, sharing the collected data cannot 
always be performed. This is due to the low penetration rate of the 
Internet-equipped vehicles and the intermittent loss of Internet 
connection under certain circumstances or areas such as tunnels. 
The inter-vehicular communications (V2V) is the best alternative 
that can be used to overcome this issue. Indeed, the dissemination 
of the collected data to the Internet-equipped vehicles will make 
these data available to the end users.

The local density is one of the most important sensed data that 
can be estimated locally and shared by vehicles via exchanging 
safety messages (beacons). It is the number of neighbours in the 
communication range, where the communication range is the range 
where the vehicle packets can be decoded. The local density 
estimation is useful to drivers for choosing less congested roads, 
which significantly reduce fuel consumption, travel time, and 
pollution. Moreover, it enhances the performance of the density-
dependent applications and protocols such as dissemination, 
congestion control, and routing protocols by improving their 
robustness, delay, and efficiency. Density-dependent IoV 
applications performance is based on the accuracy of the local 
density. However, it is difficult to accurately estimate the local 
density in high traffic density scenarios. Indeed, the 
communication range is reduced by up to 90% in such situations 
[2], which results in a serious lack of neighbourhood awareness 
and affects the functioning of density-dependent IoV applications.
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high speed, the density would be estimated as sparse. In [11], fluid
dynamics and the car-following model are used to assess vehicle
density. Nevertheless, these approaches cannot estimate the density
in free-flow traffic due to the absence of interactions between
vehicles, nor in a situation where the speed is not related to the
density. For example, vehicles can stop at intersections without
having a high density. Moreover, these strategies are developed for
global density estimation, not local density estimation where the
precision is relatively high.

Communication-based strategies make use of communication
by exchanging messages between the vehicles to estimate the
density.

In [12], the authors propose a framework that allows vehicles to
estimate the node density of their surrounding network independent
of beacon messages and other infrastructure-based information.
Two equations were introduced indicating the relationship between
the received signal strength versus transmitting nodes and
transmitting nodes versus node density. According to the presented
results, the vehicles can estimate their real-time surrounding node
density, which corresponds to transmission range.

In [7], the density is calculated based on the number of local
neighbours. Then, the global density of the road is concluded based
on assuming that the inter-vehicle spacing is exponentially
distributed, which might not be the case for all possible traffic
scenarios.

In [13], the proposed strategy calculates the density of a
particular target area. At each sampling instant, the sampler vehicle
broadcasts a message called ‘POLL’ that contains the position and
radius of the target area. When a vehicle in this area receives
‘POLL’, it will reply after waiting for a random amount time to
avoid flooding the receiver. After a period, the sampler will count
the received messages to estimate the density. This strategy gives
accurate results compared with the actual density. However, this
approach requires a relatively long period, and it cannot be used for
critical applications such as congestion control where a timely
reaction is critical.

In [9], the authors present D-FPAV, a congestion control
protocol. In this study, they need the actual number of all
neighbours in the transmission range (not only within
communication range). For that, they use a multi-hop strategy.
Each ‘n’ beacon, the vehicles send an extended beacon containing
its neighbours. After the reception of these extended beacons,
vehicle will be aware of all the vehicles in its transmission range.
D-FPAV uses the density information to measure the load on the
channel. The major drawback of this approach is the high
generated overhead.

In [10], DVDE is proposed to overcome the overhead generated
by the extended beacons. DVDE is based on the segmentation of
the transmission range into an odd number of segments. Instead of
sending neighbours in extended beacons, the vehicles send the
density of each segment periodically. When a vehicle receives the
extended beacon, it chooses information comes from the nearest
vehicle to the centre of the target segment. If the segments are
different, the vehicle uses linear interpolation to calculate the
density. By assembling this information from the different vehicles,
the vehicle enhances the accuracy of its estimation. DVDE
decreases the overhead compared with the D-FPAV method.
Moreover, it has interesting results regarding the accuracy.
However, it still has some shortcomings. Indeed, the DVDE

strategy supposes that each vehicle has its own segments. As result,
the procedure of data density sharing between vehicles is complex
because of the different segment positions. For this reason, in the
DVDE, the authors suggest using linear interpolation to estimate
the density of a target segment if the segments are different, which
occurrences frequently. However, this process gives less accurate
results when the vehicles are not uniformly distributed. In addition,
if the vehicles are in the same area sharing the same information,
the periodic sending of extended beacons will be ineffective. This
periodic redundancy generates an extra overhead. This overhead
can be avoided if only selected vehicles share their density.

We can notice that speed-based mechanisms do not require any
extra overhead. However, they fail to accurately estimate the
density in situations where the speed is not related to the density.
For the communication-based strategies, we observed that the
shared information could be optimised to have higher accuracy
with acceptable generated overhead. Moreover, none of the
reviewed strategies deal with the estimation of density over the
maximum transmission range (1000m). We have chosen DVDE
[10] strategy to evaluate and compare it with our strategy as they
belong to the same family of segment-based strategies. Moreover,
both strategies are based on local density estimation that aims to
extend the local density awareness for all vehicles on the road.

In the next section, segment-based local density estimation
(SLDE) is detailed. It is an accurate local density estimation
strategy over the maximum vehicles transmission range. The
density information will be available for every vehicle, which
improves the performance of many density-dependent applications.
In the following, we provide a detailed description of SLDE and
present its added value compared with existing approaches. This
paper is an extension of our previous work [15].

3 Segment-based local density estimation (SLDE)
In this section, we introduce segment-based local density
estimation (SLDE) density estimation strategy. Within the
maximum transmission range, SLDE allows VANETs applications
to collect an accurate estimation of the number of neighbours with
minimum overhead. This information enhances the vehicles
environment awareness specifically for density-dependent
protocols and applications. For example, VANETs applications for
traffic assessment. Besides, the density information is used to make
VANETs applications adaptive to the ongoing traffic density state.

In the following, we describe first the environment. Afterwards,
we present the core elements of the SLDE strategy.

We designed SLDE under the following assumptions:

• All vehicles use 802.11p technology and omnidirectional
antennas with the same receiving sensitivity and transmission
power.
• Some vehicles have Internet connections (based on the
penetration rate on IoVs).
• Each vehicle knows its velocity and its geographical location
through a global positioning system (GPS).
• All vehicles are equipped with preloaded digital maps that
provide the identity of each segment (Fig. 1).

802.11p technology works on 5.9 GHz spectrum that is
dedicated for road safety and traffic efficiency applications. This

Fig. 1  Illustration of a sample scenario of the SLDE process
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segment information either directly (solid lines) or included in
other DH (dashed lines). This is because the received DHs are sent
through the same estimation process. Therefore, the source of the
density information of one segment can be computed using another
RV. For example, the density of segment Si + 2 estimated by N2 can
be received directly or included in the DH of N1. 

SLDE strategy is described in Algorithm 1 (see Fig. 4). We
divided the strategy into two main modules: data fusion and
density propagation module. In the following, we explain in detail,
the two modules of SLDE strategy. 

The data fusion is done during DH (Fig. 3) building. Normal
beacons contain the current speed, position (x, y), and heading
direction information. Extended beacon contains additionally to
normal beacon information: DH, the three next selected RVs (RV1,
RV2 and RV3), and the number of used RVs in the construction of
DH (RVnb). The received data is merged based on using the most
accurate information. For each segment, the EV uses the valid data
of the closest RV. In this segment, the RV has the highest
probability of detecting the vehicles there. In the case of no
reception of DH with better accuracy, the EV uses the received
regular beacons. Finally, the EV will have a DH that contains the
densities of the various segments.

The density propagation plays an important role to disseminate
the accurate density information in a short time. In the following,
we show when the density process starts and how SLDE selects
vehicles to be RVs.

When the vehicle passes through the centre of a segment, it is
selected as RV if the density information is outdated. The selection
of the next RV in SLDE is based on two ways. One way is based
on timers. Every vehicle receiving an extended beacon, sets a timer
that corresponds to the distance to the centre of the segment
(TimeToWait). The other way is based on including in the sending
extended beacon the next three RVs: RV1, RV2, and RV3 in the
consequent segment (Fig. 3). Based on the distance to the centre of
the target segment, the RVs are sorted to make the delay time as
short as possible.

TimeToWait =
Dx, segment

SL/2
× LTEB (1)

where: Dx,segment is the distance between the vehicle and the
center of its segment, (m); SL is the segment length (m); LTEB is
the lifetime of an extended beacon(s).

Equation (1) guarantees that the closest vehicle to the centre has
less TimeToWait. The lowest value is 0 when the vehicle is exactly

Fig. 2  Simple scenario shows the functioning of SLDE

Fig. 3  The format of the used messages: beacons and extended beacons

spectrum is composed of six service channels (SCHs) and one 
control channel CCH. Safety and traffic efficiency applications use 
SCHs, while the critical road safety applications and periodic 
awareness messages use CCH. These periodic messages known as 
basic safety messages (BSMs) messages in Europe, cooperative 
awareness messages (CAMs) in the USA, or beacons. Safety 
applications require a reliable communication to enhance the driver 
awareness about the surrounding environment.

The problem of packet loss affects beacons in long distances or 
even short distances when the control channel is congested. Indeed, 
the communication range could be reduced by up to 90% in such 
situation [2]. This situation affects the well-functioning of density-
dependent VANETs applications because it causes a severe lack of 
neighbourhood awareness.

To address the problem of insufficient accuracy of density 
estimation, we propose our novel accurate local density estimation 
approach, called segment-based local density estimation (SLDE). 
SLIDE is mainly based on the cooperation of vehicles by their 
estimations. Then, the vehicles use the gather data from the 
neighbours to estimate the density. The goal is to have a more 
accurate estimate of the density by using data from the nearest 
vehicle for each area.

The cooperation between the vehicles in SLDE is based on 
exchanging the density information. Instead of sending the density 
of the entire range, we choose to send it segmented. In other words, 
the road is divided into segments, and the vehicle sends the density 
of each segment in its range. We call the beacon messages that hold 
the density information extended beacon.

SLDE is based on careful selection of vehicles that will share 
the density information, while ensuring that all the vehicles will 
have the same potential to estimate the local density. This is to 
ensure fair access to the service with low generated overhead. 
Therefore, the vehicles in SLDE might be in one of the following 
states: estimator vehicle (EV), when it is estimating the local 
density; reference vehicle (RV), when it is sharing its local density; 
normal vehicle, when it is not participating in the density 
estimation.

To facilitate reading, we describe the essentials of the SLDE 
strategy through the scenario shown in Fig. 2. N0 is the EV. The 
N−2, N−1, N1 and N2 are the RVs. Each RV has a specific colour to 
identify its actions and information. EV uses all received density 
histograms (DHs). The DH is an array that contains the densities of 
the segments within the maximum transmission range of a specific 
vehicle (Fig. 3). For each segment in EV range, EV uses the 
density of the nearest RV to the centre of that segment; it is 
important to note that there are two ways of receiving the density
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at the centre of a segment Dx,segment. The highest value is the
extended beacon lifetime when the vehicle is on the border of a
particular segment (Dx,segment = SL/2 ).

The number of the used RVs in the constructed DH has a great
impact on its accuracy. This is because as the numbers of RVs
increases, the number of the accurate information increases. The
previous strategy might jump some RVs because a far RV can start
first the propagation if it is nearer to its segment centre comparing
with near RVs to their segments centres.

To avoid the previous situation, we choose to increase the
probability of sending DHs segment after segment. This is ensured
by including in the extended beacon, the next three RVs (RV1, RV2,
RV3) sorted according to the distance to the centre of the next
segment (Fig. 3). The distance is calculated based on the received
normal beacons. In each segment, the DH is reassembled; this
increases the precision by including the accurate information of the
corresponding RVs. The TimeToWait is adapted to make the
vehicles outside the target segment wait more, and the chosen RV
wait less (Algorithm 2 (see Fig. 5)). We keep both mechanisms to
ensure segment after segment propagation and also ensure the
functioning of SLDE even if there are empty segments. In addition,
if a more accurate extended beacon is received, the propagation
strategy starts even if the density information not yet outdated, as
shown in Algorithm 1 (Fig. 4). The accuracy is measured based on
the number of the used RVs. This information is included in the
extended beacon (Fig. 3). This allows propagating the extended

beacons rapidly making their information ready for use before
becoming outdated. 

Fig. 1 is a simple scenario to show the functioning of SLDE.
The density process starts by vehicle A (the first RV) by its passing
through the centre of a segment. Based on the valid received
extended beacons and regular beacons, RVA estimates the density.
Next, it broadcasts the extended beacon by selecting vehicle B as
RV1. For the segments where the EV has the best accuracy, the
regular beacons are used for the estimation. While for other
segments the received DHs are used. In the next segment, as the
vehicles receive the DH, they compete to be the next RV. In this
scenario, without waiting, vehicle B receives the extended beacons
and elects itself as the next RV by broadcasting its extended
beacon, hence suppressing other vehicles of the same segment. In
the next segments, the other vehicles will wait more time, which
gives time for DH to be assembled from one segment to another.
Following the same procedure, vehicles C, D, and E will behave.

In the next sections, we evaluate SLDE performances
analytically and by simulation. We first evaluate the error ratio
analytically to know what the maximum possible detection ratio is.
Then, SLDE will be subject for further simulations, and we will
compare it with F-SLDE and DVDE [10].

F-SLDE (fundamental SLDE) is a variant of SLDE. In F-SLDE,
the propagation of extended beacons is based just on the timers.
The RV does not include the next RVs in its extended beacon. As a
result, the RVs of the different segments send their DHs directly
without waiting for the reception of DHs segment after segment.

Fig. 4  Algorithm 1: SLDE strategy

Fig. 5  Algorithm 2: SLDE TimetoWait calculation
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The following metrics are considered in our performance
evaluation:

• Communication overhead: The communication overhead
evaluates the generated overhead per second by all vehicles
(bytes/s). This metric is used to evaluate the scalability the
evaluated strategies. It is the size of extra bytes used for the density
information multiplied by the mean number of sent extended
beacons per second. The size of extended beacons is based on the
number of segments. Each segment requires one byte.
• Error ratio: The error ratio evaluates the percentage of undetected
neighbours. This metric is used to evaluate the estimation accuracy
(2)

Errorratio =
|EN − RN|

RN
× 100% (2)

directly (solid lines) or included in other DH (dashed lines). Table
1 presents the used functions and symbols. 

4.1 Density estimation accuracy

The density estimation accuracy (DEA) depends on the reception
of DHs and their accuracy.

If an EV has NBS segments on one side, there are (C2
1)NBS of

possible combinations (Coi) of the received set of DHs.
The DEA is calculated using the probability of happening

Ph(Coi) and its density accuracy ratio Pd(Coi). The following
equation gives the density estimation accuracy:

DEA = ∑
i = 1

(C2
1)NBS

Ph(Coi) × Pd(Coi) (3)

We start first by the calculation of the probability that a specific
combination Coi happens. We define Coi as a sorted set that
contains NBS elements. Each element can take 0 or 1 as a value. If
DH of RV on the segment j is received, then (Coi( j) = 1), else
(Coi( j) = 0).

Coi = {1 or 0, 1 or 0, 1 or 0, 1 or 0, …, 1 or 0} (4)

The probability Ph(Coi) of a specific combination Coi happens
is calculated as follows:

Ph(Coi) = ∏
i = 1

NBS

Prv(Coi) (5)

Coi( j) = 1 → Prv(Coi) = Pr(d(0, j))

Coi( j) = 0 → Prv(Coi) = 1 − Pr(d(0, j))
(6)

Pr(d) is the probability of reception of a packet from distance d.
This is calculated based on the model proposed in [16], which is an
empirical model based on a large number of simulations. By
knowing the transmission power Ψ and the communication density
ξ [17] and the distance d, this model estimates the probability of
reception as follows:

Pr(d) = e−3(d /Ψ)2 1 + a1
d

Ψ
+ a2

d

Ψ

2

+ + a3
d

Ψ

3

+ + a4
d

Ψ

4

ai ≃ hi(ξ, Ψ) = ∑hi
( j, k)

ξ
jΨk, i = 1, 2

(7)

where ξ is the communication density
(Ψ ∗ density ∗ beacon frequency); Ψ is the transmission power; d is
the distance between the sender and the receiver; hi is the two-
dimensional polynomial used to provide the corresponding fitting
parameter ai.

More details can be found in [16] regarding the used equation
and coefficients.

For the calculation of density accuracy ratio of one segment, we
define Pd. Pd is based on the Coi which defines the number of the
received DHs. The accuracy of the received DHs also depends on

Fig. 6  Illustration of the considered scenario for an analytical estimation of the density accuracy over the transmission range of a specific node n0

Table 1 Overview of the functions and symbols used in our
performance analysis
Function Meaning
Pd(k, Coi, r) The density accuracy ratio of segment k using Coi after r

hops.
Ph(Coi) The reception probability of all DHs from RVs marked

with 1 in Co j.
Prv(Coi) The probability that a specific combination of DHs is

received.
Pr(d) The reception probability of a packet at distance d.
Symbol Meaning
DH Density histogram, a vector that contains the estimated

densities in the
transmission range.

NBS The number of segments on one side.
Coi A sorted set with NBS elements representing the state of

reception.
DEA Density Estimation Accuracy, the average density

estimation accuracy
over the transmission range.

RVi The reference vehicle of a segment i, which is located at
its center.

where, EN is the estimated number of neighbours in the maximum 
transmission range; RN is the real number of neighbours in the 
maximum transmission range.

4 Analytical analysis
The most important metric of the local density strategy is 
essentially the error ratio. In the following, we will develop a 
probabilistic model for estimating the error ratio for SLDE 
strategy.

For this analysis, we use a basic scenario illustrated in Fig. 6. 
RVs are located in the centre of each segment. The vehicle n0 is the 
EV that will estimate the density using SLDE based on the 
received DH. The vehicle n0 receives the different density 
histograms with different probabilities. In each DH, there are the 
estimated densities of the segments on the maximum transmission 
range of the sending RV. The density segment information either
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the number of hops r from RV to RV during its propagation. Now,
the equation 3 is redefined as follows:

DEA = ∑
i = 1

(C2
1)NBS

Ph(Coi) × ∑
k = 1

NBS

Pd(k, Coi, r)/NBS (8)

DEA = ∑
k = 1

NBS

∑
i = 1

(C2
1)NBS

Ph(Coi) × Pd(k, Coi, r)/NBS (9)

The EV use the DH of the nearest RV for the calculation of the
density of each segment. From a global view, the construction
process of DHs can be seen as a recursive process where each built
DH depends on the received DHs. The following equation shows
how Pd is calculated:

Pd(k, Coi, r) = ∑
i = 1

(C2
1)NBS

Ph(Coi)

× Pd( min
j ∈ [0, NBS]

( |k − j | )/Coi( j) = 1, r − 1)

(10)

Pd(k, Coi, 0) = 1 − 1 − Pr min
j ∈ [0, NBS]

( |k − j|

× SegmentSize)/Coi( j) = 1
BeaconFrequency

(11)

In this modelling, we considered that all vehicles have the same
communication conditions, so their probability of detection for the
same distances will be the same. The idea is to start by constructing
a vector that represents the detection ratio of each segment using
the empirical model [16], that is Pd(k, Coi, 0). then the process
continues until Pd(k, Coi, NBS − 1) to cover the maximum
transmission range since the DH in SLDE is sent from one segment
to another.

In the following, we will evaluate the performance of the SLDE
strategy using this model. For this analysis, we conducted
simulation using ns-2 with the empirical simulation model
parameters used in [16].

Fig. 7 depicts the error ratio for SLDE as a function of the
vehicular density using ten and twenty segments. As observed,
SLDE has a lower error ratio using 10 segments compared with 20
segments. It is clear that by increasing the density, the error ratio
rises. This is mainly due to packets collisions that increase with the
number of the vehicles that use the same wireless medium.
However, these errors correspond exactly to the detection error of
the main segment (the segment where the vehicle is in its centre).
In other words, all the vehicles have a detection ratio over their
maximum transmission range (1000m) that equals a detection ratio
over their main segment and the minimum possible error ratio. All
the detection ratios within the segment are shown in Table 2. 

The reduced error ratio for SLDE is mainly due to the fast
propagation strategy, which ensures fresher and accurate density
information to the different vehicles.

4.2 The effect of the number of used RVs

In the ideal situation, the accuracy converges to its maximum
value, which corresponds to the detection ratio in the main
segments (Table 2). All the vehicles will have the maximum
detection ratio if the extended beacons are constructed and
propagated by more RVs. This is confirmed by the simulation
results shown in Figs. 8a and b. 

Fig. 7 shows that using small segments permits a better
detection ratio even if the number of RVs that are used in the
construction of the DH is lower. This comes at the cost of
additional overhead. The overhead consists of the extra bytes used
for the density of the additional segments. The analysis of this
basic scenario shows that SLDE can give vehicles the capacity to
have a very high detection ratio over its maximum transmission
range (1000m) that corresponds to the detection ratio over the main
segment.

In the next section, SLDE will be subject for further
simulations, and we will compare it to the F-SLDE and DVDE [10]
strategies.

5 Simulation
In this section, we carry out a simulation study to evaluate the
performances SLDE and compare them with both F-SLDE and
DVDE. The simulations are performed using ns-2.35 network
simulator [18] and an overhauled Mac PHY-model is used [19].
This model is adapted to the characteristics of IEEE 802.11p,
which the standard used for the inter-vehicle communications. In
addition, the probabilistic Nakagami propagation model is used to
ensure more realistic simulations. The three simulated strategies
are DVDE [10], F-SLDE, and SLDE. To ensure a fair comparison
between these strategies, we have simulated them under the
simulation configuration (the simulation configuration of DVDE
[10]). The parameters of this simulation are listed in Table 3. 

The simulation scenario consists in a three-lane bidirectional
highway of 2 km in length. The highway is straight without
entrances or exists. To generate realistic traffic patterns for both
microscopic and macroscopic environments, we have used SUMO
traffic mobility engine Table 4. The mobility scenarios represent
the different levels of service on highways. Based on the highway
capacity manual, we selected the highest possible density for each
service level. Table 4 shows the different levels of service on
highways and their corresponding maximum values of densities
given by vehicle/lane/km. 

5.1 Simulation results

The different parameters values for DVDE[10], F-SLDE, and
SLDE are analysed to select the best configuration to be applied to
each strategy. The results are calculated basing on the mean values
of the estimation samples of all vehicles and over the different
densities. An estimation sample is taken each second. The
performances of F-SLDE and SLDE are directly related to the size
of a segment and the validity time of the density information △T .
For this reason, the different segment size values and △T  are
analysed to select the adequate ones for ensuring a low error ratio
with a minimum of overhead. The same task was performed for

Fig. 7  Error ratio evaluation of SLDE using the proposed model

Table 2 The detection ratio of vehicles inside the segment
using the empirical model [16]
Density, v/l/km 10 segments (100 m) 20 segments (50 m)
7 98.847% 99.245%
11 98.299% 98.828%
16 97.195% 98.234%
22 94.400% 97.033%
25 92.049% 96.020%
Mean 96.158% 97.872%
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DVDE. However, the segment size is the only parameter
considered in DVDE. The obtained results are illustrated in Table
5. 

The results in Table 5 show the error ratio and the overhead of
F-SLDE, SLDE, and DVDE. It is clear that SLDE and F-SLDE
outperform in both metrics. In addition, SLDE has the lowest mean
error among the three strategies for about 2.96% with an overhead
of 10,558.83  bytes/s by using 100m as segment size and 0.1 for
△T . The presented results also show that the size of the segment is
inversely proportional to the generated overhead values. Indeed,
the smaller the size of the segment is, the higher generated
overhead is. However, we can see that F-SLDE has the lowest
overhead with 137.25 bytes/s by using 200 m as segment size and
0.9 for △T  but with a higher error ratio of 12.66%.

The best parameters of each strategy are selected based on the
weight (ω) of the obtained results. The weight (ω)) is calculated as
follows:

ω(S, △T) =
errorratio

max(errorratio)
+

overhead
max(overhead)

(12)

In (12), we consider that the error ratio and the overhead have
the same impact on the calculation of the weight. For this reason,
an equally factor is assigned to each of them. Besides of this, the
function MAX calculated the maximum obtained value using the
same strategy.

The results illustrated in Table 5 are all evaluated using the
weight function. The results of this evolution are summarised
according to the strategies and their parameters as follows: (i) For
DVDE, the best results are obtained using segments of 200 m, (ii)
For F-SLDE, the lowest weight was found using segments size of
100 m and 0.1 for △T  (iii) For SLDE, the lowest weight was
found using segments size of 200 with △T  equals 0.1. These
selected best parameters are used in the next section for the rest of
the performance evaluation.

5.2 Evaluation of overhead

The generated overhead for DVDE, F-SLDE, and SLDE, using the
selected parameters, are shown in Fig. 9. The overhead is the
number of extra bytes sent per second for the density information.
In Fig. 9a, the mean overhead of using the different densities is
shown using a boxplot with 5%, 95% percentiles. The bottom and
top of the boxes are the lower and upper quartiles of results while
the line between them is the median. The upper whisker is 95%
percentile, and the lower whisker is 5% percentile. Fig. 9a shows
that DVDE has a lower overhead. The overhead for all strategies is
considered as very low compared to the offered bandwidth of 3 
MB/s in each collision domain. Nevertheless, F-SLDE and SLDE
can have less overhead and with a lower error ratio compared to
DVDE using other parameters as listed in Table 5. For example, by
using 200m as segment size and 0.9 as △T , F-SLDE generated
137.25 bytes/second, and SLDE generated 477 bytes/second. 

The generated overhead of the three strategies is illustrated
regarding the density for vehicles in 9b. We can see that the
generated overhead linearly increases with the density of vehicles
in all strategies. These results are expected because as the number
of vehicles increases as the number of sent extended beacons
increased as well.

5.3 Evaluation of error ratio

The evaluation of the error ratio as a function of the selected
parameters is illustrated in Figs. 10 and 11. The accuracy of
estimated number of vehicles compared with the real number of

Table 3 Simulation configuration
Parameter Value
frequency 5.9 GHz
data rate 3 Mbps
carrier sense threshold −96 dBm

SIFS time 32 μs

slot time 16 μs

preamble length 40 μs

PLCP header length 8 μs

noise floor −99 dBm

SINR for preamble capture 4 dB
SINR for frame body capture 10 dB
MAC 802.11P
packet size 400 byte
beacon generation 10 beacons/s
maximum vehicle velocity 30  m/s
transmission range 1000 m
radio propagation Nakagami
number of vehicles 84, 132, 192, 256, 300
road length 2 km

Table 4 The service levels of highways and their maximum
densities according to [20]

Level of service Max density  v/l/km
A 7
B 11
C 16
D 22
E 25

Fig. 8  The effect of the number of used RVs for detection accuracy
(a) 10 segments, (b) 20 segments
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vehicles and is shown in the scatter plot presented in Fig. 10. As
we can see in this plot both of SLDE and F-SLDE value are
concentrated on the black line that represents the real values.
However, the values obtained by DVDE are getting away for the
line as the number of neighbours increases. 

The boxplot (5%, 95% percentiles) in Fig. 11a shows the mean
error of the different densities. As we can see, the lowest error ratio
mean is observed in SLDE compared with the two other strategies.

The error ratio of the strategies as a function of the density of
vehicles is illustrated in Fig. 11b. We can observe that SLDE
generally has the lowest compared with F-SLDE and DVDE
strategies. Indeed, thanks to the propagation module used by F-
SLDE and SLDE that ensures fresh and accurate vehicles, the error
ratio is reduced compared to DVDE. In addition, the capacity to
use more RVs in SLDE allows it to more reduce the error ratio
compared to F-SLDE. The reason is using more RVs permits to
increase the accuracy of the information in each hop.

The obtained results can be summarised as follows: In F-SLDE
and SLDE, the generated error ratio and overhead were very low
even over the maximum range. Indeed, both of two strategies
optimistically use the available information and make it more
accurate through frequently updating the DH in each RV.
Furthermore, the results of obtained by SLDE outperform the ones
of F-SLDE in terms both error ratio SLDE (3.16%) and overhead
(SLDE (2710.08 bytes/s). This is the result of increasing the
number of used RVs by using segment after segment propagation
strategy.

6 Conclusion
The IoV is one of the most important real-world applications of the
IoT. This technology brings new opportunities to intelligent
transportation systems applications towards improving safety and
comfort on our roads. In many of these applications, the local
density of vehicles represents a key element in their functioning.
However, getting accurate density estimation in a high traffic
density situation is one of the important issues that should be
carefully addressed. In this paper, we proposed an efficient local
density estimation approach, called segment-based local density
estimation (SLDE). This approach provides accurate local density
estimation within the maximum transmission range, i.e. the number
of vehicles that may affect the communication quality. SLDE is
based on: (i) the segmentation of the road into a set of segments
that are smaller than the maximum transmission range and (ii) an
efficient strategy for the propagation and exchange of the density

Table 5 Simulation results of F-SLDE, SLDE, and DVDE
Segment △T(s) Error ratio, % Overhead, bytes/s
size, m SLDE F-SLDE DVDE SLDE F-SLDE DVDE

200.00 0.10 3.16 5.68 18.50 2710.08 1049.09 2138.40
100.00 0.10 2.96 3.62 17.74 10,558.83 3871.85 4082.40
50.00 0.10 4.40 4.98 18.54 37,560.92 14,388.62 7970.40
25.00 0.10 11.70 11.56 18.14 122,459.04 47,674.62 15,746.40
200.00 0.30 3.76 7.74 18.50 1431.88 371.04 2138.40
100.00 0.30 3.12 4.64 17.74 5176.53 1327.71 4082.40
50.00 0.30 4.64 5.72 18.54 18,498.26 5025.66 7970.40
25.00 0.30 11.74 11.08 18.14 62,774.34 18,186.85 15,746.40
200.00 0.50 4.96 8.94 18.50 721.17 231.70 2138.40
100.00 0.50 3.60 5.20 17.74 2296.73 823.34 4082.40
50.00 0.50 5.18 6.08 18.54 7458.32 3085.91 7970.40
25.00 0.50 11.74 10.28 18.14 25,361.60 11,828.31 15,746.40
200.00 0.70 5.44 10.24 18.50 578.65 174.23 2138.40
100.00 0.70 3.76 5.58 17.74 1793.09 603.38 4082.40
50.00 0.70 5.34 6.12 18.54 5548.15 2240.47 7970.40
25.00 0.70 11.56 9.56 18.14 18,746.64 8970.44 15,746.40
200.00 0.90 6.26 12.66 18.50 477.82 137.25 2138.40
100.00 0.90 3.96 6.02 17.74 1460.04 475.15 4082.40
50.00 0.90 5.38 6.44 18.54 4369.46 1783.72 7970.40
25.00 0.90 11.26 8.98 18.14 14,643.28 7358.04 15,746.40

Fig. 9  Overhead evaluation
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calculated in each segment. The performance evaluation results
demonstrated the accuracy of the proposed approach and its
efficiency regarding the generated overhead. As a perspective for
this work, we intend to use SLDE to enhance the performance of
congestion control protocols.
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