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Abstract A novel method performing 3D PTV from

double frame multi-camera images is introduced. Par-

ticle velocities are estimated by following three steps.

Firstly, separate particle reconstructions with a sparsity-

based algorithm are performed on a fine grid. Secondly,

they are expanded on a coarser grid on which 3D cor-

relation is performed, yielding a predictor displacement

field that allows to efficiently match particles at the two

time instants. As these particles are still located on a

voxel grid, the third, final step achieves particle posi-

tion refinement to their actual subvoxel position by a

global optimization process, also accounting for their

intensities. As it strongly leverages on principles from

tomographic reconstruction, the technique is termed

Double-Frame Tomo-PTV (DF-TPTV). Standard syn-

thetic tests on a complex turbulent flow show that the

method achieves high particle and vector detection effi-

ciency, up to seeding densities of around 0.08 particles

per pixel (ppp). On these tests, it also shows a higher ro-

bustness to noise and lower root-mean-square errors on

velocity estimation than similar state-of-the-art meth-

ods. Results from an experimental campaign on a tran-

sitional round air jet at Reynolds number 4600 are also

presented. Average seeding density varies in time from
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0.06 to 0.03 ppp during the considered run, with differ-

ent densities and signal-to-noise ratios being observed

with time in the jet and ambient air regions, supplied

by two different seeding systems. The strong polydis-

perse nature of the seeding, as well as the coexistence

of two spatial zones of significantly different particle

densities and signal-to-noise ratios, are observed to be

the most influential sources of limitation for DF-TPTV

performance. However, the method still successfully re-

construct a large amount of particles, and, associated

to an outlier rejection scheme based on temporal statis-

tics, truthfully reconstructs the instantaneous jet dy-

namics. Further quantitative performance assessment

is then provided by introducing statistics performed by

bin averaging, upon assuming statistical axisymmetry

of the jet. Mean and fluctuating axial velocity compo-

nents in the jet near-field are compared with reference

results obtained from planar PIV at higher seeding den-

sity, with an interrogation window of size comparable

to that of the bins. Results are found to be in excel-

lent agreement with one another, confirming the high

performance of DF-TPTV to yield reliable volumetric

vector fields at seeding densities usually considered for

tomographic PIV processing.

Keywords 3D PTV; tomographic PTV; jet

1 Introduction

Over the past two decades, volumetric optical ve-

locimetry techniques have undergone tremendous ad-

vances, paving the way towards instantaneous and un-

steady characterization of three-dimensional (3D) com-

plex flows at a large variety of spatial scales. Tomo-

graphic Particle Image Velocimetry (TomoPIV) has

been introduced as a first technique yielding dense
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3D vector fields (Elsinga et al., 2006). While provid-

ing a wealth of information on a regular vector grid,

allowing convenient physical analyses, one of its ma-

jor limitations has been quickly identified as its more

important degree of spatial filtering than in planar

PIV. Indeed, due to 3D imaging constraints, the max-

imum acceptable seeding density maintaining an ac-

ceptable accuracy is known to be lower than for planar

PIV (Kähler et al., 2016; Scarano, 2012), imposing to

perform cross-correlation with large Interrogation Vol-

umes (IV), thereby smoothing the smallest turbulent

scales.

Three-dimensional Particle Tracking Velocimetry

(3DPTV) methods, on the other hand, have been intro-

duced much earlier than TomoPIV (Maas et al., 1993;

Malik et al., 1993; Nishino et al., 1989; Willert and

Gharib, 1992). While having since been applied to a

variety of flow situations (including difficult viewing

conditions such as in micro-scale flows, see e.g. Park

and Kihm, 2006) these methods have long been char-

acterized by a different trade-off, as the accuracy of

the velocity estimation is rather linked to the particle

image size (much smaller than the typical IV size in

TomoPIV), but at the cost of a low seeding density,

typically lower than 0.001 particles per pixel (ppp).

However, recent years have seen major improvements

in 3DPTV’s performance by acquiring multiple images

in a time-resolved (TR) mode.

Multiframe 3DPTV, exploiting temporal consis-

tency over a large horizon (typically 10 time steps or

more) has led to obtaining reliable particle trajectories

and accurate particle location, velocity and material ac-

celeration (Jux et al., 2018; Malik et al., 1993; Schanz
et al., 2016; Schröder et al., 2009, 2011). Associated

with TomoPIV for 3D detection (Schröder et al., 2009,

2011) or with iterative stereo matching techniques like

the Iterative Particle Reconstruction (IPR, Wieneke,

2013) or Shake-The-Box (STB, Schanz et al., 2016),

temporal consistency has been the key factor behind

recent 3DPTV successes at seeding densities up to ppp

≈ 0.05. However, these approaches require TR measure-

ments, which suffer a lower signal-to-noise ratio due to

limited energy per pulse, and therefore lose in accuracy

in situations where good seeding or contrast quality are

difficult to achieve. Furthermore, acquisition rate in a

regular pulse TR mode is limited to several kHz, higher

frequencies requiring to decreasing even more the light

intensity. These techniques therefore still suffer from

severe limitations in the context of high-speed flows,

except if more complex and costly setups can be as-

sembled (such as a pair of interlaced double-pulse lasers

enabling four pulse acquisition, see e.g. Novara et al.,

2016).

In contrast, we consider here dual frame 3DPTV us-

ing a novel processing pipeline, whose design leads in

standard synthetic cases to high performance for ppp

up to 0.08, while still yielding reliable and accurate re-

sults in difficult experimental conditions. As the ap-

proach uses several algorithmic steps of the TomoPIV

processing, we termed it Dual Frame Tomo-PTV (DF-

TPTV). The paper is organized as follows: firstly, sec-

tion 2 reviews the main recent proposed algorithms

that also take as their objective to perform 3DPTV

on conventional double frame acquisition to measure

velocity information, and underlines the main factors

defining the performance in this context. Section 3 de-

scribes the proposed DF-TPTV method, organized in

three main steps: sparse tomographic 3D particle recon-

struction, temporal matching of particles, and vector

refinement. Section 4 then characterizes the behavior

of DF-TPTV on a large range of seeding density values

using synthetic data generated from a turbulent chan-

nel flow direct numerical simulation (DNS) (Graham

et al., 2016; Li et al., 2008), in both ideal and noisy sit-

uations. Section 5 presents an experimental application

to a cylindrical air jet. Detection performance of DF-

TPTV is first assessed, to illustrate its performance in a

real experiment, here with quite challenging conditions

of polydispersity, and significant differences in seeding

density and signal-to-noise ratios between the jet itself

and the outer ambient flow regions, supplied by two

different seeding systems. Additional synthetic tests are

introduced, mimicking this experiment, confirming that

these two characteristics can have a primary influence

on its efficiency. The ability of DF-TPTV to yield re-

liable vector fields is then scrutinized both on instan-

taneous results, and by estimating statistical quantities

which are compared with results from a classical pla-

nar PIV system. Section 6 is devoted to conclusions and

perspectives.

2 Related works

Recently, high accuracy measurements have been ob-

tained from 3DPTV by Fuchs et al. (2016) and Agüera

et al. (2016), with performance illustration by comput-

ing ensemble statistics through spatio-temporal binning

of 3DPTV vectors. However, these methods differ sig-

nificantly in their processing steps.

Agüera et al. (2016) first conduct 3D particle detec-

tion by a classical 2D particle detection in the images

and stereoscopic triangulation, and then solve the tem-

poral matching in two steps. Particles at the first time

instant are displaced using a ”predictor” motion field

obtained by correlation on low-resolution TomoPIV vol-

umes. They are then matched with particles at the sec-
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ond time instant by nearest-neighbor association. The

method appears to be limited to low seeding densities

(ppp = 0.003−0.005) setting hard constraints either on

the size of the bin, or on the number of acquired snap-

shots, in the context of statistical estimation by bin av-

eraging. The authors use as a matter of fact large bins

and propose a technique to mitigate the influence of a

mean velocity gradient inside each bin that otherwise

would bias the computation of second-order statistics.

Fuchs et al. (2016) reconstruct a volume by To-

moPIV (using either MLOS or MART) and detect 3D

particles by fitting 3D Gaussian to voxel intensities. A

selection of particles is then applied: a detection is con-

firmed if its projections in PIV images can be associ-

ated unambiguously to a unique particle image in each

frame. This rule eliminates almost all ghosts at the

cost of loosing a significant number of true particles.

Selected detections are then triangulated and propa-

gated to the next time instant by means of a previ-

ously estimated displacement field. They finally use a

matching process which takes into account the spatial

regularity of the motion field so as to reduce outlier

vectors as much as possible. Their method has been

applied to the computation of mean flow velocity and

Reynolds stresses of a turbulent boundary layer, with

results equivalent to 3DPTV on TR data (Fuchs et al.,

2016).

Both the mentioned methods, Agüera et al. (2016)

and Fuchs et al. (2016), are characterized by a rela-

tively low maximum density of estimated 3D vectors,

as a consequence of their choices of 3D reconstruction

method. The epipolar stereo matching method used in

Agüera et al. (2016) can only work at very low seed-

ing densities (ppp = 0.003−0.005); TomoPIV methods

used in Fuchs et al. (2016) yield a high percentage of

ghost particles leading the authors to choose a drastic

selection rule.

In the following, we show that, in contrast, by using

in particular sparse TomoPIV reconstruction, (Cornic

et al., 2015a) we have been able to contain the propor-

tion of ghosts in the 3DPTV process while maintaining

a higher number of estimated vectors.

3 The Double Frame Tomo-PTV technique

The technique involves 3 stages, sketched in figure 1:

initial particle reconstructions on a voxel grid at the

two instants, 3D matching of particles yielding a first

estimate of the displacement vectors, and subvoxel re-

finement of the particle positions and thus of the dis-

placements.

Note that the very first version of the technique was

introduced in Cornic et al. (2014), with good perfor-

mances at densities up to ppp ≈ 0.03, as attested by the

4th PIV challenge (Kähler et al., 2016). It was further

improved in Cornic et al. (2015b). The following pre-

sentation corresponds to the stabilized and optimized

version of the method, featuring in particular much sim-

plification compared to our previously communicated

work.

3.1 Initial particle reconstructions

The first step is a fast and efficient localization and

intensity reconstruction of particles on a 3D voxel grid

based on sparsity principles, comprehensively described

in Cornic et al. (2015a). It is applied to obtain separate

and initial particle reconstructions at the two time in-

stants, in the form of indices and intensities of voxels

supposed to contain a particle. The initial step is a tra-

ditional MLOS operation (Atkinson and Soria, 2009) on

a grid with a voxel-to-pixel (v/p) ratio of 0.5. The num-

ber of potential particles is further reduced by retain-

ing only voxels corresponding to local intensity max-

ima (”LocM” strategy). The tomographic reconstruc-

tion then relies on the Particle Volume Reconstruction

(PVR) imaging model, which seeks to explain the im-

ages of a particle with a cluster of few non-zero voxels

(Champagnat et al., 2014). The PVR system Y = WE

relates pixel intensities Y to voxel intensities E through

a weight matrix W made of Point Spread Function

(PSF) samples. A sparse solution is defined through

the following constrained minimization problem:

min
E
‖Y −WE‖ subject to ‖E‖0 ≤ S, (1)

where ‖E‖0 is the number of non-zero entries of E.

We use CoSaMP (Needell and Tropp, 2009), a sparsity-

based algorithm to solve this problem over voxels

yielded by the LocM selection. The main parameter is

S, the upper bound on the number of non-zero voxels

in the reconstruction, which in practice is taken as the

expected number of particles in the volume. The overall

reconstruction algorithm is termed LocM-CoSaMP. As

shown by Cornic et al. (2015a), it has a high efficiency

to preserve real particles and remove ghosts, which, as

discussed earlier, is a critical asset in the context of dual

frame 3DPTV.

3.2 3D particle temporal matching

This step consists in identifying the same physical par-

ticles in the two instants, with the aim of reducing as

much as possible the number of ghosts in the individ-

ual reconstructions. As proposed in previous works, we
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Fig. 1: Method overview (illustrated in 2D): Particle reconstructions at t and t+dt (yielding sparse/spiky particle

representations in the voxel space), temporal matching, and subvoxel refinement of the matched particles. The

temporal matching comprises three steps: estimation of an initial displacement field by 3D correlation on a coarse

grid of the initially expanded particles, application of the interpolated displacement field to particles at time t to

predict their position at time t+ dt, and local matching with particles at time t+ dt.

proceed in two steps, first using a predictor motion and

then a nearest-neighbor association restricted to a small

region around the predicted position. In a preliminary

version of the algorithm (Cornic et al., 2014), 2D dis-

placement fields in the four images were used as mo-

tion predictor, but this was found to be insufficient, in

particular for turbulent flows. A 3D motion predictor

derived from the correlation of the two reconstructed

volume was introduced in Cornic et al. (2015b) and

also used in Agüera et al. (2016).

In practice, LocM-CoSaMP reconstructions are first

post-processed before correlation. Non-zero voxels are

expanded with Gaussian filtering on a low-resolution,

voxel-to-pixel ratio v/p ≥ 2 grid, on which the 3D cor-

relation will be performed. Gaussian filtering is neces-

sary in the grid transfer process, as the PVR model,

used in LocM-CoSaMP, is designed to yield spiky par-

ticle reconstructions, extending to a minimum num-

ber of voxels (instead of the more traditional ”blob”

paradigm of 3D PIV, see Champagnat et al., 2014).

3D correlation is obtained using FOLKI-3D (Cheminet

et al., 2014), a 3D extension of FOLKI-PIV (Champag-

nat et al., 2011). Once particles are propagated, a search

region of matches of three-voxel radius (expressed here

in v/p = 1 units) is in practice sufficient.

3.3 Subvoxel refinement

After matching, the obtained particles are still located

on a voxel grid, so that a final step performing subvoxel

localization is required. Contrary to techniques such as

the Iterative Particle Reconstruction (IPR, Wieneke,

2013) or STB (Schanz et al., 2016), that process all

the particles sequentially, subvoxel refinement is here

performed through a global optimization so as to fully

account for the interactions between the particles in

the images. The objective function to minimize is the

sum of squared differences (SSD) between the recorded

images and the images corresponding to the projections

of the obtained 3D particles:

J(Xp, Ep) =
∑
j

∑
x

∥∥∥∥∥Yj(x)−
∑
p

Eph(x− Fj(Xp))

∥∥∥∥∥
2

,

(2)

where Yj are the recorded images, x a given pixel co-

ordinate in an image, Fj is the projection function in

image Yj yielded by the calibration and h is the PSF.

This SSD is thus performed over all pixels of all im-

ages. Without loss of generality and to alleviate the

notations, we suppose that h is constant and the same

for all images.
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The non linear least squares criterion J is mini-

mized over the 3D positions and intensities {Xp, Ep}
of the particles, i.e. potentially a huge number of vari-

ables. To cope with this issue, we used the L-BFGS

algorithm (Nocedal and Wright, 2006)1. The gradient

of J can be efficiently computed using projection and

back-projection steps. We perform this optimization in-

dependently at time steps t and t + dt, on matched

particles only. In other words, we move independently

the two ends of each 3D vector, as illustrated in Fig. 1.

At the end of the process, DF-TPTV thus produces

estimated 3D displacement vectors with real, subvoxel

coordinates.

4 Assessment on synthetic data

Being a PTV algorithm, the method must be assessed

for performance both by the number of vectors pro-

duced, compared to the number of tracers present in the

observation volume, and by their precision, in terms of

RMS error on the 3D positions and displacements. This

is the purpose of the simulation study presented in this

section. We here intend to characterize the behavior of

DF-TPTV with respect to traditional parameters such

as seeding density and noise. In doing so, we also pro-

vide some elements of comparison with performances

reported in the literature.

4.1 Synthetic data generation and performance metrics

Similar to e.g. case D of the 4th PIV Challenge (Kähler

et al., 2016), we use here one of the flow cases of the

Johns Hopkins Turbulence Database, namely the tur-

bulent channel flow DNS (Graham et al., 2016; Li et al.,

2008). We define x, y and z as the streamwise, span-

wise and wall-normal directions, respectively. A domain

100×110×20 mm3 has been simulated, taken in contact

with the lower wall. Figure 2 shows iso-contours of the

Q-criterion color-coded by the local velocity norm of the

velocity snapshot used for particle displacement, illus-

trating its complex turbulent structure. As the database

uses dimensionless coordinates, a scaling has been cho-

sen, such that the size of one voxel roughly corresponds

to the viscous length scale of the database, i.e. that the

first voxel away from the wall corresponds to one wall

unit. This leads to a voxel size of 50 µm, and a volume

extension of 2000× 2200× 400 wall units.

A traditional, four cameras observation setup is sim-

ulated. With the world coordinate origin located on

1 we used the L-BFGS implementation of L. Stewart, avail-
able at http://www.cs.toronto.edu/̃ liam/software.shtml

Fig. 2: Flow snapshot used for synthetic data genera-

tion (iso-contours of Q-criterion color-coded by veloc-

ity norm), obtained from the Johns Hopkins Turbu-

lence Database (channel flow case, Graham et al., 2016;

Li et al., 2008). Friction Reynolds number is equal to

Reτ = 1000. The observed volume has a thickness of

400 wall units starting from the wall, and a length and

width of 2000 and 2200 wall units, respectively.

the wall of the channel, at the middle of the illumi-

nated zone in the streamwise and spanwise directions,

these cameras are located at the corners of the base of

a right square pyramid, whose apex is at (0, 0, 0) and

height coincides with the z axis. All four cameras have a

2016×2016 pixel sensor, with a pixel pitch of 11µm (e.g.

similar to the PCO Dimax S4), and are equipped with

a lens of focal length f = 200 mm. Their roll position

with respect to the optical axis, and their Scheimpflug

angle, are computed by assuming that they are all in

focus at mid-thickness of the illuminated volume. Imag-

ing of the particles is supposed to be diffraction limited.

The apparent diameter of a particle’s image is dτ = 2.4

pixels, resulting from a Gaussian PSF of standard de-

viation σ = 0.6 pixel integrated over the pixel surface.

Several cases have been considered, both without and

with different levels of Gaussian noise.

Laser illumination is modeled as a constant intensity

throughout the illuminated volume, whose extension is

infinite in the y direction, and spans the range [−50 50]

mm and [0 20] mm in the x and z directions, respec-

tively. For all synthetic experiments, the upper bound S

on the LocM-CoSaMP sparse reconstruction (see Eq. 1)

is chosen equal to the true number of particles consid-

ered in the simulation and seen simultaneously by the

four cameras. It ranges from 33,280 (ppp = 0.01) to

332,287 (ppp = 0.1). As will be explained in section 5,

in a real experiment parameter S is chosen on the basis

of an estimation of the image seeding density.
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The set of particles seen by all the cameras is used as

the ground truth for measuring the performance of DF-

TPTV in terms of particle detection. To quantify it, we

adopt the metrics of Champagnat et al. (2014) and Cor-

nic et al. (2015a). A detection is referred to as a true

positive (TP) if it lies within 1 voxel chessboard dis-

tance of a true particle. Otherwise it is a false positive

(FP), a.k.a a ghost. A non-detection, or false negative

(FN), is reported for a true particle with no detection

within 1 voxel distance. From these basic quantities two

indices of performance are defined:

Recall =
#TP

#TP + #FN
and Precision =

#TP

#TP + #FP
,

(3)

where # stands for number of. Recall is the number of

detected particles over the total number of true parti-

cles in the volume, and is thus the detection rate. Preci-

sion is the fraction of true particles among the detected

particles. The best achievable performance is given by

Recall = 1 (#FN = 0, every particle is detected) and

Precision = 1 (#FP = 0, no ghosts).

4.2 Influence of seeding density

Figure 3 (left) shows the Precision and Recall of the re-

construction at initial time t, as a function of the seed-

ing density expressed in particles per pixel. As LocM-

CoSamp is tuned to retrieve the exact number of parti-

cles, one has S=#TP+#FN=#TP+#FP, so that Re-

call and Precision are equal. Performance is observed to

decrease first slowly with the seeding density; value ppp

= 0.08 then sets a break after which the performances

decline faster. Note that such a concentration is al-

ready above the usually acknowledged optimum for To-

moPIV, i.e. roughly around 0.05 ppp. To enable a more

detailed comparison with the reconstruction phase of

TomoPIV, we also show in this figure the Precision and

Recall corresponding to MLOS-SMART (Atkinson and

Soria, 2009), using 25 iterations. As is classically the

case with such methods, MLOS-SMART operates at a

very different trade-off between both quantities, show-

ing a nearly maximum Recall throughout the range of

ppp, with Precision dropping dramatically, and indeed

reaching some quasi saturation at very low values from

ppp ≈ 0.05. Returning to comparison with another 3D

PTV approach, by Fuchs et al. (2016), we observe that

their selection rules led them to a quasi negligible per-

centage of ghosts, at the cost of low Recall (detection

rate). According to Fuchs et al. (2016)’s Fig. 1(a), their

Recall is indeed around 70% at ppp = 0.05, while we

here obtain a 95% Recall at this ppp. Even though

the dataset considered by Fuchs et al. (2016) and the

present one are different and therefore cannot be com-

pared directly, these figures tend to support the fact

that the two methods rely on a different operating point

between Precision and Recall. In other words, the re-

construction step of DF-TPTV appears more balanced

between the percentage of ghosts and the detection rate

compared to Fuchs et al. (2016). We will see below that

the fact of tolerating a higher rate of ghosts allows here

to retrieve a higher percentage of true vectors while

maintaining the ratio of outliers vectors as low as a few

percent.

In figure 3 (right), we now account for the accuracy

in particle localization, by plotting the mean and RMS

position errors yielded by DF-TPTV, again compared

to that of MLOS-SMART, for the same variation of

ppp. For homogeneity, in the case of MLOS-SMART,

these quantities are computed by only keeping the true

particles in the reconstructions, and performing a three-

dimensional Gaussian fit to determine their subvoxel

positions. The curves for DF-TPTV again show a grad-

ual increase in the error with growing ppp, until ppp

= 0.08 where a change in slope occurs. However for both

the mean and RMS values, DF-TPTV yields systemat-

ically smaller error values than MLOS-SMART, except

at the highest density, ppp= 0.1, as a result of this

change of slope. Over a large range of densities starting

from the lower values and up to ppp ≈ 0.05 − 0.06,

the errors of the former are between two and three

times smaller than those of the latter. Even more in-

terestingly, the mean location errors obtained with DF-

TPTV are lower than that reported in the literature for

state-of-the-art particle reconstruction or double frame

3D PTV techniques, e.g., IPR Wieneke (2013) or Fuchs

et al. (2016), and comparable to the 3D positional errors

of STB obtained for the first result available from the

initialization phase, which relies on the processing of the

first four snapshots of a sequence (Schanz et al., 2016).

To illustrate the repartition in location error among the

components, figure 4 displays the location error prob-

ability density function (pdf) in the xy and xz planes,

for ppp = 0.05. It may be seen that the pdf decays very

fast in the vicinity of the origin and is elongated in the

z direction in the xz plane, showing that higher error

values are obtained in the z component. This is quite

classical due to the geometry of the optical setup, and

is observed for all seeding densities considered here (not

shown for conciseness).

Precision and Recall, that have been introduced

above for characterizing the reconstructed particles, can

also be computed on velocity vectors. Here, the ground

truth is made of all vectors defined by a true particle

visible at the two time instants by all cameras. A true
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Fig. 3: Performances of DF-TPTV for particle reconstruction with respect to seeding density (ppp), compared

with MLOS-SMART. For the latter, the particles’ positions are extracted using a 3D Gaussian fit. Left: Precision

and Recall of the particles reconstruction step. Right: total mean and RMS position error of true particles.

Fig. 4: Position error probability density function for DF-TPTV at ppp=0.05. Left: xy-plane. Right: xz-plane.

positive vector (TPv) stems from the detection of the

same particle at both instants and the correct matching

of the two detections. The fraction of true positive vec-

tors TPv among all retrieved vectors is the Precision,

while the fraction of TPv among all true vectors is the

Recall. Figure 5 (left) shows vector Precision and Re-

call of DF-TPTV over a range of ppp up to 0.1. Upon

comparing for each ppp the values of Recall in figure 3

(left), one observes that the obtained vector Recall is

approximately equal to the square of the reconstruc-

tion Recall. This is ascribed both to the nature of the

displacement considered here, and to the monodisperse

particle distribution. These two conditions jointly en-

sure that, at the two instants, the probabilities for each

particle of being reconstructed are independent, leading

to this value of the vector Recall. This would not be the

case, either for a monodisperse distribution and a very

smooth displacement field (such as e.g. a pure transla-

tion), for which epipolar geometry would induce that

more or less the same particles at t and t+dt would be

missed, or for a polydisperse distribution, in which the

probability of each particle to be reconstructed would

be linked to its intensity. Note that in the latter case,

as will be observed in section 5.4, this leads to a vec-

tor Recall higher than the square of the particle Recall.

Overall, this result shows that vector Recall is mainly



8 Philippe Cornic1† et al.

Fig. 5: Performances of DF-TPTV for vector reconstruction with respect to seeding density (ppp). Left : vector

Precision and Recall. Right: RMS errors on velocity, RMSv and RMS∗v (see the text for definitions). RMS∗v can

be computed, and is shown here, over all vectors (blue) and only true positive vectors (red). RMSv is computed

over true positive vectors only.

limited by the missing detections rather than by the

matching step, justifying the use of a predictor motion

field based on 3D correlation. An additional sign of the

efficiency of the 3D matching is that, contrary to the

Precision of particle detection, vector Precision stays

close to 1 when the ppp increases, supporting its abil-

ity to filter out most of the ghost particles. The vector

Recall can be translated straightforwardly to the effec-

tive amount of particles by pixel metric introduced by

Fuchs et al. (2016), by multiplying it with the seed-

ing density. For instance, at ppp equal to 0.05, figure 5

(left) indicates a vector Recall equal to 0.9, thus corre-

sponding to a 0.045 = 0.05 × 0.9 effective amount of

particles by pixel. As a comparison, Fuchs et al. (2016)

report a maximum effective amount of 0.032 (see their

Fig. 2b) — however bearing in mind the slightly differ-

ent characteristics of their dataset. The percentage of

ghost vectors among the total number of true vectors

can be computed as

%ghost =
(1− Precision)× Recall

Precision
. (4)

For the considered ppp = 0.05, figure 5 (left) shows

that Recall = 0.9, Precision = 1 − 0.01, consequently

the percentage of ghosts is equal to 0.9%, i.e. indeed a

very low proportion of the vector field. In this figure, we

also introduce the matching rate, defined as the number

of vectors obtained by DF-TPTV divided by the total

number of particles in the flow. This quantity is seen

to nearly collapse with the vector Recall, showing only

a slight deviation from it at the highest seeding densi-

ties. In fact, it can be shown that, in this synthetic case

where the (particle) Recall and Precision are equal, this

matching rate is equal to the ratio between the vector

Recall and the vector Precision and thus does not in-

troduce much new information. We introduce it here

mostly as a reference for comparison, since we will ana-

lyze the matching rate in our experiments in section 5.

Vector fields obtained by DF-TPTV are further as-

sessed using the RMS error on the velocity vectors.

In that respect we introduce two quantities, denoted

RMSv and RMS∗v , where subscript v stands for veloc-

ity, and which are defined as:

RMSv =

√√√√ 1

P

P∑
p=1

3∑
i=1

(ui(xGTp , yGTp , zGTp )− ũi(xp, yp, zp))2,

(5)

RMS∗v =

√√√√ 1

P

P∑
p=1

3∑
i=1

(ui(xp, yp, zp)− ũi(xp, yp, zp))2,

(6)

where P is the number of detected particles, (u1, u2, u3)

is the ground truth 3D displacement and (ũ1, ũ2, ũ3)

is the DF-TPTV estimation of the 3D displacement.

Coordinates (xp, yp, zp) are the spatial locations of the

particles detected by DF-TPTV, while (xGTp , yGTp , zGTp )

denotes their ground truth locations. RMSv is built

by considering the set of true particles only, and there-

fore only assesses whether the velocity of these particles
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reconstructed by DF-TPTV has been estimated accu-

rately, whereas RMS∗v also includes the fact that, due

to its positional error, a true particle might have been

reconstructed at the wrong spatial location, possibly

inducing an erroneous spatial portrait of the flow. Fig-

ure 5 (right) shows these two quantities as a function of

the ppp. In the case of RMS∗v , we include assessment

both over only the TP vectors (red curve) and over all

the vectors (blue curve); examining only the TP yields

a lower bound RMS error of what would be obtained

after outlier rejection, if perfect. Firstly, it appears that

the curves of RMSv, and of RMS∗v considering the TP

only, collapse over the whole range of ppp. This shows

that errors on particle positions are much lower than

the spatial scale of the finer flow gradients. As this will

be systematically the case, also with the case of the next

section including noise, we will restrict to RMS∗v in the

following. Trends are logically similar to that observed

for particle localization error, with a gradual increase

of RMSv up to ppp = 0.08, and a more pronounced

performance loss for higher densities. It can also be

seen that, although there are only few wrong vectors

compared to the number of good ones, they have a no-

ticeable influence on the RMS when the ppp increases.

This will motivate the introduction of outlier rejection

in the processing of experimental data, in section 5.

4.3 Influence of noise

We now provide a first series of tests to assess the ro-

bustness of DF-TPTV to noise, by considering the same

image settings as in Schanz et al. (2016), to allow com-

parison. Datasets generated are similar to the previous
ones, except that several levels of Gaussian noise, of

standard deviation σ expressed relative to the mean

peak image intensity of the particules Iavg, are consid-

ered. Similar to Schanz et al. (2016), three levels, from

very low to very high noise, are chosen: σ = 0.03, 0.1

and 0.2. Mean level of noise is set to σIavg/2. As in

Schanz et al. (2016), no image preprocessing has been

applied.

In a similar way as in the nominal case presented

above, we show particle detection performances (Pre-

cision and Recall for both particles and vectors, in fig-

ure 6), mean and RMS errors on particle positions (fig-

ure 7), and RMS errors on particle velocities (figure 8).

In all these, we recall the result without noise, to al-

low grasping the effect of the lowest noise level. For all

these quantities, the noise logically leads to loss of per-

formance, in direct relation to its magnitude. The over-

all shape of the curves is conserved, with a discrepancy

compared to the ideal case growing in value as the ppp

grows. This fact is also expected, as noise leads to more

Fig. 8: Sensitivity of DF-TPTV RMS velocity error to

noise, for varying seeding density. Separate analyses in-

cluding all reconstructed vectors (TP+FP) and only

TP vectors.

ambiguities in particle reconstruction, and should make

situations of overlapping particle images even more dif-

ficult to handle. While the lowest noise level, σ = 0.03,

only has minor differences with the ideal case, consider-

ing higher values leads to increasing the drop of perfor-

mance (change of slope of the curves) for earlier values

of the ppp, namely ppp ≈ 0.07 for σ = 0.1, and ppp

≈ 0.06 for σ = 0.2. Noteworthingly, it may be seen in

figure 6 (right) that whatever the noise up to ppp=0.06-

0.07, the vector Precision lies very close to 1. It then

begins to decay fastly only in the noisiest case.

Values at ppp = 0.01 and 0.05 of the mean error

on particle positions shown in figure 7 (left) can be

compared to values obtained by Schanz et al. (2016)

corresponding to the first point of the temporal devel-

opment of STB processing which, as mentioned above,

is obtained from considering the first four frames. Com-

parison shows that, except for the lowest noise level

σ = 0.03 at ppp = 0.05, mean errors obtained by DF-

TPTV are all lower, even though the algorithm only

exploits the information contained in two frames. The

discrepancy is in particular quite pronounced for the

intermediate and high levels, errors for DF-TPTV be-

ing even lower than converged errors of STB, i.e. when

considering for the latter a large number of snapshots.
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Fig. 6: Sensitivity of DF-TPTV detection performance to different levels of noise, for varying seeding density.

Precision and Recall for particle reconstruction (left) and vector reconstruction (right).

Fig. 7: Sensitivity of DF-TPTV particle localisation performance to different levels of noise, for varying seeding

density. Left: mean position error. Right : RMS position error.

5 Experimental results on a round air jet

5.1 Experimental setup

Demonstration on experimental data is performed by

considering a round air jet of exit diameter D = 12 mm.

With Vj = 5.8 m.s−1 the velocity at the centre of the

exit plane, the flow Reynolds number based onD and Vj
is equal to Re = 4600. Flow conditions in the exit plane

are transitional in the boundary layer, due to the pres-

ence of a small circular step at the nozzle wall 20 mm

upstream from the exit. In the following, only dimen-

sionless quantities, built using D and Vj as reference

length and velocity, are considered. The centre of the

jet exit plane is taken as the origin O of the coordi-

nate system; y denotes the direction aligned with the

jet axis, here vertical, and x and z the horizontal axes

(see figure 9).

The near field of this jet, up to y/D ≈ 7.3, is mea-

sured using two PIV systems. 3D measurements are ac-

quired in a parallelepiped with its largest edges in the

x and y directions, with an approximate thickness of

16 mm, centered around O in the z direction (see figure

9). Illumination is achieved using a Quantel Twin Ultra

Nd-Yag laser delivering 120mJ per pulse, and observa-

tion by two Dantec HiSense and two LaVision Imager

ProX 4 Mpixels cameras (2048× 2048 pixel), set up in

a cross like configuration. A mirror is placed in order to

reflect back the volumetric illumination and compen-
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Fig. 9: Transitional jet experiment, featuring 3D PTV measurement in a parallelepiped of 16 mm thickness in

the z direction (with volumetric illumination on), observed by four cameras, and planar PIV measurement in

a jet-longitudinal yz plane (camera in perspective observation, therefore used as a reference for the streamwise

velocity component only).

sate for the different scattering condition among the

cameras.

In order to have a reference on flow quantities for

performance assessment, and also to provide an inde-

pendent seeding density evaluation during the tests, an

additional planar PIV measurement system is set up.

It is made of one Litron Laser Dual Nd-YAG 532nm

laser and one Dantec HiSense 11M (4000× 2672 pixel)

camera. The laser sheet, of estimated thickness 1.5 mm,

is located in the x = 0 plane, orthogonal to the main

axis of the tomographic laser. Due to the presence of the

volumetric illumination, the camera optical axis cannot

be placed perpendicular to the laser sheet, and is thus

set with a slight perspective. The camera is equipped

with a Scheimpflug mount, and calibration is applied

in order to compensate for perspective distortion in the

observation. Due to this single-camera observation, this

system is used for flow comparisons only on the stream-

wise, v component, and its camera is therefore labelled

as ”2D1C camera” in figure 9. Acquisitions of the 3D

and planar systems are intertwined, in the sense that

during a run, 3D and planar snapshots are acquired al-

ternatively, with a separation time of 0.25s. This results

in a respective acquisition frequency for both systems

of 2Hz. Besides, both also operate with the same inter-

frame time of 50µs.

Seeding is achieved using two different aerosol gen-

erators producing DEHS droplets, one whose particles

are injected into the jet settling chamber (thus seeding

the jet), and one used to seed the experimental room

(and thus the outer shear layers and the entrained flow).

Whereas the former continuously injects particles dur-

ing the run, the latter is operated by initially saturating

the (quite large) room, and waiting for homogenization

to begin acquisition, without further injection later on.

As shown in figure 10, the consequence of this setup

and operating mode is twofold. Firstly, the jet and am-

bient air regions exhibit same seeding density only for

a limited time horizon, around snapshot number 200.

For earlier snapshots, the ambient air is more densely

seeded than the jet, and conversely for later snapshots,

due to a constant decay in density there during the 8

minutes lasting run. Secondly, due to the larger area

in the images occupied by the ambient air, the over-

all seeding density also decreases during the run, from

slightly less than 0.06 ppp at the beginning of the run,
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Fig. 11: Evolution of seeding density during the run:

in the entire images (global), and in the regions corre-

sponding to the jet and to the outer ambient air (see

yellow dashed line depicting the considered boundary

in figure 10). Also included is the ppp corresponding to

the number of particles (sparsity S) set in the particle

reconstruction step of DF-TPTV.

until roughly 0.03 ppp. Note that, to determine this

seeding density, we count the average number of local

maxima (on a 3×3 pixel neighbourhood) present in the

raw images. In that process, a threshold for detection is

applied, which is chosen as an upper bound of the noise

level in the images; the latter can be estimated from a

non-illuminated zone. Overall, it is known that such a

procedure for estimating seeding density remains accu-

rate for low ppp, where only few particle images over-

lap, and leads to a possibly significant underestimation

at higher densities (see, e.g., Warner and Smith, 2014).

We thus emphasize here that the present numbers are

conservative with respect to the actual seeding density.

To enable separate analysis between jet and ambient air

regions in the following and account for their different

ppp, we have chosen a simple volumetric delineation,

whose projection in the images is sketched schemati-

cally in figure 10. The jet region has been considered as

a truncated cone, of section diameter equal to the jet

diameter at the exit, and twice the jet diameter at the

most downstream illuminated location.

5.2 Processing parameters

Calibration and self-calibration of the 3D system are

done according to a pinhole model (Cornic et al., 2016),

leading to a voxel size (v/p = 1) of 53.8µm. Standard

pre-processing steps are applied to the images of the

3D cameras before applying the DF-TPTV method,

i.e. historical minimum subtraction and thresholding

by identifying the maximum noise level from a non-

illuminated zone (see figure 10). Additionally, to com-

pensate for differences in dynamics between the camera

images (due to the use of different camera models, and

different scattering conditions in spite of the mirror),

normalization was also necessary to obtain comparable

signal-to-noise ratios between the cameras. It is per-

formed as a gamma correction (using the value γ = 0.5)

mapping each camera image from its native range, [LB

UB], to the common range for all [0 1000]. Here, LB

and UB respectively stand for lower and upper (inten-

sity) bounds, and correspond, respectively, to the noise

level mentioned above, and to the intensity level above

which 0.5% of the intensity levels lie.

To obtain velocity fields from these pre-processed

data, the DF-TPTV method requires choosing the num-

ber of particles to retrieve (sparsity parameter S in

the LocM-CoSaMP particle reconstruction step). This

number should be logically linked to the seeding den-

sity estimated in the images. In practice, we choose to

set S to a value inferior to the number of particles aris-

ing from image density estimation. Concretely, this is

simply done by setting a higher intensity value for the

threshold used to consider local maxima in the images

as actual particles. As shown in figure 11, it leads to

targeting a number of reconstructed particles represent-

ing between 60% and 80% of the counted particles, de-

pending on the instant in the run. We indeed observed

that, at least for the present experiments, even though

it amounts to reconstructing less vectors than could be

possibly extracted from the data, such a choice leads to

an increase in the matching rate between particles at

the two time instants, and to less wrong vectors in the

final fields. This was verified by processing a few snap-

shots with different values of S. This choice will also be

further supported by the analysis derived in section 5.4.

We would like to emphasize here that the value that we

chose for S compared to the (possibly already underes-

timated) number of particles obtained from ppp deter-

mination by counting probably depends of the nature

of the present experimental data, making it difficult to

indicate it as a systematic guideline. Another justifica-

tion to this point is that we think that other possible

choices for S might also be possible, depending on the

remaining processing steps. In particular, in the idea

of maximizing the final amount of measurements, one

could instead try to choose a higher S, closer to the

number of particles corresponding to the ppp, which

could possibly lead to more outliers in the vector fields,

and then set the outlier rejection scheme to a higher

threshold value in order to remove them. Other tuning
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Fig. 10: Sample particle images from one of the 3D cameras, average seeding density estimated to 0.06 ppp (left)

and 0.03 ppp (right). Contrast has been enhanced for display purposes. In the left subfigure, the dashed yellow

line schematically depicts the boundary that has been used in the volume to perform separate diagnostics between

the inside of the jet, considered as a truncated cone, and the outer ambient flow.

parameters of the DF-TPTV algorithm, i.e. pertaining

to matching and subvoxel refinement, are left to their

default values, mentioned in section 4.

In order to filter the results from remaining outliers,

we introduce a rejection post-processing. To do so in a

most adapted and efficient way, following e.g. Griffin

et al. (2010), we choose to rely on temporal statistics

computed by bin averaging, that will be introduced to

compute mean flow fields (see section 5.5). As already

noted in the PTV literature, such an approach, when

available, is more efficient for turbulent flows than re-

lying on comparisons to a spatial neighborhood. Con-

trary to Griffin et al. (2010) however, we here rely on

a simpler combination of univariate statistical rejection

rules, as we choose to reject a given vector if any of

its (u, v, w) components deviates from more than three

standard deviations from its mean (the latter two re-

ferring to that of the bin to which the vector belongs).

Finally, note that variations in illumination within

the volume led in practice to restrict the results to

−0.61 ≤ z/D ≤ 0.40, i.e. a 13 mm thickness, in or-

der to exclude edge effects where light intensity was

lower. More details on this are given in section 5.5.1. In-

stantaneous fields will also be restricted to this zone for

consistency. Also, note that the most upstream location

of the volumetric vector fields yielded by DF-TPTV is

located slightly above the jet exit, i.e. y/D ≈ 0.3. As

can be seen in figure 10, in order to avoid intense light

reflections on the nozzle, the laser volume was indeed

positioned slightly above its exit plane.

5.3 Example of instantaneous results

As a first experimental illustration of the DF-TPTV

method performance, we show in figure 12 the instan-

taneous vector field obtained for the first pulse of the

run, at highest seeding density, estimated to around

0.06 ppp (see also corresponding particle images of one

of the cameras in figure 10 left). We show both raw

results and results post-processed via the outlier rejec-

tion method presented above, in order to illustrate its

effect. Out of the 30, 787 vectors obtained in the re-

tained −0.61 ≤ z ≤ 0.40 zone, outlier rejection filtered

roughly 2.7% of them, leading to a useful set of 29, 947

vectors. This post-processing seems indeed to be effi-

cient and adapted, rejecting a large number of spurious

vectors while keeping the physical ones, as can be ob-

served most evidently in the external flow.

Figure 12 also shows that the expected instanta-

neous structure of this transitional jet is successfully

retrieved by the DF-TPTV. Starting from the jet exit,

one first observes uniform axial velocity in the jet core

(|x|/D < 0.4, y/D ranging from 0.3 to around 1.5), to-

gether with a thin shear layer on the lateral edges. Note

that in this jet potential core zone, as the volume spans

over −0.61 ≤ z ≤ 0.40, one also observes the start of
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Fig. 12: Instantaneous vector field of the transitional Re = 4600 round air jet yielded by the DF-TPTV method,

color-coded by the normalized streamwise component v/Vj . Left: raw result, right: result with outlier filtering (see

text for details). Full field (top) and close-up on the region delineated by the dashed rectangle.

the shear layer in nearly all azimuthal directions, which

translates here into the presence of vectors also with

lower axial velocities (of around v/Vj ≈ 0.5, appear-

ing in green). Following the jet evolution in the down-

stream direction, one then observes typical toroidal vor-

tical structures in the shear layer, due to the Kelvin-

Helmholtz instability, coinciding with accelerations in

the jet core. As also expected, in each region separating

two successive of these vortices, the jet column is seen

to expand, leading to flow deceleration on the axis as

a result of mass conservation. These typical dynamical

features can be observed in more detail in the close-up

also shown in figure 12.

To complete this first assessment of instantaneous

results, we finally compare the vector fields yielded by

DF-TPTV together with those obtained by traditional
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Fig. 13: Left: instantaneous vector field yielded by Tomo-PIV processing of the snapshot shown in figure 12, color-

coded by the normalized streamwise component v/Vj and using the same colormap. Right: Vectors corresponding

to the difference between DF-TPTV and TomoPIV processing, color-coded by the normalized correlation coefficient

corresponding to each vector obtained by TomoPIV.

TomoPIV processing. For the latter, we perform tomo-

graphic reconstructions of the two instants using an

MLOS first guess followed by 25 SMART iterations, as

has been done in section 4.2. We then cross-correlate the

obtained particle distributions with FOLKI-3D (Chem-

inet et al., 2014), to get the final vector fields. The

algorithm relies on an iterative scheme with volume de-

formation, whereby cubic BSpline interpolation is per-

formed. An interrogation volume (IV) size of 33×63×33

voxels (0.15D×0.28D×0.15D) has been chosen, in or-

der to guarantee a minimum number of tracers per IV,

with the anisotropy accounting for the present physics,

in particular the thin shear layers nearest to the jet exit.

Note that the spatial resolution is in practice lower than

the size of the IV, as a Gaussian weighting is used, with

σ = 8×15.5×8 voxels (0.036D×0.069D×0.036D). In

Figure 13 left, we represent the values of the velocity

vectors yielded by TomoPIV, at the spatial locations of

the particles found by DF-TPTV. This is performed by

interpolating the velocity fields yielded by FOLKI-3D.

Note that this interpolation can be considered quite

accurate; indeed, the specific algorithmic architecture

of FOLKI-3D relies on computing the displacement for

each voxel in the 3D grid, i.e. with a maximum overlap.
We here take advantage of this possibly dense result to

avoid truncation during this interpolation process. In

the figure, the same representation and colormap as for

DF-TPTV have been used. In Figure 13 (right), we dis-

play the field of difference vectors between DF-TPTV

and Tomo-PIV, which we color using the normalized

correlation (or correlation coefficient) corresponding to

each vector obtained by Tomo-PIV. The value of this

coefficient can usually be considered as an indicator of

the measurement accuracy, a value close to 1 being most

often associated to a large number of particles (or a

low level of noise) and to weak displacement gradients

within the IV. As the seeding is quite homogeneous in

the considered snapshot, one indeed notices that the

values of this correlation coefficient reflect the presence

of flow gradients, since high values are observed in the

jet core and the outer flow, while the shear layers and

the most downstream zone of the jet exhibit lower val-

ues. Of specific interest to the present study is that

there is also a coincidence between the value of the cor-
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Fig. 14: Evolution with snapshot number of the match-

ing rate between the two instants in a snapshot, in the

entire flow field (global) and in the regions correspond-

ing to the jet and to the ambient air. Also shown is the

estimation of the vector recall during the run.

relation coefficient and the norm of the difference vec-

tor between the DF-TPTV and TomoPIV processings,

the higher values of the coefficient being more often

associated to small discrepancy values, and conversely.

This trend indicates that DF-TPTV certainly improves

the displacement estimation in the high gradient zones,

where TomoPIV is hindered by the necessarily large

IVs, leading to a smoothed and less reliable estimation.

This observation will be completed and confirmed when

considering statistical results, in section 5.5.

5.4 Detection performance assessment

As a first, more quantitative assessment in this exper-

imental context, we now investigate some performance

metrics pertaining to vector detection by DF-TPTV.

Figure 14 presents the evolution during the run of the

matching rate, defined as the proportion of particles

matched between the two instants of a snapshot. This

matching rate is indicated for the global volume, as well

as separately for the jet and ambient air regions, since

they are characterized by different seeding densities.

Also shown in the figure is the estimation of the vec-

tor recall, which can be determined from other shown

quantities, i.e. as the ratio between the number of par-

ticles S chosen for the reconstructions (corresponding

to the orange ppp curve in figure 11), divided by the

estimated actual number of particles (corresponding to

the solid blue curve in this figure), multiplied by the

global matching rate. To appreciate the change in be-

haviour of the algorithm in these realistic conditions

compared to more idealistic synthetic ones, even with

noise, these obtained values can be compared to those

of figure 6 (right). A first striking, but possibly not

totally unexpected feature is that the levels of both

the matching rate and the vector recall are quite sig-

nificantly lower in these experimental results than in

the synthetic conditions considered in section 4. This

is especially the case for the vector Recall. Consider-

ing for instance a situation corresponding to the first

snapshot, for ppp ≈ 0.06, this quantity is comprised

between 0.68 and 0.88 depending on the noise level,

while in the experiment it is equal to 0.43. The mach-

ing rate obtained for the noisiest synthetic case is also

close to 0.7, while it is of 0.55 in the experiment. A first

explanation for this discrepancy, at least regarding the

vector Recall, can be ascribed to our choice of recon-

structing less particles than estimated from the images,

as explained in section 5.2. However, this explanation

does not account for observed differences with the the-

oretical expected behaviour: both experimental curves

for the matching rate and the vector Recall should in-

crease with the snapshot number. Indeed, as shown in

figure 11, the global seeding density decreases during

the run, which, according to synthetic results, should

lead to an increase in performance. When considering

separately the jet and the ambient flow in figure 14

(right), another possible cause appears, being due to

the difference in seeding between these regions. It turns

out that the matching rate indeed increases with time

in the ambient flow, where the ppp decreases. However,

according to the synthetic results presented in section 4,

this increase should be more pronounced; also, there is

no understandable reason why the matching rate in the

jet drops with time whereas the seeding density there is

nearly constant - after a slight decrease in the earliest

instants.

To better understand these numbers and trends, we

characterized more in depth the experimental images,

further than just by their seeding density. Upon also

considering the intensities of these particles, i.e. of lo-

cal maxima in the images, we could build the evolution

during the run of their Signal-to-Noise Ratio (SNR),

by dividing the average value of these maxima by the

noise level estimated during pre-processing. This quan-

tity is plotted, again separately for the jet and ambient

flow regions, in figure 15. Its evolution appears closely

linked to that of the seeding density in both regions,

remaining roughly constant for the jet and decreasing

steadily in the ambient flow. This is confirmed by the

visual impression in figure 10, and is most probably the

effect of multiple light reflections by the particles, lead-

ing to brighter particle images at high seeding density,

and lower intensities for these at low seeding density.
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Fig. 16: Left: histogram of local maxima intensities within a sample experimental image. Right: Compared Cu-

mulative Density Functions (CDF) of this image with two synthetic images, corresponding to a monodisperse

distribution, and to a polydisperse one chosen to mimic the experimental distribution. In both these figures,

intensities are those obtained after the image pre-processing steps described in section 5.2.

Fig. 15: Evolution with snapshot number of Signal-to-

Noise Ratio (SNR) in the jet and outer ambient regions.

This figure also shows that for the latest instants in

the run, SNR in the ambient region reaches quite criti-

cal values (around 3), showing that true particles only

weakly stand out from the noise, and also that the cor-

responding noise level there, around 35%, is higher than

the maximal one considered in section 4. Examining

also the distribution in the image of these local maxima

showed, as seen in figure 16 left for a sample snapshot,

that the particle image intensities were strongly poly-

disperse, and of a different nature than the Gaussian

distributions traditionally included in synthetic tests

when dealing with polydispersity.

To verify to what extent each of these features could

explain the results of DF-TPTV in this experiment, we

built new synthetic test cases mimicking part or all of

these characteristics. Firstly, geometrical setup was cho-

sen identical to the experiment, with the same dimen-

sions of the reconstructed volume, as well as positions,

optics and sensor sizes of the cameras. Displacement

values of the particles were obtained by an interpola-

tion of the 3D vector field yielded by the TomoPIV
processing of the first snapshot shown in the previ-

ous subsection. Geometrical subdomains corresponding

to the jet and the ambient flow were also defined in

the same way as in the experiment. Volumetric seed-

ing density was chosen to be different between the jet

and ambient regions, being set to yield an image den-

sity of 0.055 ppp in the former, and to various values

corresponding to the range 0.0054 − 0.055, depending

on the test case. This allows to span entirely the spa-

tially inhomogeneous nature and the range of densities

observed during the experimental run. Accordingly to

what has been observed in the experimental images, the

SNR in the ambient region has been adjusted depend-

ing on the chosen seeding density. Figure 17 shows both

the seeding density characteristics considered, as well as

the corresponding SNRs in the jet and ambient regions.

Finally, in order to assess specifically the effect of poly-

dispersity, we consider both cases of, on the one hand,

particles with identical intensities (monodisperse), and

on the other hand a polydisperse distribution chosen
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Fig. 17: Evolution of relevant quantities with snapshot number in the synthetic test reproducing the experiment.

Left: image seeding density as a function of the volumetric seeding density in the ambient flow (recall that the

density in the jet is kept constant), for the entire images (global), and for the zones corresponding to the jet and

to the ambient flow. Right: Signal-to-Noise Ratio (see text for definition) in the jet and the ambient flow, for both

mono- and polydisperse particle distribution cases.

so as to reproduce the experimental histograms of local

intensity maxima. Figure 16 compares the cumulated

histograms, or cumulated density functions (CDFs), of

both these synthetic images together with that of the

experimental image, confirming that the polydisperse

distribution is indeed much closer than the monodis-

perse distribution.

Performance metrics for both the monodisperse and

polydisperse synthetic images are shown in figures 18

and 19. The former pertains to particles, and the lat-

ter to vectors, with corresponding Recall and Precision

values. As was the case for the synthetic datasets of sec-

tion 4, the same trends as a function of the global ppp

can be observed for both particle and vector results.

A first interesting observation is that, for all levels of

seeding density (and thus SNR), polydispersity leads

to a significant drop in Recall, and in a lesser extent in

Precision. It nearly appears as a constant offset inde-

pendent of the ppp for the Recall, and as a discrepancy

of increasing magnitude as the ppp grows for the Preci-

sion. Regarding the latter quantity, one observes that a

value of roughly 0.9 is obtained at the highest seeding

density, therefore for a still intermediate SNR, while in

the synthetic cases of section 4, this value was closer

to 1 even at the highest noise levels considered. We ex-

plain this discrepancy by the fact that in the present

jet experiment, more ghost vectors are formed in the

ambient flow, which is characterized by nearly vanish-

ing displacements. This nearly zero displacement firstly

probably leads to ghost particles being reconstructed at

similar locations between the two instants, which can

be then matched as their (zero or close to zero) dis-

placement is compatible with the physical displacement

there. Focusing now on vector Recall, one observes that

the value obtained at ppp = 0.055, which corresponds

to experimental conditions at the beginning of the run,

is equal to 0.51, while in the experiment it was found

equal to 0.43. As in the synthetic tests of section 4, the

minimum value obtained, corresponding to the highest

noise level, was equal to 0.68, this confirms that strong

polydispersity is a first important factor of influence on

the method’s efficiency. Note that for this considered

point we can single out this factor, since at this ppp

the image is close to spatially homogeneous in terms of

ppp and SNR.

Still focusing on figure 19 (left), another interesting

observation can be drawn, pertaining to the choice of

how to tune the sparsity parameter S, i.e. the number

of particles to be reconstructed. In this figure, the green

curves correspond to our choice of restricting the num-

ber of particles compared to what can be estimated in

the images, as described in section 5.2, whereas the or-

ange curves are the performance metrics obtained when

considering all possible particles. One can see that, even

if the vector Recall is higher in the latter case, vector

Precision is lower, which leads to more wrong vectors

in the final fields, confirming our experimental observa-

tions, and our parameter choice.

Considering in figure 19 (left) the evolution of vec-

tor Recall as the ppp decreases, one observes that this
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Fig. 18: Precision and Recall of particle detection for the synthetic cases mimicking the experiment. Left: global

performance for the entire domain, comparison between several synthesis parameters. Right: separate analysis in

the jet and ambient flow domains for the polydisperse synthesis, the closest to the experiment.

Fig. 19: Precision and Recall of vector detection for the synthetic cases mimicking the experiment. Left: global

performance for the entire domain, comparison between several synthesis parameters. Right: separate analysis in

the jet and ambient flow domains for the polydisperse synthesis, the closest to the experiment.

quantity first increases, then reaches a maximum at

ppp ≈ 0.028, and then decreases. When considering

the same quantities separately in the jet and ambient

regions, it appears that this maximum and decrease are

due to image conditions, and presumably the low SNR

associated with the low ppp values, in the ambient re-

gion. Indeed, for the lowest ppp, a stronger decrease in

the vector Recall in this region than at a global level is

observed, while this quantity reaches a plateau within

the jet. Overall, this global decrease in vector Recall

for the lowest ppp is consistent with what is observed

in the experiments, although in the present synthetic

cases, it does not reach lower value than at the highest

ppp, as is the case in the experiments. However, the

trend is strongly different than what was observed in

the more idealistic synthetic cases of section 4.

As we now show in figure 20, the exact explanation

for it is not directly a very low SNR value in the im-

ages in a global sense, but rather the coexistence in the

images of two regions of significantly different ppp and

SNR. This figure compares the already shown synthetic

case closest to the experiment (green curves) with two
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Fig. 20: Precision and Recall of particle (left) and vector (right) detections for several synthetic cases, highlighting

the role of spatial inhomogeneity. The green curves are identical to that of figures 18 and 19 and are the closest

to the experiment, exhibiting all features considered.

other situations. One of them (red curves) differs only

by its homogeneous character, i.e. the jet and ambient

regions have identical ppp and SNR, the latter being

chosen equal as that of the ambient region, with thus

an SNR still varying as a function of ppp; as a result of

this choice, these curves can be extended towards lower

ppp values compared to the green ones. Comparison

between these two curves shows that, in the homoge-

neous case, vector Recall in particular does experience

a maximum and then a decrease as the ppp (and SNR)

decrease, but for much lower values of the seeding den-

sity, around ppp ≈ 0.01. To confirm that this decrease

is linked to the corresponding very low SNR reached at

these densities, we show what would be obtained with

the same homogeneous distribution of particles, but at

a higher SNR of 5, corresponding to the beginning of the

experimental run (orange curves). Indeed, in this more

favorable case, the maximum and drop disappear, and

vector Recall reaches nearly maximum value of 1 for the

lowest ppp considered. We thus see that, while very low

global SNR values lead to a drop of performance, the

one which is observed when images exhibit two regions

characterized by significantly different levels of ppp and

SNR is more influential.

5.5 Statistical results

For further performance assessment, we now consider

mean and fluctuating velocities in the jet obtained by

statistical averaging, which we compare to the same

quantities yielded by planar PIV and TomoPIV. We

decompose each velocity component as, for instance on

the axial one, v = V + v′, where V denotes the mean

and v′ the instantaneous fluctuation.

5.5.1 Runs and averaging characteristics

As 3D techniques and planar PIV operate at different

optimal seeding densities, a dedicated run at higher

seeding density was performed in order to obtain the

reference mean flow with planar PIV. We thus here

present the compared characteristics of the common run

used for 3D-PTV and TomoPIV, and of that performed

with for planar PIV, as well as the respective methods

for obtaining statistics, and their spatial resolution. Ta-

ble 1 sums up associated relevant quantities.

For DF-TPTV, which yields scattered vector data,

we resort to bin averaging, as traditionally done in PTV

methods (Agüera et al., 2016; Jux et al., 2018; Kähler

et al., 2016). In the present jet flow context, we choose

a specific form of bins in order to increase the number

of samples. We exploit the assumption of statistical ax-

isymmetry to define them as annuli of increasing radius

in a cross-sectional plane. More precisely, introducing

the radius r =
√
x2 + z2, a bin centered at radius r,

with radial resolution BSr(r) and streamwise resolu-

tion BSy, is defined as the volume:[
r − BSr(r)

2
; r +

BSr(r)

2

]
×
[
y

D
− BSy

2
;
y

D
+
BSy

2

]
Another specificity is that, as depicted in figure 21

(right), these bins are not all strictly annuli, but rather
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Table 1: Characteristics of mean flows yielded by DF-TPTV, planar PIV and Tomo-PIV: spatial resolution (inter-

rogation window/volume or bin size) and number of samples available for averaging. For Tomo-PIV, interrogation

volumes with Gaussian weighting have been used, as specified by (GW) and detailed in section 5.3. Planar PIV

results correspond to a separate run performed at higher seeding density.

Parameter DF-TPTV Planar PIV Tomo-PIV
Bin/IW/IV size in the radial / horizontal (z, x) direction (D) From 0.09 (r = 0) 0.014 0.15 (GW)

to 0.01 (r ≥ 0.4)
Bin/IW/IV size in the vertical (y) direction (D) 0.084 0.084 0.28 (GW)
Number of snapshots 1044 3000 1044
Number of samples for averaging From ≈ 2200− 2300 (r = 0) 3000 1044

to ≈ 1000− 1200 (r ≥ 0.4)

Fig. 21: Geometrical definition of bins used for statistical averaging of the DF-TPTV results. Left: bin radial

resolution, BSr(r) (expressed in jet diameter units), as a function of r/D. Right: Layout of in a cross-sectional

plane. Bins, which have been subsampled for clarity, are depicted as black rings whose thickness is equal to their

radial resolution BSr(r). The red circle denotes the jet nozzle.

Fig. 22: Intensity repartition of reconstructed particles in cross-sectional plane y/D = 1.4, averaged over square

bins of 0.025D × 0.025D size. The red circle denotes the jet nozzle.
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truncated annuli for the majority of them, as vectors

outside of the range −0.61 ≤ z ≤ 0.40 have been ex-

cluded. This choice is justified by the repartition of light

intensity in the volume, which was slightly asymmetri-

cal with respect to the jet centre. As figure 22 shows,

intensity drops quite rapidly for z/D > 0.4, which leads

to spurious end effects in the motion estimation there

within DF-TPTV. This was observed in turn to yield

less reliable results, in spite of the rejection (which was

also observed to exclude more samples); indeed, values

of the fluctuating velocity were observed to be spuri-

ously higher when including this region in the estima-

tion.

In order to gather enough samples in each bin for

convergence, while introducing as little spatial smooth-

ing as possible, we choose BSr(r) to decrease from

0.09D for r/D = 0, to 0.01D for r/D ≥ 0.4, as seen in

figure 21 (left). Note that, although BSr decreases with

r in the jet core and then stabilizes in the shear layer

and the outer flow, bins are nearly of same volumetric

extent in the whole field, as a result of the radial geom-

etry. Value BSr(r > 0.4) = 0.1 has been observed to be

the smallest reachable, i.e. preserving enough samples

for a satisfactory level of convergence. Also, we observed

that the value of maximum RMS velocity in the shear

layer is nearly insensitive to moderate variations of BSr
around this value. Also, in order to allow fine sampling

within the shear layer, we consider a high overlap be-

tween the bins, equal to at least 85%. The streamwise

resolution BSy is set to 0.084D, which corresponds to

the interrogation window (IW) size of the planar PIV

processing (see below).

For each bin, we compute the mean and variance

of each velocity component as (here exemplified on the

streamwise component):

v′2 =
1

M − 1

N∑
t=0

Nt∑
i=1

(v(t)i − V )2 (7)

where

V =
1

M

N∑
t=0

Nt∑
i=0

v(t)i andM =

N∑
t=0

Nt (8)

where v(t)i denotes the velocity of the ith vector mea-

sured in the considered bin at time t, Nt is the total

number of vectors in the bin at time t and N the num-

ber of snapshots.

For consistency, images acquired in the run for pla-

nar PIV are processed with rectangular, top-hat IWs of

31×5 pixels (0.084D×0.014D, respectively in the y and

z directions). With such a parameter, the IW size is as

close as possible to the bin size of DF-TPTV, although

resolution in z is slightly higher. For this planar PIV

run, 3000 snapshots were acquired, in order to reach

full convergence of mean and fluctuating velocities.

Finally, similar to the instantaneous results shown

in section 5.3, we also report here, for comparison, sta-

tistical results stemming from a TomoPIV processing

of the same image data as for DF-TPTV, leading to

1044 flow snapshots. As mentioned in section 5.3, rect-

angular IVs have been used, with a size along y twice

bigger as that along x and z, to account for the flow

anisotropy. Also, the overall dimension has been cho-

sen so as to guarantee a minimum number of tracers

throughout the run, especially at the latest instants

where the outer seeding is low. As a Gaussian weighting

is used within the IVs, the standard deviation of which

being equal to one fourth of the size in each direction,

the effective spatial resolution is expected to be lower

than the mere IV size, as recalled in table 1. Still, this

resolution will be significantly larger than that obtained

with DF-TPTV or with planar PIV.

5.5.2 Compared velocity profiles in the jet near field

To compare mean and RMS velocities yielded by DF-

TPTV, TomoPIV and planar PIV, we restrict to the

jet near field, here y/D ≤ 2. As a matter of fact, in this

zone the turbulence rate remains moderate and can be

estimated with a satisfactory accuracy with DF-TPTV,

which is characterized by the lowest number of samples

per bin.

Figure 23 shows the number of samples obtained by

DF-TPTV in each bin, as well as the percentage of vec-

tors rejected, as a function of r/D, at y/D = 1.40. As

a result of the difference in average seeding density be-

tween the jet and the outer flow (see also section 5.1),

up to maximum 2350 samples per bin are obtained in

the jet core, progressively decreasing in the outer shear

layer and the ambient flow, here to 1100 − 1200. Re-

jection also has a slightly different behaviour in the jet

core and in the external flow. Around 3.5 to 4% of the

initial vectors are discarded in the core, while the av-

erage rejection rate in the outer flow is rather of the

order of 2.5%, with a slight increase in the outermost

region. This is again consistent with the difference in

seeding between these two zones, which translates im-

mediately in an increase in the average measurement

error (see in particular figures 5 (right) and 8), there-

fore inducing more rejection where seeding is denser.

Similar trends and orders of magnitude are observed at

all other stations in y/D shown hereafter.

Figure 24 shows profiles of the mean and fluctuating

streamwise velocity in the radial or horizontal direction,

depending on the technique. As the volumetric and

planar measurements have been performed with differ-
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ent calibrations, slight discrepancies in their respective

frame of reference have been detected. To compensate

for these and ease comparison, a shift in abscissa has

been performed on the curves. Its value has been deter-

mined so that the value of the mean velocity at the cen-

tre of the shear layer matches for both measurements.

In other words, denoting r1/2 (resp. z1/2) the position

such that V is equal to V (0)/2, this shift has been cho-

sen such that r1/2 = z1/2. Comparing first DF-TPTV

with planar PIV, consistently with the choice for bin or

IW size, it is observed that the mean velocity profiles

match almost perfectly. Only very minor discrepancies

appear, with the profiles of planar PIV characterized by

slightly larger shear layers, this being in line with the

slightly larger horizontal resolution (see table 1). On

the other hand, as expected due to the necessarily large

IVs used, spatial filtering is obvious on the TomoPIV

results, the shear layer appearing significantly larger at

the most upstream stations, the discrepancy with DF-

TPTV and planar PIV decreasing progressively with y

and the natural widening of the shear layer.

Regarding the fluctuating streamwise velocity or

turbulence rate, curves for DF-TPTV and planar PIV

are observed either to collapse, or to differ by up to

roughly 0.02. On the other hand, TomoPIV results ap-

pear logically even more biased by the spatial filtering

due to the large IVs, with a thickening of the peak

of fluctuating velocity in the shear layer at the most

upstream stations, evolving towards a global underesti-

mation of this quantity as one progresses downstream.

Focusing for the rest of this analysis on the more inter-

esting comparison between DF-TPTV and planar PIV,

their maximum discrepancies are observed in a localized

zone in the outer shear layer (r/D, z/D ≈ 0.6− 0.7 for

y/D = 1.7, and with a lower magnitude at y/D = 1.4

and 2), and also within the shear layer for y/D = 0.8

and 1.1. It should be noted that they cannot be as-

cribed to the partially converged character of
√
v′2/Vj

estimated by DF-TPTV. Indeed, monitoring of its con-

vergence with respect to the number of samples yields

an estimate of the statistical uncertainty of roughly

0.001 − 0.002. Turning now to the detailed explana-

tion of these curves, a first, most directly understand-

able observation is the level of turbulence rate in the

jet core (r/D, z/D < 0.3 − 0.4) and in the outer flow

(r/D, z/D > 0.8) for the most upstream locations, say

up to y/D = 1.1. Indeed, flow in these zones should be

strictly laminar and therefore
√
v′2/Vj should vanish.

Levels observed there are thus measurement noise and

can be directly compared, in the case of DF-TPTV, to

the levels of the RMS error on velocity from synthetic

data, RMSv, presented in section 4 (see figures 5 (right)

and 8). One observes, in the present experiment, values

close to 0.025 in the core, and 0.02 in the outer flow,

which correspond to 0.13 and 0.1 voxel, respectively.

The higher value in the jet core is again consistent with

the denser average seeding there; on a more general

point of view, the fact that these values are quite low

(especially when comparing to values of RMS∗v for sit-

uations with noise in figure 8), shows the effectiveness

of the outlier rejection scheme chosen here, and over-

all, the very good efficiency and robustness of the DF-

TPTV approach itself. Finally, it is interesting to ob-

serve that DF-TPTV exhibits a noise level which is very

similar to that of planar PIV processed with FOLKI-

PIV, as long as the bin size and the IW size are taken

equal. In the curves, these noise levels are seen to be

nearly equal, or slightly higher for DF-TPTV (note that

the IW size for planar PIV is in fact very slightly larger

than the bin size, as shown in table 1). This fact also

helps to understand why the agreement between results

yielded by the two methods is very close in a general

way. Possible reasons for zones with discrepancies could

be a partial lack of axial symmetry of the jet, making

the estimation by bin averaging of DF-TPTV less ac-

curate, or a different sensitivity of DF-TPTV and of

planar PIV to flow gradients.

6 Conclusion

We proposed here a novel technique for performing

3D PTV from traditional double frame images, termed

double frame tomographic-PTV (DF-TPTV). Its main

specificity is that it takes advantage of the sparse nature

of the tomographic PIV problem. It first produces spiky

particle reconstructions located on a voxel grid, lever-

aging on the PVR model (Champagnat et al., 2014)

and the sparsity-based algorithm LocM-CoSaMP (Cor-

nic et al., 2015a). Reconstructed particles are matched

using a low resolution predictor yielded by 3D correla-

tion before being accurately localized through a global

optimization procedure. Good performances have been

obtained over a large range of seeding densities (ppp

∈ (0, 0.08)) on traditionally generated synthetic images,

using a DNS data of a turbulent channel flow. DF-

TPTV has then been demonstrated on a round air jet

experiment at Re = 4600, with a global seeding density

evolving from 0.06 to 0.03 ppp through time, with dif-

ferent densities and signal-to-noise ratios in the jet and

ambient flow on a large period of time in the run. Anal-

ysis of the detection performance, together with dedi-

cated supplementary synthetic tests designed to mimic

closely this experiment, have shown that strong polydis-

persity, as well as this coexistence of spatial zones char-

acterized by significantly different levels of signal-to-

noise ratio and ppp, are parameters of influence for the
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method’s performance. In particular, the spatial inho-

mogeneity has been found of stronger importance than

a low but homogeneous signal-to-noise ratio in the im-

ages. Overall, the DF-TPTV technique allowed to pro-

duce both reliable instantaneous velocity vector fields

and accurate ensemble statistics, upon introducing an

additional outlier rejection step. Statistical results have

been obtained by a specific bin averaging process ex-

ploiting the jet average axisymmetry, and were found

in excellent agreement with reference measurements by

planar PIV at comparable spatial resolution.

Overall, it is worthwhile emphasizing that DF-

TPTV is a particle tracking technique that relies on

the same amount of information as TomoPIV, not only

in terms of hardware (double frame acquisition, either

at low or high frequency), but also of seeding densities.

Indeed, it has been reported to yield reliable results for

up to 0.08 ppp in a synthetic context, and to 0.06 ppp

in the presented experiments; in the latter experimen-

tal case, due to the quite challenging conditions men-

tioned above, optimal performance has been obtained

by lowering the number of particles to reconstruct, lead-

ing to vector fields corresponding to an effective ppp of

around 0.045. A consequence is that, within a given ex-

periment, there is no need to perform separate runs at

lower densities in order to perform DF-TPTV as well

as TomoPIV processing.

A possible direct perspective to this work could

be to further improve the method’s robustness to low

signal-to-noise ratios, so as to exploit the maximum

from a given volumetric illumination, often less intense

on the volume edges, as was the case in the present ex-

periment. Future research paths will also target a more

drastic increase in the capability of DF-TPTV to char-

acterize complex turbulent flows, on an instantaneous

point of view. This will be tackled by proposing new

data assimilation schemes, performing physically-sound

instantaneous interpolation between the obtained scat-

tered vectors.
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Fig. 23: Percentage of rejected vectors per bin (left), and number of vectors per bin after rejection (right) as a

function of r/D, in cross-sectional plane y/D = 1.4, yielded by the DF-TPTV method.

Fig. 24: Streamwise mean and fluctuating velocity profiles, along a jet radius, for various cross-sectional locations

y/D in the near-field. Comparison between DF-TPTV, which uses bin averaging with statistical axisymmetry

assumption (r/D abscissa), together with planar PIV (z/D direction) and Tomo-PIV (y/D direction). To ease

readability and comparison, a horizontal coordinate shift has been applied, see the text for more details.


