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A novel method performing 3D PTV from double frame multi-camera images is introduced. Par-
ticle velocities are estimated by following three steps. Firstly, separate particle reconstructions with
a sparsity-based algorithm are performed on a fine grid. Secondly, they are expanded on a coarser
grid on which 3D correlation is performed, yielding a predictor displacement field that allows to
efficiently match particles at the two time instants. As these particles are still located on a voxel
grid, the third, final step achieves particle position refinement to their actual subvoxel position
by a global optimization process, also accounting for their intensities. As it strongly leverages on
principles from tomographic reconstruction, the technique is termed Double-Frame Tomo-PTV (DF-
TPTV). Synthetic tests on a complex turbulent flow show that the method achieves high particle
and vector detection efficiency, up to seeding densities of around 0.08 particles per pixel (ppp), while
its root-mean-square error of velocity estimation is lower to that of state-of-the-art similar methods.
Results from an experimental campaign on a transitional round air jet at Reynolds number 4600 are
also presented. During the tests, seeding density varies from 0.06 to 0.03 ppp on average. Associ-
ated to an outlier rejection scheme based on temporal statistics, DF-TPTV vector fields truthfully
correspond to the instantaneous jet dynamics. Quantitative performance assessment is provided by
introducing statistics performed by bin averaging, upon assuming statistical axisymmetry of the jet.
Mean and fluctuating axial velocity components in the jet near-field are compared with reference
results obtained from planar PIV at higher seeding density, with an interrogation window of size
comparable to that of the bins. Results are found to be in excellent agreement with one another,
confirming the high performance of DF-TPTV to yield reliable volumetric vector fields at seeding
densities usually considered for tomographic PIV processing, or even higher.

I. INTRODUCTION

Tomographic Particle Image Velocimetry (TomoPIV)
has been introduced as the first technique enabling the
measurement of instantaneous three-dimensional (3D)
velocity fields [10]. While providing a wealth of in-
formation on a regular vector grid, allowing convenient
physical analyses, one of its major limitations has been
quickly identified as its more important degree of spatial
filtering than in planar PIV. Indeed, due to 3D imag-
ing constraints, the maximum acceptable seeding den-
sity maintaining an acceptable accuracy is known to be
lower than for planar PIV [15, 22], imposing to perform
cross-correlation with large Interrogation Volumes (IV),
thereby smoothing the smallest turbulent scales.

Three-dimensional Particle Tracking Velocimetry
(3DPTV) methods, on the other hand, have long been
characterized by a different trade-off, as the accuracy of
the velocity estimation is rather linked to the particle
image size (much smaller than the typical IV size in
TomoPIV), but at the cost of a low seeding density, typ-
ically lower than 0.001 particles per pixel (ppp) [17, 18].
However, recent years have seen major improvements in
3DPTV’s performance by acquiring multiple images in

a time-resolved (TR) mode.

Multiframe 3DPTV, exploiting temporal consistency
over a large horizon (typically 10 time steps or more) has
led to obtaining reliable particle trajectories and accu-
rate particle location, velocity and material acceleration
[14, 18, 23–25]. Associated with TomoPIV for 3D detec-
tion [24, 25] or with iterative stereo matching techniques
like the Iterative Particle Reconstruction [IPR, 26] or
Shake-The-Box [STB, 23], temporal consistency has been
the key factor behind recent 3DPTV successes at seeding
densities up to ppp ≈ 0.05. However, these approaches
require TR measurements, which suffer a lower signal-to-
noise ratio due to limited energy per pulse, and therefore
lose in accuracy in situations where good seeding or con-
trast quality are difficult to achieve. Furthermore, ac-
quisition rate in a regular pulse TR mode is limited to
several kHz, higher frequencies requiring to decreasing
even more the light intensity. These techniques therefore
still suffer from severe limitations in the context of high-
speed flows, except if more complex and costly setups
can be assembled [such as a pair of interlaced double-
pulse lasers enabling four pulse acquisition, see e.g. 21].

In contrast, we consider here dual frame 3DPTV using
a novel processing pipeline designed to achieve high per-
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formance for ppp up to 0.08. As the approach uses several
algorithmic steps of the TomoPIV processing, we termed
it Dual Frame Tomo-PTV (DF-TPTV). The paper is or-
ganized as follows: firstly, section II reviews the main re-
cent proposed algorithms that also take as their objective
to perform 3DPTV on conventional double frame acquisi-
tion to measure velocity information, and underlines the
main factors defining the performance in this context.
Section III describes the proposed DF-TPTV method,
organized in three main steps: sparse tomographic 3D
particle reconstruction, temporal matching of particles,
and vector refinement. Section IV then characterizes the
behavior of DF-TPTV on a large range of seeding density
values using synthetic data generated from a turbulent
channel flow direct numerical simulation (DNS) [12, 16].
Section V presents an experimental application to a cylin-
drical air jet. The ability of DF-TPTV to yield reliable
vector fields is scrutinized both on instantaneous results,
and by estimating statistical quantities which are com-
pared with results from a classical planar PIV system.
Section VI is devoted to conclusions and perspectives.

II. RELATED WORKS

Recently, high accuracy measurements have been ob-
tained from 3DPTV by Fuchs et al. [11] and Agüera et al.
[1], with performance illustration by computing ensem-
ble statistics through spatio-temporal binning of 3DPTV
vectors. However, these methods differ significantly in
their processing steps.

Agüera et al. [1] first conduct 3D particle detection by
a classical 2D particle detection in the images and stereo-
scopic triangulation, and then solve the temporal match-
ing in two steps. Particles at the first time instant are dis-
placed using a ”predictor” motion field obtained by cor-
relation on low-resolution TomoPIV volumes. They are
then matched with particles at the second time instant
by nearest-neighbor association. The method appears to
be limited to low seeding densities (ppp = 0.003− 0.005)
setting hard constraints either on the size of the bin, or
on the number of acquired snapshots, in the context of
statistical estimation by bin averaging. The authors use
as a matter of fact large bins and propose a technique to
mitigate the influence of a mean velocity gradient inside
each bin that otherwise would bias the computation of
second order statistics.

Fuchs et al. [11] reconstruct a volume by TomoPIV
(using either MLOS or MART) and detect 3D particles
by fitting 3D Gaussian to voxel intensities. A selection
of particles is then applied: a detection is confirmed if
its projections in PIV images can be associated unam-
biguously to a unique particle image in each frame. This
rule eliminates almost all ghosts at the cost of loosing a
significant number of true particles. Selected detections
are then triangulated and propagated to the next time
instant by means of a previously estimated displacement
field. They finally use a matching process which takes

into account the spatial regularity of the motion field so
as to reduce outlier vectors as much as possible. Their
method has been applied to the computation of mean
flow velocity and Reynolds stresses of a turbulent bound-
ary layer, with results equivalent to 3DPTV on TR data
[11].

For exhaustiveness, let us finally quote that a dual
frame version of Shake-The-Box [STB, 23] has been suc-
cessfully applied to case C of the 4th PIV Challenge in
2014 [15]. STB relies on a specific combination of predic-
tion/correction/matching steps. In particular, accurate
prediction is enabled by long particle tracks in time re-
solved mode. In the context of challenge C of the 4th
PIV Challenge, a null velocity predictor was used and
yielded good results, because the true displacement was
small enough.

Both the mentioned methods, Agüera et al. [1] and
Fuchs et al. [11], are characterized by a relatively low
maximum density of estimated 3D vectors, as a con-
sequence of their choices of 3D reconstruction method.
The epipolar stereo matching method used in Agüera
et al. [1] can only work at very low seeding densities (ppp
= 0.003− 0.005); TomoPIV methods used in Fuchs et al.
[11] yield a high percentage of ghost particles leading the
authors to choose a drastic selection rule.

In the following, we show that, in contrast, by us-
ing in particular sparse TomoPIV reconstruction, [7] we
have been able to contain the proportion of ghosts in the
3DPTV process while maintaining a higher number of
estimated vectors.

III. THE DOUBLE FRAME TOMO-PTV
TECHNIQUE

The technique involves 3 stages, sketched in Figure 1:
initial particle reconstructions on a voxel grid at the two
instants, 3D matching of particles yielding a first estimate
of the displacement vectors, and subvoxel refinement of
the particle positions and thus of the displacements.

Note that the very first version of the technique was
introduced in Cornic et al. [6], with good performances
at densities up to ppp ≈ 0.03, as attested by the 4th PIV
challenge [15]. It was further improved in Cornic et al.
[8]. The following presentation corresponds to the sta-
bilized and optimized version of the method, featuring
in particular much simplification compared to our previ-
ously communicated work.

A. Initial particle reconstructions

The first step is a fast and efficient localization and
intensity reconstruction of particles on a 3D voxel grid
based on sparsity principles, comprehensively described
in [7]. It is applied to obtain separate and initial parti-
cle reconstructions at the two time instants, in the form
of indices and intensities of voxels supposed to contain a
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FIG. 1: Method overview (illustrated in 2D): Particle reconstructions at t and t+ dt (yielding sparse/spiky particle
representations in the voxel space), temporal matching, and subvoxel refinement of the matched particles. The

temporal matching comprises three steps: estimation of an initial displacement field by 3D correlation on a coarse
grid of the initially expanded particles, application of the interpolated displacement field to particles at time t to

predict their position at time t+ dt, and local matching with particles at time t+ dt.

particle. The initial step is a traditional MLOS operation
[2] on a grid with a voxel-to-pixel (v/p) ratio of 0.5. The
number of potential particles is further reduced by re-
taining only voxels corresponding to local intensity max-
ima (”LocM” strategy). The tomographic reconstruction
then relies on the Particle Volume Reconstruction (PVR)
imaging model, which seeks to explain the images of a
particle with a cluster of few non zero voxels [4]. The
PVR system Y = WE relates pixel intensities Y to voxel
intensities E through a weight matrix W made of Point
Spread Function (PSF) samples. A sparse solution is
defined through the following constrained minimization
problem:

min
E
‖Y −WE‖ subject to ‖E‖0 ≤ S, (1)

where ‖E‖0 is the number of non zero entries of E. We
use CoSaMP [19], a sparsity based algorithm to solve this
problem over voxels yielded by the LocM selection. The
main parameter is S, the upper bound on the number of
non zero voxels in the reconstruction, which in practice
is taken as the expected maximum number of particles
in the volume. The overall reconstruction algorithm is
termed LocM-CoSaMP. As shown by Cornic et al. [7], it
has a high efficiency to preserve real particles and remove
ghosts, which, as discussed earlier, is a critical asset in
the context of dual frame 3DPTV.

B. 3D particle temporal matching

This step consists in identifying the same physical par-
ticles in the two instants, with the aim of reducing as
much as possible the number of ghosts in the individual
reconstructions. As proposed in previous works, we pro-
ceed in two steps, first using a predictor motion and then
a nearest-neighbor association restricted to a small region
around the predicted position. In a preliminary version
of the algorithm [6], 2D displacement fields in the four
images were used as motion predictor, but this was found
to be insufficient, in particular for turbulent flows. A 3D
motion predictor derived from the correlation of the two
reconstructed volume was introduced in Cornic et al. [8]
and also used in Agüera et al. [1].

In practice, LocM-CoSaMP reconstructions are first
post-processed before correlation. Non zero voxels are ex-
panded with Gaussian filtering on a low-resolution, voxel-
to-pixel ratio v/p ≥ 2 grid, on which the 3D correlation
will be performed. Gaussian filtering is necessary in the
grid transfer process, as the PVR model, used in LocM-
CoSaMP, is designed to yield spiky particle reconstruc-
tions, extending to a minimum number of voxels [instead
of the more traditional ”blob” paradigm of 3D PIV, see
4]. 3D correlation is obtained using FOLKI3D [5], a 3D
extension of FOLKI-PIV [3]. Once particles are propa-
gated, a search region of matches of three-voxel radius
(expressed here in v/p = 1 units) is in practice sufficient.
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C. Subvoxel refinement

After matching, the obtained particles are still located
on a voxel grid, so that a final step performing subvoxel
localization is required. Contrary to techniques such as
the Iterative Particle Reconstruction [IPR, 26] or STB
[23], that process all the particles sequentially, subvoxel
refinement is here performed through a global optimiza-
tion so as to fully account for the interactions between
the particles in the images. The objective function to
minimize is the sum of squared differences (SSD) between
the recorded images and the images corresponding to the
projections of the obtained 3D particles:

J(Xp, Ep) =
∑
j

∑
x

∥∥∥∥∥Yj(x)−
∑
p

Eph(x− Fj(Xp))

∥∥∥∥∥
2

,

(2)
where Yj are the recorded images, x a given pixel coordi-
nate in an image, Fj is the projection function in image
Yj yielded by the calibration and h is the PSF. This SSD
is thus performed over all pixels of all images. With-
out loss of generality and to alleviate the notations, we
suppose that h is constant and the same for all images.

The non linear least squares criterion J is minimized
over the 3D positions and intensities {Xp, Ep} of the
particles, i.e. potentially a huge number of variables.
To cope with this issue, we used the L-BFGS algorithm
[20].We perform this optimization independently at time
steps t and t + dt, on matched particles only. In other
words, we move independently the two ends of each 3D
vector, as illustrated in Fig. 1. At the end of the process,
DF-TPTV thus produces estimated 3D displacement vec-
tors with real, subvoxel coordinates.

IV. ASSESSMENT ON SYNTHETIC DATA

Being a PTV algorithm, the method must be assessed
for performance both by the number of vectors produced,
compared to the number of tracers present in the obser-
vation volume, and by their precision, in terms of RMS
error on the 3D positions and displacements. This is the
purpose of the simulation study presented in this section.
We here intend to characterize the behavior of DF-TPTV
with respect to seeding density, over a large range of ppp.
In doing so, we also provide some elements of comparison
with performances reported in the literature.

A. Synthetic data generation

Similar to e.g. case D of the 4th PIV Challenge [15],
we use here one of the flow cases of the Johns Hopkins
Turbulence Database, namely the turbulent channel flow
DNS [12, 16]. We define x, y and z as the streamwise,
spanwise and wall-normal directions, respectively. A do-
main 100 × 110 × 20 mm3 has been simulated, taken

FIG. 2: Flow snapshot used for synthetic data
generation (iso-contours of Q-criterion color-coded by

velocity norm), obtained from the Johns Hopkins
Turbulence Database [channel flow case, 12, 16].

Friction Reynolds number is equal to Reτ = 1000. The
observed volume has a thickness of 400 wall units

starting from the wall, and a length and width of 2000
and 2200 wall units, respectively.

in contact with the lower wall. Figure 2 shows iso-
contours of the Q-criterion color-coded by the local ve-
locity norm of the velocity snapshot used for particle dis-
placement, illustrating its complex turbulent structure.
As the database uses dimensionless coordinates, a scaling
has been chosen, such that the size of one voxel roughly
corresponds to the viscous length scale of the database,
i.e. that the first voxel away from the wall corresponds
to one wall unit. This leads to a voxel size of 50 µm, and
a volume extension of 2000× 2200× 400 wall units.

A traditional, four cameras observation setup is simu-
lated. With the world coordinate origin located on the
wall of the channel, at the middle of the illuminated zone
in the streamwise and spanwise directions, these cameras
are located at the corners of the base of a right square
pyramid, whose apex is at (0, 0, 0) and height coincides
with the z axis. All four cameras have a 2016 × 2016
pixel sensor, with a pixel pitch of 11µm (e.g. similar
to the PCO Dimax S4), and are equipped with a lens
of focal length f = 200 mm. Their roll position with
respect to the optical axis, and their Scheimpflug an-
gle, are computed by assuming that they are all in focus
at mid-thickness of the illuminated volume. Imaging of
the particles is supposed to be diffraction limited. The
apparent diameter of a particle’s image is dτ = 2.4 pix-
els, resulting from a Gaussian PSF of standard deviation
σ = 0.6 pixel integrated over the pixel surface. No noise
is added on the camera sensor.

Laser illumination is modeled as a constant intensity
throughout the illuminated volume, whose extension is
infinite in the y direction, and spans the range [−50 50]
mm and [0 20] mm in the x and z directions, respectively.
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For all synthetic experiments, the upper bound S on the
LocM-CoSaMP sparse reconstruction (see Eq. 1) is cho-
sen equal to the true number of particles considered in
the simulation and seen simultaneously by the four cam-
eras. It ranges from 33,280 (ppp = 0.01) to 332,287 (ppp
= 0.1). As described in more detail in [7], in a real exper-
iment — as the one considered in Section V — parameter
S is deduced in practice from an estimation of the image
seeding density.

B. Detection performances

The set of particles seen by all the cameras is used
as the ground truth for measuring the performance of
DF-TPTV in terms of particle detection. To quantify
it, we adopt the metrics of Champagnat et al. [4] and
Cornic et al. [7]. A detection is referred to as a true
positive (TP) if it lies within 1 voxel chessboard distance
of a true particle. Otherwise it is a false positive (FP),
a.k.a a ghost. A non-detection, or false negative (FN),
is reported for a true particle with no detection within 1
voxel distance. From these basic quantities two indices
of performance are defined:

Recall =
#TP

#TP + #FN
and Precision =

#TP

#TP + #FP
,

(3)
where # stands for number of. Recall is the number of
detected particles over the total number of true particles
in the volume, and is thus the detection rate. Precision
is the fraction of true particles among the detected parti-
cles. The best achievable performance is given by Recall
= 1 (#FN = 0, every particle is detected) and Precision
= 1 (#FP = 0, no ghosts).

Figure 3 left gives the Precision and Recall of the re-
construction at initial time t, as a function of the seed-
ing density expressed in particles per pixel. As LocM-
CoSamp is tuned to retrieve the exact number of parti-
cles, one has S=#TP+#FN=#TP+#FP, so that Recall
and Precision are equal. Performance is observed to de-
crease first slowly with the seeding density; value ppp
= 0.08 then sets a break after which the performances
decline faster. Note that such a concentration is already
above the usually acknowledged optimum for TomoPIV,
i.e. roughly around 0.05 ppp. As mentioned in section II,
the selection rules adopted by Fuchs et al. [11] led them
to a quasi negligible percentage of ghosts, at the cost of
low Recall (detection rate). According to [11]’s Fig. 1(a),
their Recall is around 70% at ppp = 0.05, while we here
obtain a 95% Recall at this ppp. Even though the dataset
considered by [11] and the present one are different and
therefore cannot be compared directly, these figures tend
to support the fact that the two methods rely on a dif-
ferent operating point between Precision and Recall. In
other words, the reconstruction step of DF-TPTV ap-
pears more balanced between the percentage of ghosts
and the detection rate compared to Fuchs et al. [11]. We
will see below that the fact of tolerating a higher rate of

ghosts allows here to retrieve a higher percentage of true
vectors while maintaining the ratio of outliers vectors as
low as a few percent.

Precision and Recall can also be computed on velocity
vectors. Here, the ground truth is made of all vectors
defined by a true particle visible at the two time instants
by all cameras. A true positive vector (TPv) stems from
the detection of the same particle at both instants and
the correct matching of the two detections. The fraction
of true positive vectors TPv among all retrieved vectors
is the Precision, while the fraction of TPv among all true
vectors is the Recall. Figure 3 (right) shows vector Pre-
cision and Recall of DF-TPTV over a range of ppp up
to 0.1. Upon comparing for each ppp the values of Re-
call on figures 3 left and right, one observes that the ob-
tained vector Recall is approximately equal to the square
of the reconstruction Recall. This means that vector Re-
call is mainly limited by the missing detections rather
than by the matching step, and that the latter appears
close to the optimum, justifying the use of a predictor mo-
tion field based on 3D correlation. Moreover, contrary to
the Precision of particle detection, vector Precision stays
close to 1 when the ppp increases. This means that the
3D matching process filters out most of the ghost parti-
cles.

The vector Recall can be translated straightforwardly
to the effective amount of particles by pixel metric in-
troduced by Fuchs et al. [11], by multiplying it with the
seeding density. For instance, at ppp equal to 0.05, Fig.
3 right indicates a vector Recall equal to 0.9, thus cor-
responding to a 0.045 = 0.05 × 0.9 effective amount of
particles by pixel. As a comparison, [11] report a max-
imum effective amount of 0.032 (see their Fig. 2b) —
however bearing in mind the slightly different character-
istics of their dataset. The percentage of ghost vectors
among the total number of true vectors can be computed
as

%ghost =
(1− Precision)× Recall

Precision
. (4)

For the considered ppp = 0.05, Figure 3 right shows that
Recall = 0.9, Precision = 1− 0.01, consequently the per-
centage of ghost is equal to 0.9%, i.e. indeed a very low
proportion of the vector field.

C. Position and velocity accuracy

Figure 4 left shows the mean (blue) and RMS (red)
location error in voxel units associated to the correctly
detected particles (TP). Figure 4 right shows the repar-
tition of these errors in absolute value on the 3 displace-
ment components (note that x and y curves collapse).
Both are expressed in voxel units. These curves show a
gradual decay of precision with increasing ppp, until ppp
= 0.08 where a change in slope occurs. Not surprisingly,
error on the depth component z is higher. It is worth-
while noting that the mean location errors are lower than
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FIG. 3: Detection performances of DF-TPTV with respect to seeding density (ppp). Left: Precision and Recall of
the particles reconstruction step. Right: Precision and Recall on velocity vectors.

that reported in the literature for state-of-the-art particle
reconstruction or double frame 3D PTV techniques, e.g.,
IPR Wieneke [26] or Fuchs et al. [11], and comparable
to the 3D positional errors of STB obtained for the first
instants of a given sequence [23]. Figure 5 displays the
location error probability density function (pdf) in the
xy and xz planes, for ppp = 0.05. It may be seen that
the pdf decays very fast in the vicinity of the origin and is
elongated in the z direction in the xz plane, in line with
the higher error values corresponding to this component.

Vector fields obtained by DF-TPTV are assessed using
the vector RMS (RMSv), measuring the error between es-
timated and ground truth displacements of the detected
particles, and defined as:

RMSv =

√√√√ 1

P

P∑
p=1

3∑
i=1

(ui(xp, yp, zp)− ũi(xp, yp, zp))2,

(5)
where P is the number of detected particles, (u1, u2, u3)
is the ground truth 3D displacement and (ũ1, ũ2, ũ3) is
the DF-TPTV estimation of the 3D displacement. Both
velocities are evaluated at locations (xp, yp, zp) of the de-
tected particles (and not at the locations of the ground
truth particles). Figure 6 shows RMSv as a function of
the ppp computed over all the vectors (blue curve) and
only over the TP vectors (red curve). Trends are logi-
cally similar to that observed for particle localization er-
ror, with a gradual increase of RMSv up to ppp = 0.08,
and a more pronounced performance loss for higher den-
sities. It can also be seen that, although there are only
few wrong vectors compared to the number of good ones,
they have a noticeable influence on the RMS when the
ppp increases. This will motivate the introduction of out-
lier rejection in the processing of experimental data, in
section V.

V. EXPERIMENTAL RESULTS ON A ROUND
AIR JET

A. Experimental setup

Demonstration on experimental data is performed by
considering a round air jet of exit diameter D = 12 mm.
With Vj = 5.8 m.s−1 the velocity at the centre of the
exit plane, the flow Reynolds number based on D and Vj
is equal to Re = 4600. Flow conditions in the exit plane
are transitional/turbulent in the boundary layer, due to
the presence of a small circular step at the nozzle wall
20 mm upstream from the exit. In the following, only di-
mensionless quantities, built using D and Vj as reference
length and velocity, are considered. The centre of the
jet exit plane is taken as the origin O of the coordinate
system; y denotes the direction aligned with the jet axis,
here vertical, and x and z the horizontal axes (see figure
7).

The near field of this jet, up to y/D ≈ 7.3, is measured
using two PIV systems. 3D measurements are acquired
in a parallelepiped with its largest edges in the x and
y directions, with an approximate thickness of 16 mm,
centered around O in the z direction (see figure 7). Illu-
mination is achieved using a Quantel Twin Ultra Nd-Yag
laser delivering 120mJ per pulse, and observation by two
Dantec HiSense and two LaVision Imager ProX 4 Mpix-
els cameras (2048 × 2048 pixel), set up in a cross like
configuration. A mirror is placed in order to reflect back
the volumic illumination and compensate for the different
scattering condition among the cameras.

In order to have a reference on flow quantities for per-
formance assessment, and also to provide an independent
seeding density evaluation during the tests, an additional
planar PIV measurement system is set up. It is made
of one Litron Laser Dual Nd-YAG 532nm laser and one
Dantec HiSense 11M (4000 × 2672 pixel) camera. The
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FIG. 4: Precision of particle localization of the DF-TPTV method, expressed in voxel units, as a function of the
seeding density. Left: total mean and RMS position error. Right: mean in absolute value and RMS position error

for each displacement component.

FIG. 5: Position error probability density function for DF-TPTV at ppp=0.05. Left: xy-plane. Right: xz-plane.

laser sheet, of estimated thickness 1.5 mm, is located
in the x = 0 plane, orthogonal to the main axis of the
tomographic laser. Due to the presence of the volumic il-
lumination, the camera optical axis cannot be placed per-
pendicular to the laser sheet, and is thus set with a slight
perspective. The camera is equipped with a Scheimpflug
mount, and calibration is applied in order to compen-
sate for perspective distortion in the observation. Due
to this single-camera observation, this system is used for
flow comparisons only on the streamwise, v component,
and its camera is therefore labelled as ”2D1C camera” in
figure 7.

Acquisitions of the 3D and planar systems are inter-
twined, in the sense that during a run, 3D and planar
snapshots are acquired alternatively, with a separation
time of 0.25s. This results in a respective acquisition
frequency for both systems of 2Hz. Besides, both also
operate with the same inter-frame time of 50µs.

Seeding is achieved using two different aerosol gen-
erators producing DEHS droplets, one whose particles
are injected into the jet settling chamber (thus seeding
the jet), and one used to seed the experimental room
(and thus the outer shear layers and the entrained flow).
Whereas the former continuously injects particles dur-
ing the run, the latter is operated by initially saturating
the (quite large) room, and waiting for homogenization
to begin acquisition, without further injection later on.
Consequently, as illustrated in figure 8, external seeding
progressively decays during the run. Overall, when con-
sidering the global duration of the run presented here (of
the order of 8 minutes, corresponding to 1044 snapshots),
the jet is observed to be on average more densely seeeded
than the ambient air, and the global seeding density to
progressively decrease from 0.06 to 0.03 ppp.
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FIG. 6: RMS error on velocity, RMSv, computed over
all vectors (blue) and only true positive vectors (red) as

a function of seeding density.

B. Processing parameters

Calibration and self-calibration of the 3D system are
done according to a pinhole model [9], leading to a voxel
size (v/p = 1) of 53.8µm. Standard pre-processing steps
are applied to the images of the 3D cameras before ap-
plying the DF-TPTV method, i.e. historical minimum
subtraction and thresholding by identifying the average
noise level from a non-illuminated zone (see figure 8).
Additionally, to compensate for differences in dynamics
between the camera images (due to the use of differ-
ent camera models, and different scattering conditions
in spite of the mirror), normalization was also necessary
to obtain comparable signal-to-noise ratios between the
cameras.

To obtain velocity fields from these pre-processed data,
the DF-TPTV method is set by choosing the number of
particles to retrieve (sparsity parameter S in the LocM-
CoSaMP particle reconstruction step) using the ppp esti-
mation from the 3D images, which is found to be close to
the estimation yielded by the planar PIV system. Other
tuning parameters, i.e. pertaining to matching and sub-
voxel refinement, are left to their default values, men-
tioned in section IV.

In order to filter the results from remaining outliers,
we introduce a rejection post-processing. To do so in a
most adapted and efficient way, following e.g. [13], we
choose to rely on temporal statistics computed by bin
averaging, that will be introduced to compute mean flow
fields (see section V D). As already noted in the PTV
literature, such an approach, when available, is more ef-
ficient for turbulent flows than relying on comparisons
to a spatial neighborhood. Contrary to [13] however, we
here rely on a simpler combination of univariate statisti-

cal rejection rules, as we choose to reject a given vector if
any of its (u, v, w) components deviates from more than
three standard deviations from its mean (the latter two
referring to that of the bin to which the vector belongs).

Finally, note that variations in illumination within the
volume led in practice to restrict the results to −0.61 ≤
z/D ≤ 0.40, i.e. a 13 mm thickness, in order to exclude
edge effects where light intensity was lower. More details
on this are given in section V D 1. Instantaneous fields
will also be restricted to this zone for consistency. Also,
note that the most upstream location of the volumic vec-
tor fields yielded by DF-TPTV is located slightly above
the jet exit, i.e. y/D ≈ 0.3. As can be seen in figure 8,
in order to avoid intense light reflections on the nozzle,
the laser volume was indeed positioned slightly above its
exit plane.

C. Instantaneous results

As a first experimental illustration of the DF-TPTV
method performance, we show in figure 9 the instanta-
neous vector field obtained for the first pulse of the run,
at highest seeding density, estimated to around 0.06 ppp
(see also corresponding particle images of one of the cam-
eras in figure 8 left). We show both raw results and re-
sults post-processed via the outlier rejection method pre-
sented above, in order to illustrate its effect. Out of the
30, 787 vectors obtained in the retained −0.61 ≤ z ≤ 0.40
zone, outlier rejection filtered roughly 2.7% of them, lead-
ing to a useful set of 29, 947 vectors. This post-processing
seems indeed to be efficient and adapted, rejecting a large
number of spurious vectors while keeping the physical
ones, as can be observed most evidently in the external
flow.

Figure 9 also shows that the expected instantaneous
structure of this transitional jet is successfully retrieved
by the DF-TPTV. Starting from the jet exit, one first ob-
serves uniform axial velocity in the jet core (|x|/D < 0.4,
y/D ranging from 0.3 to around 1.5), together with a
thin shear layer on the lateral edges. Note that in
this jet potential core zone, as the volume spans over
−0.61 ≤ z ≤ 0.40, one also observes the start of the shear
layer in nearly all azimuthal directions, which translates
here into the presence of vectors also with lower axial
velocities (of around v/Vj ≈ 0.5, appearing in green).
Following the jet evolution in the downstream direction,
one then observes typical toroidal vortical structures in
the shear layer, due to the Kelvin-Helmholtz instability,
coinciding with accelerations in the jet core. As also ex-
pected, in each region separating two successive of these
vortices, the jet column is seen to expand, leading to flow
deceleration on the axis as a result of mass conservation.
These typical dynamical features can be observed in more
detail in the close-up also shown in figure 9.
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FIG. 7: Transitional jet experiment, featuring 3D PTV measurement in a parallelepiped of 16 mm thickness in the z
direction (with volumic illumination on), observed by four cameras, and planar PIV measurement in a

jet-longitudinal yz plane (camera in perspective observation, therefore used as a reference for the streamwise
velocity component only).

FIG. 8: Sample particle images from one of the 3D cameras, average seeding density estimated to 0.06 ppp (left)
and 0.03 ppp (right). Contrast has been enhanced for display purposes.



10

FIG. 9: Instantaneous vector field of the transitional Re = 4600 round air jet yielded by the DF-TPTV method,
color-coded by the normalized streamwise component v/Vj . Left: raw result, right: result with outlier filtering (see

text for details). Full field (top) and close-up on the region delineated by the dashed rectangle.

D. Statistical results

For further performance assessment, we now consider
mean and fluctuating velocities in the jet obtained by sta-
tistical averaging, which we compare to the same quanti-
ties yielded by planar PIV. We decompose each velocity
component as, for instance on the axial one, v = V + v′,

where V denotes the mean and v′ the instantaneous fluc-
tuation.

1. Runs and averaging characteristics

As 3D PTV and planar PIV operate at different opti-
mal seeding densities, a dedicated run at higher seeding
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TABLE I: Characteristics of mean flows yielded by DF-TPTV and planar PIV: spatial resolution (interrogation
window or bin size) and number of samples available for averaging. Planar PIV results correspond to a separate run

performed at higher seeding density.

Parameter DF-TPTV Planar PIV

Horizontal (x, z) / radial resolution (D) From 0.09 (r = 0) 0.014

to 0.01 (r ≥ 0.4)

Vertical (y) resolution (D) 0.084 0.084

Number of snapshots 1044 3000

Number of samples for averaging From ≈ 2200 − 2300 (r = 0) 3000

to ≈ 1000 − 1200 (r ≥ 0.4)

density was performed in order to obtain the reference
mean flow with planar PIV. We thus here present the
compared characteristics of the runs for 3D-PTV and pla-
nar PIV, as well as the respective methods for obtaining
statistics, and their spatial resolution. Table I sums up
associated relevant quantities.

For DF-TPTV, which yields scattered vector data, we
resort to bin averaging, as traditionally done in PTV
methods [1, 14, 15]. In the present jet flow context, we
choose a specific form of bins in order to increase the
number of samples. We exploit the assumption of statis-
tical axisymmetry to define them as annuli of increasing
radius in a cross-sectional plane. More precisely, intro-
ducing the radius r =

√
x2 + z2, a bin centered at radius

r, with radial resolution BSr(r) and streamwise resolu-
tion BSy, is defined as the volume:[
r − BSr(r)

2
; r +

BSr(r)

2

]
×
[
y

D
− BSy

2
;
y

D
+
BSy

2

]
Another specificity is that, as depicted in figure 10
(right), these bins are not all strictly annuli, but rather
truncated annuli for the majority of them, as vectors out-
side of the range −0.61 ≤ z ≤ 0.40 have been excluded.
This choice is justified by the repartition of light inten-
sity in the volume, which was slightly asymmetrical with
respect to the jet centre. As figure 11 shows, intensity
drops quite rapidly for z/D > 0.4, which leads to spu-
rious end effects in the motion estimation there within
DF-TPTV. This was observed in turn to yield less re-
liable results, in spite of the rejection (which was also
observed to exclude more samples); indeed, values of the
fluctuating velocity were observed to be spuriously higher
when including this region in the estimation.

In order to gather enough samples in each bin for con-
vergence, while introducing as little spatial smoothing
as possible, we choose BSr(r) to decrease from 0.09D
for r/D = 0, to 0.01D for r/D ≥ 0.4, as seen in fig-
ure 10 (left). Note that, although BSr decreases with
r in the jet core and then stabilizes in the shear layer
and the outer flow, bins are nearly of same volumic ex-
tent in the whole field, as a result of the radial geometry.
Value BSr(r > 0.4) = 0.1 has been observed to be the

smallest reachable, i.e. preserving enough samples for a
satisfactory level of convergence. Also, we observed that
the value of maximum RMS velocity in the shear layer is
nearly insensitive to moderate variations of BSr around
this value. Also, in order to allow fine sampling within
the shear layer, we consider a high overlap between the
bins, equal to at least 85%. The streamwise resolution
BSy is set to 0.084D, which corresponds to the interro-
gation window (IW) size of the planar PIV processing
(see below).

For each bin, we compute the mean and variance of
each velocity component as (here exemplified on the
streamwise component):

v′2 =
1

M − 1

N∑
t=0

Nt∑
i=1

(v(t)i − V )2 (6)

where

V =
1

M

N∑
t=0

Nt∑
i=0

v(t)i andM =

N∑
t=0

Nt (7)

where v(t)i denotes the velocity of the ith vector mea-
sured in the considered bin at time t, Nt is the total
number of vectors in the bin at time t and N the number
of snapshots.

For consistency, images acquired in the run for planar
PIV are processed with rectangular, top-hat IWs of 31×
5 pixels (0.084D × 0.014D, respectively in the y and z
directions). With such a parameter, the IW size is as
close as possible to the bin size of DF-TPTV, although
resolution in z is slightly higher. For this planar PIV
run, 3000 snapshots were acquired, in order to reach full
convergence of mean and fluctuating velocities.

2. Compared velocity profiles in the jet near field

To compare mean and RMS velocities yielded by DF-
TPTV and planar PIV, we restrict to the jet near field,
here y/D ≤ 2. As a matter of fact, in this zone the
turbulence rate remains moderate and can be estimated
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FIG. 10: Geometrical definition of bins used for statistical averaging of the DF-TPTV results. Left: bin radial
resolution, BSr(r) (expressed in jet diameter units), as a function of r/D. Right: Layout of in a cross-sectional

plane. Bins, which have been subsampled for clarity, are depicted as black rings whose thickness is equal to their
radial resolution BSr(r). The red circle denotes the jet nozzle.

FIG. 11: Intensity repartition of reconstructed particles in cross-sectional plane y/D = 1.4, averaged over square
bins of 0.025D × 0.025D size. The red circle denotes the jet nozzle.

with a satisfactory accuracy with DF-TPTV, which is
characterized by the lowest number of samples per bin.

Figure 12 shows the number of samples obtained by
DF-TPTV in each bin, as well as the percentage of vec-
tors rejected, as a function of r/D, at y/D = 1.40. As
a result of the difference in average seeding density be-
tween the jet and the outer flow (see also section V A),
up to maximum 2350 samples per bin are obtained in the
jet core, progressively decreasing in the outer shear layer
and the ambient flow, here to 1100−1200. Rejection also
has a slightly different behaviour in the jet core and in
the external flow. Around 3.5 to 4% of the initial vec-
tors are discarded in the core, while the average rejection
rate in the outer flow is rather of the order of 2.5%, with
a slight increase in the outermost region. This is again
consistent with the difference in seeding between these
two zones, which translates immediately in an increase
in the average measurement error (see in particular fig-

ure 6), therefore inducing more rejection where seeding
is denser. Similar trends and orders of magnitude are
observed at all other stations in y/D shown hereafter.

Figure 13 shows profiles of the mean and fluctuating
streamwise velocity in the radial (resp. z) direction,
yielded by DF-TPTV (resp. planar PIV). As the two
measurements have been performed with different cali-
brations, slight discrepancies in their respective frame of
reference have been detected. To compensate for these
and ease comparison, a shift in abscissa has been per-
formed on the curves. Its value has been determined so
that the value of the mean velocity at the centre of the
shear layer matches for both measurements. In other
words, denoting r1/2 (resp. z1/2) the position such that
V is equal to V (0)/2, this shift has been chosen such that
r1/2 = z1/2. Consistently with the choice for bin or IW
size, it is observed that the mean velocity profiles match
almost perfectly. Only very minor discrepancies appear,
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with the profiles of planar PIV characterized by slightly
larger shear layers, this being in line with the slightly
larger horizontal resolution (see table I).

Regarding the fluctuating streamwise velocity or tur-
bulence rate, curves for DF-TPTV and planar PIV are
observed either to collapse, or to differ by up to roughly
0.02. These maximum discrepancies are observed in a lo-
calized zone in the outer shear layer (r/D, z/D ≈ 0.6−0.7
for y/D = 1.7, and with a lower magnitude at y/D = 1.4
and 2), and also within the shear layer for y/D = 0.8 and
1.1. It should be noted that they cannot be ascribed to

the partially converged character of
√
v′2/Vj estimated

by DF-TPTV. Indeed, monitoring of its convergence with
respect to the number of samples yields an estimate of the
statistical uncertainty of roughly 0.001− 0.002. Turning
now to the detailed explanation of these curves, a first,
most directly understandable observation is the level of
turbulence rate in the jet core (r/D, z/D < 0.3−0.4) and
in the outer flow (r/D, z/D > 0.8) for the most upstream
locations, say up to y/D = 1.1. Indeed, flow in these

zones should be strictly laminar and therefore
√
v′2/Vj

should vanish. Levels observed there are thus measure-
ment noise and can be directly compared, in the case of
DF-TPTV, to the levels of the RMS error on velocity
from synthetic data, RMSv, presented in section IV C
(see figure 6). One observes, in the present experiment,
values close to 0.025 in the core, and 0.02 in the outer
flow, which correspond to 0.13 and 0.1 voxel, respectively.
Firstly, the higher value in the jet core is again consistent
with the denser average seeding there. Also, both these
values compare well with the estimation of RMSv on the
true particles only: this quantity indeed ranges from 0.11
voxel for ppp = 0.03, to 0.20 voxel for ppp = 0.06, which
is the range of image seeding densities here. The fact
that the present experimental noise level are closest to
the lowest theoretical value for RMSv (or even slightly
lower than it) might have two origins. Firstly, during the
run, seeding density is found to decrease quite rapidly,
so that the average density is closer to the final value
of 0.03 ppp than to the initial 0.06 ppp. Moreover, the
slightly lower value of noise compared to RMSv found in
the outer flow is probably due to the fact that the image
pre-processing performed before DF-TPTV (see section
V B) should lead to a lowering of the effective seeding
density. Note that these values also confirm the very
good efficiency of the outlier rejection procedure, as the
present comparison is performed here with RMSv values
estimated by only keeping the true vectors, and, over-
all, illustrate the excellent robustness of the DF-TPTV
method in this experimental context. Finally, it is inter-
esting to observe that DF-TPTV exhibits a noise level
which is very similar to that of planar PIV processed
with FOLKI-PIV, as long as the bin size and the IW size
are taken equal. In the curves, these noise levels are seen
to be nearly equal, or slightly higher for DF-TPTV (note
that the IW size for planar PIV is in fact very slightly

larger than the bin size, as shown in table I). This fact
also helps to understand why the agreement between re-
sults yielded by the two methods is very close in a general
way. Possible reasons for zones with discrepancies could
be a partial lack of axial symmetry of the jet, making the
estimation by bin averaging of DF-TPTV less accurate,
or a different sensitivity of DF-TPTV and of planar PIV
to flow gradients.

VI. CONCLUSION

We proposed here a novel technique for performing 3D
PTV from traditional double frame images, termed dou-
ble frame tomographic-PTV (DF-TPTV). Its main speci-
ficity is that it takes advantage of the sparse nature of
the tomographic PIV problem. It first produces spiky
particle reconstructions located on a voxel grid, lever-
aging on the PVR model [4] and the sparsity-based al-
gorithm LocM-CoSaMP [7]. Reconstructed particles are
matched using a low resolution predictor yielded by 3D
correlation before being accurately localized through a
global optimization procedure. Good performances have
been obtained over a large range of seeding densities
(ppp ∈ (0, 0.08)) on synthetic images generated using
a DNS data of a turbulent channel flow. DF-TPTV has
been then demonstrated to operate successfully at ppp
as high as 0.06 on experimental data on a round air jet
(Re = 4600). In this experiment, the DF-TPTV tech-
nique allowed to produce both reliable instantaneous ve-
locity vector fields and accurate ensemble statistics, upon
introducing an additional outlier rejection step. Statisti-
cal results have been obtained by a specific bin averag-
ing process exploiting the jet average axisymmetry, and
were found in excellent agreement with reference mea-
surements by planar PIV at comparable spatial resolu-
tion.

Overall, we would like to emphasize that DF-TPTV
is a particle tracking technique that relies on the same
amount of information as TomoPIV, not only in terms of
hardware (double frame acquisition, either at low or high
frequency), but also of seeding densities, since it yields
reliable results for ppp up to 0.06−0.08. A consequence is
that, within a given experiment, there is no need to per-
form separate runs at lower densities in order to perform
DF-TPTV as well as TomoPIV processing.

A possible direct perspective to this work could be to
further improve of the method’s robustness to low signal-
to-noise ratios, so as to exploit the maximum from a given
volumic illumination, often less intense on the volume
edges, as was the case in the present experiment. Future
research paths will also target a more drastic increase in
the capability of DF-TPTV to characterize complex tur-
bulent flows, on an instantaneous point of view. This will
be tackled by proposing new data assimilation schemes,
performing physically-sound instantaneous interpolation
between the obtained scattered vectors.
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FIG. 12: Percentage of rejected vectors per bin (left), and number of vectors per bin after rejection (right) as a
function of r/D, in cross-sectional plane y/D = 1.4, yielded by the DF-TPTV method.

FIG. 13: Streamwise mean and fluctuating velocity profiles, along a jet radius, for various cross-sectional locations
y/D in the near-field. Comparison between DF-TPTV, which uses bin averaging with statistical axisymmetry
assumption (r/D abscissa), together with planar PIV (z/D direction). To ease readability and comparison, a

horizontal coordinate shift has been applied, see the text for more details.


	Double frame Tomographic PTV at high seeding densities
	Abstract
	I Introduction
	II Related works
	III The Double Frame Tomo-PTV technique
	A Initial particle reconstructions
	B 3D particle temporal matching
	C Subvoxel refinement

	IV Assessment on synthetic data
	A Synthetic data generation
	B Detection performances
	C Position and velocity accuracy

	V Experimental results on a round air jet
	A Experimental setup
	B Processing parameters
	C Instantaneous results
	D Statistical results
	1 Runs and averaging characteristics
	2 Compared velocity profiles in the jet near field


	VI Conclusion
	 References


