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Crossed beam energy transfer, CBET, is investigated by taking into account the speckle structure of smoothed laser

beams that overlap in a plasma with an inhomogeneous flow profile. Using the two-dimensional simulation code

HARMONY, it is shown how ponderomotive self-focusing of laser speckles in crossing beams can significantly affect

the transfer of energy from one beam to the other. The role of plasma flow on speckle self-focusing is investigated and

revisited, in particular its consequences in terms of redirection and increasing angular spread of the laser beams due

to beam bending and plasma-induced smoothing, respectively. At close-to-sonic flow the onset of self-focusing in the

beam speckle structure occurs at considerably lower beam intensities than expected for the case without flow. CBET and

speckle self-focusing can hence occur together when two crossed beams with equal frequency will resonantly exchange

energy via their ponderomotively driven density perturbations flowing with sound speed. From the simulations it is

found that consequences of ponderomotive self-focusing can be expected above an average intensity threshold scaling

as IL ∼ 2× 1014Wcm−2(λ0/1µm)−2(Te/keV) with impact on the spatial and temporal coherence of the transmitted

light. The density perturbations due to the ponderomotive force of the crossing beams can locally be enhanced in self-

focusing speckles, partly leading to shock-like structures. These structures eventually increase the effect of plasma-

induced smoothing and are at the origin of the stronger angular spread.

I. INTRODUCTION

In the two approaches to laser-driven inertial confinement

fusion (ICF) experiments, namely the direct-drive1–5 and the

indirect-drive6–8, crossed beam energy transfer (CBET) is of

prime importance since it governs the coupling of laser en-

ergy to plasma. The two schemes of ICF involve multiple

laser beams crossing each other at different angles and di-

rections. For indirect drive, beams cross in the low density

plasma of the laser entrance hole while propagating toward

the hohlraum wall; in direct drive, they cross in the coro-

nal plasma of the fuel capsule at considerably higher den-

sity. In both approaches and especially for the direct drive

ICF, plasma flow plays an important role in defining resonance

conditions and plasma response during the CBET. In addition

to the context of ICF, CBET is also the principal mechanism

for the amplification of a laser pulse of ps duration by a pump

laser pulse9,10 and in recent pump-probe plasma diagnostic

experiments11 and theory12. In the laser pulse compression

and amplification schemes, the energy transfer is devised to

occur in pre-formed (mostly gas-jet) plasmas to obtain spatio-

temporal growth of the probe.

The laser-plasma configurations in ICF experiments of con-

cern for CBET involve two laser beams with wave vectors

and frequencies (~k1,ω1) and (~k2,ω2), crossing at an angle θ
and leading to induced13–15 or stimulated Brillouin scattering

(SBS) of one beam into the other16–19. The laser light beams

scatter off the grating of ion acoustic waves (IAW) produced
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FIG. 1. Schematic sketch of the configuration of two laser beams

crossing under the angle θ in a plasma with flow. The ‘pump’ and

the ‘probe’ laser beam ponderomotively drive periodic density per-

turbations having the wave vector~ks. For two beams with the same

wave length and for plasma flow with a component~vp parallel to~ks,

the conditions for resonant CBET-SBS are fulfilled around the spa-

tial domain of sonic flow, i.e. |~vp| ≃ cs. A basis of coordinates η and

ξ , non-orthogonal for θ 6= ±90◦, can be defined which is used for

the solutions derived in section III A.

by the ponderomotive force of the two beams. In most of

the experimental configurations, plasmas are inhomogeneous

and are flowing with a velocity ~vp. Therefore, the CBET re-

quires that the three-wave SBS resonance conditions are ful-

filled for wave vectors (momentum) and frequencies (energy):
~ks ≡~k1 −~k2 and ω1 −ω2 ≡ ωs +~ks ·~vp respectively, where ωs
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and ks ≃ 2|k1|sin(θ/2) are the IAW frequency and wave num-

ber for light beams crossing at the angle θ . As the result of

CBET, the power distribution in the two beams is changed;

this can seriously affect the laser energy coupling to plasmas

in both the indirect and direct drive ICF schemes.

Our study in this article is focused on two important aspects

that prove to be important for CBET, namely

(1) the speckle (or hot spot) structure of the laser beams and

(2) the role of plasma flow.

Currently all ICF experiments are carried out with

‘smoothed’ laser beams resulting from spatial and/or spatio-

temporal smoothing techniques; in particular, in the case of

spatial smoothing only, random phase plates (RPP)20,21 in-

duce spatial incoherence in the laser beams. On a coarse scale

smoothed beams show a smooth average intensity profile in

their cross section, while on the fine scale of the laser wave-

length (λ0) they have a speckle structure with a known sta-

tistical distribution of the speckle peak intensity Isp
20–22. The

goal of using smoothed laser beams is to control the onset of

self-focusing in speckles, so as to restrict it to an energetically

unimportant, small percentage of intense laser speckles.

While the theory of crossed beam power transfer between

speckle beams has been developed in Refs. 23 and 24, most

of the current modelings of CBET between multiple RPP

beams in ICF experiments are described by averaging over

the realistic beam speckle structure6,25,26. Studies on the role

of speckles and their self-focusing for CBET in presence of

plasma flow are relatively recent.4,16,27 In the regime of mod-

erate laser intensity of the crossing beams, i.e. when no

self-focusing in laser speckles arises, recent studies19,28 have

shown that the role of speckles in the energy transfer is merely

of statistical nature: the deviation in the energy transfer arising

from different RPP realisations decreases with the number of

speckles in the crossing volume, and the expectation value of

the transfer corresponds to the value obtained when assuming

the average intensity of each beam.

The onset of ponderomotive self-focusing (PSF) in speckles

arises if the power in a speckle, P, exceeds the critical power

for PSF, Pc. For direct-drive configurations2–4 beams essen-

tially cross in counterpropagating geometry so that energy ex-

change can be computed on the basis of standard 1D models

for backward SBS29,30. PSF in such configurations appears in

the individual beams and on a longer time scale than CBET.

The scenario is different for indirect drive ICF where PSF

and CBET occur on a similar time scale. Furthermore, the

zone of sonic flow, in the vicinity of which efficient CBET

takes place between the crossing beams, is relatively large. It

is known that the transverse plasma flow reduces the thresh-

old for PSF in the sub-sonic regime.31–33 In the vicinity of the

spatial domain where the plasma flow is sonic, the so-called

effect of beam-bending occurs23,33–35 where a beam is redi-

rected into a direction different from its incident direction.

The latter has consequences to intense speckles in smoothed

laser beams: speckles located in the region of overlapping

beams and close to the region of sonic flow will eventually

be redirected towards the direction of the other beam.

On the other hand beam bending slows down the plasma

flow by momentum conservation and can locally lead to den-

sity profile steepening. Density and velocity perturbations

in the plasma that are enhanced by the PSF are carried by

the plasma flow away from the localized ponderomotive force

of the crossing beams and can eventually develop shock-like

structures.36–38 These structures will scatter electromagnetic

waves, enhance levels of ion acoustic fluctuations over wide

range in the wave-vector spectrum, and contribute to enhanced

plasma-induced smoothing of the transmitted light. In the

transmitted light beams the latter leads to broadening in the

angular aperture and introduces (or increases) temporal inco-

herence, resulting in non-negligible temporal bandwidth.

Two smoothed beams crossing in an expanding inhomoge-

neous plasma, as sketched in Fig. 1, are relevant to indirect-

drive ICF experiments, where the plasma at the laser entrance

hole is weakly inhomogeneous, both in density and flow39–44.

Experimental studies with similar configurations have been

undertaken recently45,46, but also at smaller angles47,48, or

partially at larger angles49.

In this article we show how important becomes ponderomo-

tive self-focusing (PSF) in laser speckles when plasma flow is

present. For the case of two crossing RPP beams we show

that in inhomogeneous plasmas16 speckle self-focusing and

the deflection of speckles lead to a significant effect on the

CBET which increases with the laser beam intensity. We have

not considered spatio-temporal smoothing as ‘smoothing by

spectral disperion’ (SSD) in the current study, but we discuss

the impact of temporal incoherence on our results.

The article is organized as follows: the model used for de-

scribing CBET for beams with speckle structure in a plasma,

with the details concerning the fundamental equations used

in our modelling with the code HARMONY is presented in

section II. Particular attention is given to the ponderomotive

coupling in section III. We also recall the essential theory

for beam-to-beam CBET in III A. In III B we will develop a

model to explain ponderomotively induced density perturba-

tions that are seen in speckle beams. The simulation results

for several laser plasma parameters as obtained from the code

HARMONY are presented in section IV. In this section we also

discuss the role played by laser speckle structure, pondero-

motive self-focusing, and density shock structure on CBET.

Conclusions are presented in section V.

II. MODELING CBET BETWEEN TWO BEAMS IN A
FLOWING PLASMA

We will describe in the following the interaction between

two laser beams crossing at the angle θ in an inhomogeneous

plasma. Figure 1 shows the particular configuration that cor-

responds to two ‘s’-polarized beams crossing at a relatively

small angle θ , and having their common wave vector com-

ponent along the positive x direction, while the ponderomo-

tively generated ion acoustic waves (IAWs) propagate along

the y direction. Such a configuration of crossing beams may

be relevant to the basic element of the geometry of many

crossing beams at laser entrance holes (‘LEH’) in the in-

direct drive ICF experiments. We have also chosen an in-

homogeneous plasma flow profile, vp,y(y)~ey, with the dom-

inating direction of flow direction along the y-axis. This is
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one of several possible situations that may be encountered

in LEHs flow profiles50, and it is the one with the strongest

possible exchange between beams that cross at a small an-

gle. For two ‘s’-polarized beams, with wave vectors and

frequencies (~k1,ω1) and (~k2,ω2), the SBS matching condi-

tions are satisfied when vp,y(y)/cs = (ω1−ω2 −σωs)/(csks),

where σ is the sign of ω1−ω2 − (~k1−~k2) ·~vp, and where

cs ≡ [(c2
se/(1 + k2

s λ 2
De) + 3v2

i ]
1/2 is the IAW velocity, with

cse ≡ (ZTe/mi)
1/2, where Te is the electron temperature, λDe

the Debye length, vi the ion thermal velocity, mi and Z are the

ion mass and charge number, respectively.

A. Model equations

In the following we express the complex electric field en-

velope as the superposition of two beams incident at the an-

gles ±θ/2 to the x-axis, where ~k j‖ and ~k j,y are the paral-

lel and transverse components of the wave vectors, respec-

tively, with |~k j‖| = |~k j|cos(θ/2), |~k j,y| = |~k j|sin(θ/2) and

|~k j|=(ω2
j −ω2

p)
1/2/c (j=1,2). The electric field can then be

written as

E(~x, t)=
Ê

2
e

i~k1‖·~x
[

a01e−iω1t+i~k1,y·~y+a02e−iω2t+i~k2,y·~y
]

+cc, (1)

where a01, and a02 are the electric field amplitudes of both

beams normalized to the field strength Ê. For not too large an-

gles θ between the two beams, the paraxial approximation can

be used, and for |ω1 −ω2| ≡ 0 and~k2,y = −~k1,y the propaga-

tion of the incoming beams can be described by paraxial equa-

tions for a(~x, t) ≡ a01 exp{i~k1,y ·~y}+ a02 exp{−i~k1,y ·~y}, or,

alternatively, individually for a01, a02, coupled to the plasma

density perturbations51

[

2iω1(∂t + vgx∂x)+ c2(∇2)⊥
]

a(~x, t) = ω2
p

δn

ne

a(~x, t) , (2)

where vgx ≡ vg cos(θ/2), ωp = (nee2/ε0me)
1/2 is the electron

plasma frequency; nc = ε0meω2
0/e2 denotes the critical den-

sity, me and e being the plasma electron mass and charge re-

spectively, δn = (n−ne) is the density perturbation about the

equilibrium density ne. Note, that Eq. (2) describes the evo-

lution of the electromagnetic wave amplitudes in the paraxial

approximation on the scale of hydrodynamical evolution and

long wavelength IAW response of δn/ne. The high-frequency

response for IAWs due to backscattered SBS is treated in

HARMONY via a harmonic decomposition52, that one has to

consider for large angles θ ∼180o. In HARMONY we solve

Eq. (2) by imposing a boundary condition for the entering

laser light at x =0 for a(x = 0,y, t).
The plasma dynamics is described by the standard hydro-

dynamic equations in the isothermal approximation,

∂tn+∇ · (n~υ)=0, (3a)

[∂t +~υ ·∇]~υ + c2
s

∇n

n
+2νs~υ =−c2

se

∇U

Te

, (3b)

where U stands for the ponderomotive potential and νs for the

ion acoustic damping. In our simulations we assume for νs

a linear wave-number dependence, and nνs~υ is computed in

Fourier space with νs(ks) = ν̂ ωs(ks), accounting for Landau

damping51,52.

For the electric field resulting from the superposition of

two beams of equal frequency, a(~x, t) ≡ a01 exp{i~k1,y ·~y}+

a02 exp{−i~k1,y ·~y}, the ponderomotive force ∇U ∝ ∇|a(~x, t)|2

can be subdivided into two separate contributions, provided

that the central wave vector component in y for each beam,

|~k1,y| and |~k2,y| exceeds the wave number spread △k related to

the angular aperture of each RPP beam; the latter is a function

of the focusing f -number, namely21 △k ≡ |~k1|/[1+4 f 2]1/2 ∼
|k1|/(2 f ).

Keeping in mind the condition, that for two separate fields

the wave number separation needs to be greater than the angu-

lar aperture of the fields, |~k2,y−~k1,y|>△k, the ponderomotive

force in the right-hand side of the equation of motion can be

expressed in two distinct terms namely ∇U = TeΓ∇|a(~x, t)|2 ≡
∇Ucross +∇Uself , given by

∇Ucross/Te = Γ ∇

(

a01a∗02e2i|~k1|ysin(θ/2)+ cc.
)

, (4a)

∇Uself /Te = Γ ∇(|a01|
2 + |a02|

2), (4b)

where Γ = 〈v2
osc〉/v2

th = v2
osc/(2v2

th) is the coupling coefficient

which involves the thermal velocity vth = (Te/me)
1/2 and the

electron quiver velocity vosc = eÊ/(meω) of the field Ê to

which a01 and a02 are normalized. In practical units the coeffi-

cient is given by Γ =0.09I0λ 2
0 (1015Wµm2/cm2)/Te(keV) with

I0 standing for the beam average intensity.

The ponderomotive force contribution ∇Ucross acts essen-

tially on the plasma fluid due to the beating between the two

waves a01 and a02 in SBS. This term alone cannot account

for self-interaction occurring in an individual beam. The

ponderomotive force contribution denoted by ∇Uself is there-

fore the one accounting for ponderomotive self-interaction

in the paraxial approximation for each individual beam. This

self-interaction can be associated with self-focusing and with

forward-SBS inside each beam. Note, that in contrast to the

case of large angles, both contributions to the ponderomotive

force have major components along the y-direction, i.e. across

the main common propagation axis x.

In most of the studies on crossed-beam coupling, only

the ∇Ucross term was considered in the description of CBET.

This term is responsible for the coupling between the average

beams, which we will denote as ‘beam-to-beam CBET’ later

on in section III A. The term ∇Uself was mostly neglected

in the context of CBET because self-focusing effects are ex-

pected to occur for laser intensities that are above those con-

sidered in laser fusion configurations. This argument has to be

revisited in plasmas with the transversal flow, as it is done fur-

ther on in Section III B. We will draw attention to important

work that has been done in the past by considering plasmas

with flow even in the presence of a single laser beam.31–33
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FIG. 2. Snapshots from the 2D simulations showing the superposition of intensities of the two crossed laser beams in space. In the left

panels (a)-(c) are shown the results from two RPP beams, at the time instants (a) t = 0, (b)-(c) t =200 (2k1cs)
−1 (corresponding to ∼ 11ps

for λ0 =0.35µm and Te =3keV); in (b) both crossed-beam coupling and beam self-interaction (’self’) are taken into account, in (c) only

crossed-beam coupling. The corresponding right panels (d)-(f) show two crossed regular beams (i.e. without speckle stucture) under the same

conditions as in panels (a)-(c). The color bar shows the laser beam intensities normalized to the the average value, i.e. I01 = I02 = 6I0 with

I0λ 2
0 ≡1014Wµm2/cm2.

B. The simulation configuration in HARMONY

In the two dimensional (2D) simulations with our code

HARMONY
51,52, we have chosen a crossing angle of θ =20◦.

The plasma flow profile follows a linear ramp in y-direction,

as defined by vp,y(y)/cs=(y−Ly/2+Lv)/Lv with Lv (=200λ0

in the simulations) as the gradient length19, so that, assuming

equal frequencies for both beams, ω1 = ω2 = ω0, SBS match-

ing occurs at y = Ly/2 in the center. We have performed sim-

ulations for the case when both entering beams have the same

average intensity, I02 = I01. For this case, I02/I0 = I01/I0 ≡ 1,

the reference intensity, I0, corresponds for λ0 =0.35µm light

to an average laser intensity of I0 = IL ≃0.9×1015W/cm2 at

Te =3keV.
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FIG. 3. Power transfer ratio for beam 2, as a function of its input flux

I02 after exchange with laser beam 1 due to CBET. Four cases are

shown, (a) RPP-smoothed beams (solid lines) and (b) regular beams

(dashed) with and without accounting for self-focusing (blue and red

color, respectively). Both beams have initially the same flux, I02 =
I01. The green curve corresponds to results from Ref. 19 and follows

the theory53 exposed in section III A.

The laser wave amplitude, a(~x, t) in Eq.(2), at the laser en-

trance boundary is generated via a Fourier series for two sep-

arate wave-fields for a01 and a02. In Fourier space, each of the

wave-field contributions is centered around the wave vector

components |~k1,y|=−|~k1|sin(θ/2) and |~k2,y|= |~k1|sin(θ/2),
respectively. For a RPP with i = 1. . . NRPP elements in each

component j = 1,2, with random phases φ j,i, this reads

a0 j(y) = ei~k j,y·~y ∑
△k
ki=−△k

|â j,i|e
ikiy+iφ j,i where the i-th element

has the wave number ki and amplitude â j,i, with the spacing

between them, ki+1−ki=2△k/NRPP. The width in ky, is given

by21 △k ≡ |~k1|/[1+4 f 2]1/2 ∼ k1/2 f . The total field with the

a01 and a02 components has zero elements in the Fourier se-

ries for |ky| < |~k j,y| −△k, which corresponds to the angular

interval around θ = 0o. For an angular separation of a01 and

a02 the condition △k < |~k1,y| has to be fulfilled.

Note that we also have performed simulations in which a

single field array was used in stead of separating the fields

into two arrays. In this configuration the ponderomotive force

is given simply by ∇U = TeΓ∇|a(~x, t)|2. We have verified

that the simulations of both types of configurations show the

same results when both terms ∇Ucross and ∇Uself and taken

into account in the configuration with two field arrays.

III. LASER PLASMA COUPLING IN THE PRESENCE OF
FLOW AND OF TWO CROSSING LASER BEAMS.

The standard criterion for the ponderomotive self-focusing

of laser speckles in RPP beams, derived in previous work (see

e. g. Ref. [54]) reads

P̂ = P/Pc = 0.04η
Ispλ 2

0

Te

f 2 ne

nc

, (5)

with Isp being the peak intensity of a laser speckle given in the

units of 1014W/cm2, λ0 in µm, Te in keV, and f as the speckle

f-number; η is a numerical factor of the order of unity, being

η = 1.23 in 2D geometry54.

However, it is important to note that this criterion cannot be

applied to flowing plasmas, when CBET between laser beams

of equal frequency occurs at close-to-sonic flow.

We will continue to use P̂ in the text to indicate beam power

in a speckle, even if the ponderomotive self-focusing instabil-

ity may occur with flow already for values P̂ <1.

For crossing beams with speckle structure, like RPP beams,

the consequences of the onset of PSF in presence of flow

are manyfold: speckles located in the vicinity of sonic flow

will self-focus and grow in amplitude at an angle different

from their incidence angle31, a phenomenon denoted as beam

bending.23,33–35 The latter may eventually lead to the devia-

tion of the speckle into the direction of the other beam, thus

corresponding to beam bending CBET; also, the density per-

turbations ponderomotively induced in the plasma by the nu-

merous speckles, may develop shock-like structures charac-

terized by steep wave fronts in presence of flow, as shown

later on.

These effects become more and more pronounced with in-

creasing laser intensity. At beam intensities slightly above the

moderate intensity values considered in our previous work in

Ref.19,28 the difference in the description of CBET with and

without speckle structure becomes already striking.

To illustrate this we have carried out simulations with

two types of beams, namely optically smoothed beams with

speckle structure, and beams with a flat profile without speck-

les; both types of beams having the same average intensity.

For the current study we use RPP beams as prototype for

speckle beams.

We have not considered beams with temporal incoherence.

They usually are specific to the laser facility and in most cases

introduce temporal variations that, as we will demonstrate be-

low, involve longer time scales than plasma induced correla-

tions times of crossing RPP beams. Here, we concentrate on

the essential effects of PSF in speckles on CBET. The beams

without speckle structure we call ‘regular beams’. The prop-

erties of such ‘regular’ beams are reminiscent of plane waves,

i.e. with constant, steady wave fronts, with a unique phase

constant, and without any randomness. Such regular laser

beams are used in most of the theoretical models describing

CBET on large scale laser facilities6,55. We use those beams

for the comparison with RPP beam, in order to illustrate ef-

fects with and without speckle structure.

Figure 2 illustrates the difference between the two types

of beams for crossing beams of equal intensities. Shown are

snapshots of intensity profiles in x and y in the interaction re-

gion, for the case of RPP smoothed beams (with speckles, left

column, (a)-(c)) and "regular" beams without speckle struc-

ture (right column (d)-(f), see for more details in the section

IV on simulation results).

In the following three subsections we discuss the basic pro-

cesses that come into play and that are seen in our simulations

for the case of single speckle dynamics and for SBS model-

ing. We describe in III A the spatio-temporal evolution of the
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6

forward SBS responsible for CBET, in III B the modifications

of the filamentation threshold due to transverse plasma flow,

and in III C the linear plasma response to the ponderomotive

force of PSF in the flowing plasmas leading to beam bending

and steepening of the density perturbations. Although most of

these results have been discussed separately before, we found

this summary useful as it will inform our interpretation of the

RPP crossed-beam coupling and energy transfer in large scale

HARMONY simulations.

A. Beam-to-beam CBET

We will recall here results of CBET theory describing two

crossing structure-less beams and refer to Ref.19 or earlier

work53 for the details of the derivations. The equations de-

scribing the evolution of the laser field amplitudes a01 and a02

and propagating by the angle θ/2 with respect to their com-

mon axis x, take the following form:

(∂t +2ν1 +~vg1.∇)|a01|
2 =+Γ

ω2
pe

ω1
ω2

s ℑ

(

1

Ds

)

|a01|
2|a02|

2 ,

(∂t +2ν2 +~vg2.∇)|a02|
2 =−Γ

ω2
pe

ω2
ω2

s ℑ

(

1

Ds

)

|a01|
2|a02|

2 ,

(6)

ν1,2 stand for collisional damping (they can be neglected

for the ICF plasma conditions), ℑ(1/Ds) denotes the imag-

inary part of the resonance denominator 1/Ds where Ds =

(ω ′)2 +2iω ′
sνs −ω2

s with ω ′
s = ω1 −ω2 −~ks.~vp describes res-

onant coupling between the crossing laser waves and the ion

acoustic wave, ω2
s ≡ k2

s c2
s , and νs is the acoustic damping.

After a transient period of non-stationary energy exchange

between the beams, Eqs. (6) can be reduced to a set of sta-

tionary equations for the beam intensities |a01|
2 and |a02|

2.

An efficient way of expressing this coupling is realized by

introducing oblique, non-orthogonal coordinates η and ξ ,

x = η~ex.~eη + ξ~ex.~eξ and y = η~ey.~eη + ξ~ey.~eξ with ~ey.~eη =
−sin(φ −θ/2) and~ex.~eξ =−sin(φ +θ/2). Choosing φ = 0

as the angle between ~vp and ~ks =~k1 −~k2 leads to ~ey.~eη =
sin(θ/2) and ~ex.~eξ = −sin(θ/2) in the two-dimensional ge-

ometry (see Fig. 1) of HARMONY simulations (cf. Fig. 2).

For arbitrary ratios between |a01|
2 and |a02|

2, for which one

cannot neglect depletion of either beam 1 or 2, the set of equa-

tions to solve reads,

∂η ∂ξ |a01|
2 =−2∂η( β (ξ ,η) |a01|

2 |a02|
2 ) ,

∂ξ ∂η |a02|
2 = 2∂ξ ( β (ξ ,η) |a01|

2 |a02|
2 ) , (7)

that simplifies to first-order differential equations when the

depletion of one of the beams can be neglected, as for

|a01|
2/|a02|

2 ≫1 (or, ≪ 1). The function β (ξ ,η) accounts

for the geometry of the rhombus-like shape of the crossing

zone,

β (ξ ,η) =
γ2

0/(νsvg,2)

1+ k2
s c2

s

ν2
s
[Q0 −Q(ξ ,η)]2

. (8)

It depends on the spatial growth rate γ2
0/(νscs) for SBS

(vg,2 ≡ cs) where γ0 is the temporal growth rate, γ2
0 ≡

(ne/nc)(ω1/ωs)k
2
s c2

s v2
osc/(4v2

th) = (ne/nc)(ω1/ωs)k
2
s c2

s Γ/2

with the coupling coefficient Γ from Eqs. (4a-4b) involving

the quiver velocity vosc corresponding to the laser pump field

to which a01 and a02 are normalized. The auxiliary functions,

Q0 =
ω1 −ω2

kscs

−1 , (9)

Q(ξ ,η) =

∣

∣

∣

∣

vpLy/2

cs

−
η sin[φ−θ/2]+ξ sin[φ+θ/2]

Lv

∣

∣

∣

∣

cosφ ,

(10)

result, with vp,y(y)/cs=(y−Ly/2+Lv)/Lv, in

Q(ξ ,η) =

∣

∣

∣

∣

vp(Ly/2)

cs

+
2(y−Ly/2)sin(θ/2)

Lv

∣

∣

∣

∣

.

The integration over the domain of interest, namely the beam

width D, see19 and Fig. 1, yields a spatial amplification de-

scribed by the gain G coefficient given by

G ≡
2γ2

0 min{D/(2sinθ),Linh}

νscs

, (11)

where Linh = π(Lvνs/ωs)/|cosφ sin[φ −θ/2]| denotes the in-

homogeneity length, being Linh = π(Lvνs/ωs)/sin(θ/2) in

our case. For the case D/(2sinθ) > Linh, the resulting gain

is equivalent to the ‘Rosenbluth’ gain coefficient56.

B. The role of plasma flow and of speckles for CBET

For the case of non-flowing plasmas laser speck-

les are expected to self-focus with speckle power fol-

lowing the criterion Eq. (5). In terms of the

speckle peak intensity, Isp, it reads in practical units

(Isp/I0) ∼3.1(nc/10ne)( f/8)−2Te(keV). It yields that speck-

les self-focus when Isp > ( f/8)−2 9×1015W/cm2 at

λ0 =0.351µm for ne/nc =0.1, Te =3keV, and I0 =1015W/cm2.

For typical ICF conditions only very few speckles would

hence undergo PSF.

As already mentioned, this criterion cannot be applied in

presence of plasma flow. The criterion for the onset of the fil-

amentation instability has to be derived from the set of Eqs.

(2),(3a), (3b), and Eq. (4b), taking into account the advective

terms ~vp ·∇~v and ∇(n~vp) due to transverse plasma flow~vy. As-

suming for unstable modes the dependence ∝ exp(qx+ ikyy)
with respect to the x and y axis, and with flow along the y di-

rection, one obtains a criterion for the filamentation instability

in terms of the spatial growth rate q.

The resulting relation reads31 (for |q|2 ≪ k2
0)

q2 =
k2

y

4

(

〈v2
osc〉

v2
th

ne

εnc

1

1−M2 + iν̂M
−

k2
y

k2
0

)

, (12)

where M = vp,y/cs is the Mach number of the transversal flow,

the damping coefficient ν̂ = νs(k)/ωs(k), and ε = 1−ne/nc is

the dielectric constant in the plasma. Note that when consider-

ing Gaussian beams or RPP speckles, ky should be larger than

the minimum ky,min = ∆k ≃ k0/2 f related to their focal width.

The resulting threshold for the instability, ℜq > 0 depends on
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7

transverse flow via a resonance denominator, in contrast to the

standard criterion without flow, i.e. M = vp,y/cs ≡0. For small

damping, Mν̂ ≪|1−M2|, Eq. (12) predicts growth of the fila-

mentation instability at wave vectors, ky, and 〈v2
osc〉 satisfying

threshold condition, (〈v2
osc〉/v2

th)(ne/εnc)(k
2
0/k2

y)≡ 1−M2 for

subsonic flow, M2 < 1. This clearly indicates that the onset

of PSF is altered with flow. For the particular case without

flow, M =0, this criterion is equivalent to the onset of PSF,

Eq. (5), for speckles, by associating Pc ∼ v2
thnc/n with the

critical power and Psp ∼ v2
osc(k

2
0/k2

y) with the speckle power,

assuming k0/ky = k0/∆k ≃ 2 f . There is, however, no instabil-

ity for supersonic flow |M| = |vp,y/cs| > 1. In detail this has

been worked out in Ref. 32 for the case of RPP smoothed laser

beam. This work clearly shows via numerical simulations that

PSF growth is enhanced for subsonic flow with respect to the

case without flow vp,y ≡0.

We have solved Eq. (12) as a function of ky for dif-

ferent values of the Mach number M for subsonic flow,

and for two cases with intensities ILλ 2
0 =1014W/cm2 µm2

and 2.5×1014W/cm2 µm2, respectively (and for ne/nc =0.1,

Te =3keV, and ν̂ =0.05). The unstable solutions found are

shown in Figs. 4. For the case without flow, M =0, one ob-

serves a clear cutoff kcutoff in ky above which, ky > kcutoff no

unstable solutions exist. For the two cases shown, this cutoff

corresponds to the threshold criteria for speckles with Isp = IL

and Psp/Pc =0.2 and 0.5, respectively, for f =8. In contrast to

this, one cannot observe a cutoff for the subsonic flow cases,

0< |M| <1. It is furthermore evident from the spatial growth

values q(ky) obtained, that for subsonic flow the ponderomo-

tive modifications expected from PSF are stronger than for

ky < kcutoff in the case without flow. The linear growth rate

of the filamentation instability Eq. (12) has been discussed

in Ref. 33 where it is shown that the enhanced density per-

turbations due to the instability contribute to the laser beam

deflection. Such a beam bending has been observed in simu-

lation results34,35 and can contribute to CBET.

Beam bending enhanced by the PSF of a single Gaussian

beam is illustrated in Figure 5. In the case shown the beam

is originally focussed at x =1000λ0. The plasma flow trans-

verse to the propagation direction of the entering beam is at

M =0.96. For the beam intensity chosen, the criterion accord-

ing to Eq. (5) yields Psp/Pc =0.5, it is thus below the onset

value for PSF. What can be seen shows, however, a clear on-

set of PSF and beam bending: the beam is deflected into a

direction oblique with respect to its incidence, and the beam

stays trapped in its own plasma density channel for distances

considerably longer than the Rayleigh length. We have fur-

thermore examined cases with still higher intensity values of

single beams (not shown), for which strong non-stationary be-

havior can appear together with flow, driving density chan-

nels in the plasma that eventually propagate freely, leading to

shock-like stuctures in the plasma density.

For crossing beams, it follows that the processes of beam

bending and speckle self-focusing leads to an effective energy

transfer into the other beam. For the described scenario of

transfer between speckles and the other beam at close-to-sonic

flow, one again has to consider the basic theory for CBET, as

0.02 0.04 0.06 0.08 0.10
ky/k0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

q(ky)/k0

IL λ
2=1014(W/cm2)μm2 , n/nc =0.1, T=3keV, M=0, 0.8, 0.92, 0.96

0.02 0.04 0.06 0.08 0.10
ky/k0

0.0005

0.0010

0.0015

q(ky)/k0

ILλ
2=2.5x1014(W/cm2)μm2,n/nc =0.1,T=3keV,M=0,0.8,0.92,0.96

FIG. 4. Spatial growth rate ℜq evaluated from Eq.(12) for the

cases with intensities ILλ 2
0 =1014W/cm2 µm2 (upper plot) and

2.5×1014W/cm2 µm2 (lower) (and for ne/nc =0.1, Te =3keV, and

ν̂ =0.05), as a function of the transverse wave number ky/k0 and for

different plasma (transverse) flow Mach numbers, M = vp,y/cs =0,

0.8, 0.92, and 0.96. The dotted curves indicate the optimum growth

rate as a function of ky.

outlined before in Eqs.(7)-(11). Two differences essentially

emerge as compared to ’beam-to-beam’ CBET, namely:

(i) the speckle width, f λ0 ∼ D, is most likely smaller than the

inhomogeneity length, yielding f λ0/2sinθ < Linh, and

(ii) the local intensity inside a speckle can be several times

(say, up to 6-9 times) higher than the average beam intensity.

One can approximate |a01|
2|a02|

2 in Eqs. (7) by 〈I〉Isp/〈I〉
2.

Consequently, the approximation for the gain describing

the transfer between speckles and the other beam results in

G≃ f λ0 sinθγ2
0,sp/(νscs) in which γ0,sp is the SBS growth rate

evaluated for the speckle intensity Isp. Compared to the gain

values expected for ’beam-to-beam’ CBET this gain value is

by the factor f λ0/min{D/(2sinθ),Linh} different. The width

of a single speckle, f λ0 is generally much smaller than the

width of a RPP laser beam or the width of the interaction re-

gion in an inhomogeneous profile, whereas the factor γ2
0,sp can

assume values up to 6-9 times higher than γ2
0, for the average

laser beam.

Amplification of individual speckles by crossing overall

beams has also been seen in experiments45. However, this

transfer process into intense speckles remains transient as has

been demonstrated in the experiments Ref. 45 involving rel-

atively short laser pulses, of 2-4 ps duration. For longer laser
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FIG. 5. Intensity contour map of an initially Gaussian beam, illus-

trating the deflection and the trapping of the beam in space x and y,

taken at an asymptotic stage, for the case of a plasma with transverse

flow at M =0.96. The beam was initially focussed at x=1000λ0. Fol-

lowing the standard criterion of PSF for this case, the rbeam power

to critical power ratio P/Pc =0.5 according to the criterion Eq. (5)

without flow.

pulse durations the transfer from one to the other beam affects

the whole beam. Transfer from speckles to the crossing over-

all beam is, on the other hand, very likely to happen, and is

also seen in our simulations. The consequences of the latter

process, as will be discussed and illustrated later on in section

IV B, lead mostly to enhancement in the angular spread of the

beam receiving energy from speckles.

C. Density perturbation and beam bending

Although the steepening of the ion acoustic waves is a

nonlinear process, the linear approximation of the plasma re-

sponse in presence of background flow already clearly points

to the shock formation, which is well reproduced in our sim-

ulations. It is helpful to recall a model of the plasma response

to the stationary ponderomotive potential in the presence of

transverse flow. The linear response of the plasma density

is described by the wave equation obtained from linearizing

Eqs.(3a)-(3b) ,

(

∂ 2
t +2νs∂t − c2

s ∂ 2
y

)

δn/ne = c2
se∂ 2

y U, (13)

where δn/ne is the density perturbation, νs the IAW damping;

U denotes in this section the normalized ponderomotive po-

tential, U ≡ Uself /Te. A convenient way to introduce a trans-

verse flow into Eq. (13) is to consider a moving beam in a

stationary plasma35 that is equivalent to the flowing plasma

in y-direction and a stationary laser beam, or crossed beams

giving rise to the ponderomotive potential. In this new frame

of reference U = Uself (y+ vp,y0t) describes the ponderomo-

tive potential moving to the left with a uniform plasma flow

velocity vy0. The analytical solution to Eq. (13) can be ob-

tained using the procedure of Ref. 57, where we introduced

the Laplace transform of δn/ne and of U , {δ Ñ,Ũ}(y,s) =
∫ ∞

0 dt e−st{δn/ne,U}(y,s); δ Ñ satisfies the wave equation,

(

∂ 2
y −β 2

)

δ Ñ =−∂ 2
y Ũ(y,s), (14)

for cs ≃ cse with β 2 = (s2 +2νss)/c2
s , having the solution

δÑ(y,s)=
e−βy

2β

∫ y

−∞
dξ eβξ ∂ 2

ξ Ũ −
eβy

2β

∫ y

∞
dξ e−βξ ∂ 2

ξ Ũ. (15)

After integration by parts and calculating the inverse Laplace

transform, δN(t) = 1/(2πi)
∫ i∞+σ
−i∞+σ ds estδÑ(s), we obtain the

following time dependent solutions for the density perturba-

tion in the frame of the moving plasma and for the stationary

ponderomotive potential: for plasma flow different from the

speed of sound, i.e. for M ≡ vy0/cs 6= 1, one obtains

δN(y, t)=−
U(y)

1−M2
+

νs

2cs

[

I(+)

1−M
+

I(−)

1+M

]

(16)

+
1

2
e−νst

[

U(y+(1−M)cst)

1−M
+

U(y−(1+M)cst)

1+M

]

,

with I(±) =
∫ cst

0 dξ e−νsξ/csU(y± ξ −Mξ ) and with the ap-

proximation β ≈ (s+ νs)/cs. For sonic plasma flow, M = 1,

the density response from Eq. (15) yields the expression,

δN(y, t)=
1−e−νst

2

∂yU(y)

νs/cs

−
U(y)

2
+

U(y−2cst)

4
e−νst+

νsI
(−)

4cs

.

(17)

In Figures 6-7 we show the density perturbation response to

the ponderomotive force for the case of a speckle in the y-

direction transverse to the laser propagation, close to focus,

taken at late times νst ≫1. Figure 6 illustrates, for differ-

ent Mach numbers, M =0.9, 1, and 1.1, the linear response

computed from the model Eq. (16) to a Gaussian-shaped

speckle, U(y) =U0 exp{−y2/( f λ0)
2}, namely (n−n0)/U0 =

δN(y, t)/U0, where n0 corresponds to the equilibrium density

and U0 to the peak value of the ponderomotive force in the

center of a laser speckle. The solid and dashed curves corre-

spond to the damping rates νs with (νs/cs)( f λ0) =0.15 and

0.05, respectively. For the lower damping rate the asymmetry

predicted from Eq. (16) is more pronounced. Note that for

the sonic case M =1, for which the 2nd term ∼∂yU(y) in Eq.

(17) dominates (because of (cs/νs) f λ0 >1), the density per-

turbations reach the highest amplitudes and display the steep-

est gradients. The asymmetry between maximum and mini-

mum of density response contributes to the beam bending33,35

and modifies CBET in our simulations.

Figure 7 shows the response obtained from simulations, for

M =0.9, 1, and 1.1, accounting also for non-linearity in Eqs.

(3a)-(3b). The gray curve shows the case when the speckle

power is well below PSF critical power (according to Eq. (5)),

P/Pc =0.05 for M =1, the other curves show the case with

P/Pc =1, where a departure from the linear response becomes

visible mostly in the loss of symmetry between n(y)− n0 >0

and the density depression n(y)− n0 <0 which is deeper but

also more localized. The corresponding spectra of n− n0 as

a function of ky are shown in Fig. 8: the Gaussian-shaped

form as a function of ky is preserved only in the linear regime,

with a peak around ky ≃ k0/ f . For the non linear case, here

with P/Pc =1, the peak in the spectrum is found at lower ky

values, almost ky ≃ k0/(2 f ) with a linear (Lorentzian-type)

exponential decrease. We shall see later that these spectra help
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FIG. 6. Density perturbation response as a function of y ac-

cording to Eq. (16) to a Gaussian-shaped laser speckle U(y) =
U0 exp{−y2/( f λ0)

2} for 3 different flow Mach numbers, M =0.9

(blue curves), 1 (black), and 1.1 (red), and for 2 different damping

rates, (νs/cs)( f λ0) =0.15 (solid lines) and 0.05 (dashed lines).

-30 -20 -10 0 10 20 30
y/λ0

-6

-4

-2

0

2

4

(n-n0)/U0

FIG. 7. Density perturbation response as a function of y from simula-

tions of a laser speckle at focus, having a Gaussian shape as bound-

ary condition at x = 0, same parameters as in Fig. 6, taken at fo-

cus (in x). The gray curve shows a low-intensity case, P/Pc =0.05

for M =1. The other cases, for P/Pc =1, show non linear respnse

with self-focusing, for 3 different flow Mach numbers, M =0.9 (blue

curves), 1 (black), and 1.1 (red). In all cases the damping rate is

(νs/cs)( f λ0) =0.15.

to partially interpret the ion density perturbations in a multi-

speckle environment of crossed beams.

IV. ANALYSIS OF THE SIMULATION RESULTS

In the present study, for all simulations in Figs. 2-3,9-11,

we have chosen a domain of 4500λ0 in length and 2300λ0

in width, i.e. along the x and the y axes, respectively; the

beams have a common wave vector component along x and

opposite wave vector components along y. In this chosen ge-

ometry, the gradients of the plasma profiles in density and ve-

locity point predominantly along the y-direction. The den-

sity profile is parabolic around the center, y = Ly/2, given

0.0 0.2 0.4 0.6 0.8

ky/k0
0.1

0.2

0.5

1

2

5

n(ky)/U0

FIG. 8. Fourier spectrum of the density perturbation response as

a function of ky from simulations with a Gaussian laser speckle at

focus, corresponding to Fig. 7, namely for a low-intensity case

(P/Pc =0.05, gray curve) with M =1, and for P/Pc =1, correspond-

ing to the non linear cases at 3 different flow Mach numbers, M =0.9

(blue curves), 1 (black), and 1.1 (red).

y(λ01)

self + cross

cross  only 

self  only

FIG. 9. Density imprint of two crossing RPP beams as a function of y

taken at x/λ0 =1500 in the front part of the rhombus-shaped crossing

zone. Subplots (a) shows the density perturbation when both crossed-

beam coupling (’cross’) via ∇Ucross and beam self-interaction via the

∇Uself term (’self’) are taken into account in HARMONY simulations,

the other subplots show the case when only the ∇Ucross term (b) or

only the ∇Uself term (c), respectively, are taken into account. The

shown results correspond to the same parameters as in the cases of

RPP in Fig. 2. The red line shows the flow profile vp,y(y)/cs with a

sonic point at y ≃ 1100λ0.

by ne(y) =0.1nc exp−[(y − Ly/2)/1615λ0]
2. We apply a

linear density ramp starting at x =0 over 500λ0 along x in

order to avoid boundary effects at the laser entry. As al-

ready mentioned earlier in section II we apply a linear flow

ramp with sonic flow in the center of the crossing beams,

i.e. vp,y(y = Ly/2) = +cs, and a flow gradient Lv =200λ0.

We have focused our study on the case when both beams

have equal intensity I01 = I02 at the entrance x = 0, and both
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RPP beams with 'self'-interaction

RPP beams without 'self'-interaction

FIG. 10. The subplots (a) and (b) respectively show, as a function of

time, the angular spectrum of the transmitted light, computed on the

basis of a single RPP realization. The values are taken from fields at

the rear of the simulation box for RPP beams in Fig. 2, in presence

(a) and in absence (b) of the ∇Uself term in Eq. (3b). The upper part,

for angles >0, corresponds to beam 2, the lower part to beam 1.

beams have the same focusing f−number, namely f =6 for

RPP beams. Here the coefficient ν̂ takes the value ν̂ =0.1,

except in the study examining sensitivity of CBET on the

ion acoustic wave damping, see section IV B. In plasmas

with inhomogeneous flow, CBET occurs when the effective

beam width, Lbeam =D/(2sinθ ) is larger than the interaction

length Linh = π[ν(ks)/ωs][Lv/sin(θ/2)], where D is the beam

diameter19. This is equivalent to D/Lv > 4π (ν/ωs)sin(θ/2),
in practical units D/Lv∼ .2(θ/20◦)(ν/0.1ωs) for small θ .

A. The role of speckles and ponderomotive self-focusing on
CBET in RPP and regular beams

In order to illustrate the role of laser speckles and of pon-

deromotive self-focusing on CBET in presence of a flow,

we compare simulation results between the cases of (i) two

crossed RPP beams and of (ii) two ‘regular’ beams. The reg-

ular beams have the same average intensities and envelope

shapes as the RPP beams.

In the following we illustrate our results in two sub-

sections: in the first one we show results of interacting laser

beams based on a single realization of a RPP, in the second

subsection, section IV A 2 and the Figs. 3 and 11, we show re-

sults based on the ensemble average over eight realizations of

RPP. No ensemble averaging is necessary for ‘regular’ beams.

1. Results from a single realization of RPP beams

All snapshots shown in Figs. 2(a)-(c) are based on a single

RPP realization for each beam; they illustrate the local dynam-

ics arising due to the speckles of this realization. Figs. 2(d)-(f)

are based on regular beams. Figures 2(a) and 2(d) show the

initial (t = 0) beam geometry before interaction, for the cases

of two crossed RPP and of two ‘regular’ beams, respectively.

One may again consult Fig. 1 for the general geometry of the

simulations. We display the particular case where the average

beam intensities are I01 = I02 =6I0. The interaction region

of the two beams for both cases forms a rhombus-like shape

in the center of the simulation box. In our configuration, the

plasma flow profile is chosen in a way that sonic flow appears

along the major diagonal of the rhombus, which is parallel to

the longitudinal direction x. CBET is hence excited around

y = Ly/2 with a plasma flow gradient ∝ 1/Lv along the y-axis.

Crossing speckle beams: PSF and flow

Figure 2(b) shows that in the presence of self-interaction,

the two crossed RPP beams undergo significant deflections

with respect to the initial beam directions (see Fig. 2(a)); also

the angular aperture of each beam is broader than initially,

while without the ∇Uself force, see Fig. 2(c), the beams trans-

fer energy without significant deflection or broadening. Fig-

ure 2(b) exhibits also features of plasma induced smoothing54

and moving filaments58 at the rear of the simulation box. The

two terms ∇Uself and ∇Ucross in Eq. (3b) are responsible for

this additional spatial and temporal incoherence in the trans-

mitted light. In Fig. 2(b), an enhanced transfer of energy

from beam 1 to 2 (as will be shown later) and a strong angular

spread in presence of self-interaction are observed. These pro-

cesses are due to the fact that for I01 = I02 =6I0 a significant

population of speckles has sufficiently high power to be unsta-

ble with respect to PSF. As elaborated in section III B, due to

flow, PSF in speckles occurs already at intensities lower than

indicated by the standard expression Eq.(5) for Psp/Pc.

Our simulation results demonstrate the importance of the

plasma flow. For an inhomogeneous flow profile, as in our

simulations, resonant coupling between the crossing beams

takes place around the region where the plasma velocity is

close to the sound velocity, vp,y ∼ cs. This is where one can

see in Fig. 2(e) that beam bending arises so that some speck-

les are redirected towards the other beam and effectively con-

tribute to CBET.

Crossing regular beams: PSF and flow

Regular beams, because of the flat, almost plane wave-type

wave fronts can be unstable to PSF and to the filamentation

instability for the intensity range considered, so that any per-

turbation in the beam structure or in the plasma density will

trigger the onset of filamentation instability. Such initial per-

turbations in regular beams are produced by the ponderomo-

tive force of crossing beams. They can further develop and
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lead to filamentation in the simulations when the ∇Uself term

is taken into account. The interaction of two crossed regu-

lar beams illustrated in Fig. 2(e) (with both the ∇Uself and

the ∇Ucross terms taken into account) results in the transfer of

energy into a beam that propagates along a common axis. Fil-

amentary structure develops in the overlapping regular beams

where they interact with the density modulations due to the

ponderomotive forces induced by the crossing beams. The

regular beam filaments also undergo beam bending as seen

in Fig. 2(e) at near to sonic flow, vp = ±cs,
34,59. This con-

tributes to the beam component propagating along x-axis, and

partially to angular broadening of the transmitted light. We

have also carried out a simulation without applying the ∇Uself

term, see Fig.2(f). For this case, perturbations in both beams

arise inside the (rhombus-shaped) resonant zone for CBET,

and – in contrast to the case with self-interaction – no fur-

ther filamentation develops in the small beamlets. Note that

the structures of regular beams induced by CBET and by fila-

mentation point mostly along the common axis between both

beams, a feature that is clearly not observed in the RPP beams

with speckle structure.

Induced density perturbations

For the case of crossing RPP beams, significantly different

density perturbations are excited in the plasma when taking

into account both the effects of ponderomotive self-interaction

and crossed-beam coupling together (’self + cross’ in Fig.

9(a) ), or only a single one of these effects, i.e. only crossed-

beam coupling (’cross only’ in Fig. 9(b) ) or only beam self-

interaction (’self only’), respectively. The latter is illustrated

via a the density perturbations defined as δn ≡ n(x,y, t)− ne

with ne ≡ n(x,y, t = 0), taken at x ≃ 1500λ0 in the front part

of the rhombus, and shown in the three subplots of Fig. 9,

also indicating the flow profile vp,y(y)/cs, with sonic flow at

y/λ0 =1100.

Angular broadening of the beams

In addition, and in order to illustrate the effect of deflec-

tion and angular broadening observed for crossed RPP beams

in Figs. 2(b) (in presence of beam self-interaction) and 2(c)

(in absence of beam self-interaction), we plot the temporal

evolution of the angular spectrum of the transmitted light (de-

tected at the rear of the simulation box) in Figs. 10(a) and

10(b), respectively. The light signals appearing in the upper

right corner of the simulation box between time 2k1cst =150

and 200 in Fig.10(a), show that in presence of self-interaction,

beam 2 – initially propagating at an angle of 10◦±3.5◦ – has

components up to large angles of ∼ 25◦, with a central direc-

tion at∼11◦ (width ±7◦), while in absence of the ∇Uself term,

Fig. 10(b), beam 2 does not undergo strong deflection: it is

simply characterized by an asymmetric angular spread around

∼11.5◦(+5◦/−4◦), at t =200. Similarly, beam 1 is character-

ized by an enhanced angular broadening around -10◦ (±5.5◦)

in the case with beam self-interaction (Fig. 10(a) ) by con-

trast with the case without beam self-interaction (Fig. 10(b)

), showing an asymmetry around -12◦(-5◦/+4◦); the latter is

interpreted as due to pump depletion.

To summarize these results, as seen in Figs. 2 and 10, one

can characterize the role of speckle structure for CBET as fol-

lows: (i) the importance of speckle structure for CBET in-

creases with beam intensity due to the increasing number of

speckles undergoing PSF; (ii) the onset of PSF in subsonic

flow regions occurs in speckles with peak intensities lower

than predicted by the standard criterion, Eq. (5), which even-

tually increases considerably the number of speckles affected

by PSF; (iii) at sonic flow, speckle beams are deviated by

beam bending which can lead to a net transfer into the other

beam. (iv) Particularly striking is the onset of temporal inco-

herence of the beams for the case with self-interaction around

+10◦, resulting in fluctuations with relatively short correlation

times of 2k1cstcorr ∼20 (tcorr ∼ ps in real units), that can be

associated to the effect of plasma-induced smoothing.

2. Ensemble averaging over multiple RPP realizations

In the following we will revisit the previous results and ana-

lyze them further by both varying the beam intensity as well as

by examining the angular aperture of the transmitted beams.

To do so, we have averaged results of simulations over dif-

ferent RPP realizations. In Figure 3 we have summarized our

results from a series of simulations with RPP beams; we have

averaged over eight realizations. Shown is the energy transfer

as a function I02/I0, which clearly shows that the role of RPP

speckles in CBET can no longer be disregarded above the ref-

erence intensity, I0λ 2
0 =1014W/cm2µm2 at 3 keV. To illustrate

this we plot the transfer from beam 1 (downwards propagat-

ing) to beam 2 by increasing the incoming intensity values of

both I01 and I02, while keeping their ratio I01/I02 = 1 constant.

We compare the power gained by beam 2 for the RPP (sub-

plot (a), solid curves) and regular (subplot(b), dashed curves)

beam cases in presence (blue curves) and absence (red curves)

of the ∇Uself terms. To do so in the simulations with HAR-

MONY, we switched on and off this term on the r.h.s. of Eq.

3b. The power transfer ratio is defined as

Pout

Pin

≡

∫

ky>0 |E (k,x=Lx)|
2dk

∫

ky>0 |E (k,x=0)|2dk
, (18)

where E (ky) is the 1D Fourier transform of a(x,y, t) in y.

Note that Fig. 3(b) also displays a curve (in green color)

that corresponds to the results from Ref. 19 for the interval

0< I02 . 0.75 I0, for the same geometry, also obtained using

our code HARMONY. In this interval no significant differ-

ences in the transfer between the beams was seen when com-

paring regular and RPP beams, even when accounting for self-

interaction. The differences seen between the results for dif-

ferent RPP realizations are merely due to speckle statistics28.

From our new results, differences due to PSF in speck-

les appear for I02 & 0.75 I0, when one enters in the regime

where ponderomotive effects as self-channeling, deflection

via beam bending in a flowing plasma, as well as plasma-

induced smoothing occur. For RPP beams all these processes

depend on the laser speckle distribution.

We should mention here that experimental studies with

crossed RPP beams17 have reported both on angular broaden-

ing and on spectral broadening in an intensity regime between

2.4 - 8×1013W/cm2 at λ0 =1µm, however at lower temper-

ature (0.5keV) and higher density (0.3nc) than considered in
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‘self‘-int.‘self‘-int.

‘self‘-int. RPP beams without‘self‘-int.

FIG. 11. Contour plots of angular spectra of the transmitted light, as a function of the incident intensity I02/I0 for equal beam power at the

input, I01= I02, and deduced from the fields taken at the right edge of the interaction region at t=200. Panels a) and b) in the upper row show

the cases of RPP beams (average over 9 realizations), panels c) and d) show regular beam cases. The left column, panels a) and c), shows the

behavior with beam self-interaction via ∇Uself , while in the right column, panels b) and d), beam self-interaction is not taken into account.

Note: the color bar shows values normalized to the total power (∝ I02) of the corresponding beam intensity I02. Contours are interpolated from

five distinct values at I02/I0=0.75, 1.5, 3, 4.5, and 6.

this article, with effects of collisional absorption present.

The role of self-focusing in speckles

Our simulation results summarized in Fig. 3 show as a

function the the beam intensity, that for I02/I0 > 0.75, the

power transfer to beam 2 first increases for the case of RPP

beams with self-interaction (Fig. 3(a) solid blue curve), then

reaches a maximum around I02 = I01 = 3I0, and eventually

decreases for still higher intensities. There is a striking dif-

ference between the cases with and without the effect of self-

interaction : when neglecting the self-interaction effects, no

significant increase in power transfer as a function of I02 is

seen, and the onset of the decrease in the power transfer oc-

curs already for I02 = I01 & 1.5I0. Although the standard

threshold criterion for PSF in Eq. (5) would indicate that

only few extreme speckles can have Psp/Pc >1, it is the pres-

ence of flow that changes considerably the PSF in speckles

in the beam overlapping region, both for sonic and subsonic

flows. Consequently, the light is deflected towards the direc-

tion of beam 2, which is a net contribution to CBET for RPP

beams in the intermediate regime 1 . I02/I0 . 3. Also, for

I02/I0 > 0.75, comparing the blue and red curves in Fig. 3(a),

with and without the self-interaction effects, respectively –

as expected – it can be clearly seen that the power transfer

is systematically stronger when the contribution of the self-

interaction effects in the ponderomotive force is taken into ac-

count. The relevant regime corresponds, in practical units, and

for the plasma conditions considered here, to laser fluxes from

I02λ 2
0 >1014Wµm2/cm2. This means that onset of PSF effects

in speckles arises still in an intensity regime that is very rele-

vant with respect to current ICF parameters.

The power transfer between regular beams, shown in Fig.

3(b) for I02/I0 > 0.75, is also systematically lower than for

the power transfer between RPP beams. For regular beams

(dashed curves), without speckles, the self-focusing and for-

ward SBS play only a limited role, in spite of the differences

in the angular spectra observed in Fig. 11(c) and (d) for the

cases with (c) and without (d) self-interaction effects. For high

beam intensities, I02/I0 >2, one reaches a maximum power

transfer between the beams, beyond which the power trans-

fer decreases as a function of I02. This is due to the non-

linearities of the ion acoustic wave perturbations (see next

section). Nonlinear sound waves enhance forward scattering

and diffraction to a broader angular spread of the transmit-

ted beams, which yields asymptotically an effective equili-

bration between the angular spectra of both beams towards
∫

ky>0 |â(k,x=Lx)|
2dk ≃

∫

ky≤0 |â(k,x=Lx)|
2dk.

Angular broadening as a function of intensity

The observed broadening of the angular spectrum, as dis-

played as a function of time in Fig. 10 for the single example

of a RPP beam with I01 = I02 =6I0, is summarized as a func-
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self + cross

cross onlycross only

cross only

self + cross

self only

FIG. 12. (Color online) Simulation results showing beam deflection and shock generation: (a)-(d) show the zoomed in regions of interaction

between the two crossed RPP beams of the same intensity I01 = I02 = 6I0, crossing at an angle θ = 20o and ν̂ = 10%. Subplots (a)-(d)

respectively show a snapshot of the beam intensity (a),(b) and the perturbed plasma density (c),(d) taken at t =200 (2k1cs)
−1 (∼ 11ps for

λ0 =0.35µm and Te =3keV) in presence of both self-interaction and crossed-beam coupling . In subplots (a) and (b) both processes are taken

into account, in panels (c) and (d) only crossed-beam coupling. The figures (e)-(f), are lineouts (along y and at x =1050λ01 in (a)-(d) ) for the

three different cases (e) crossed-beam coupling only, (f) both self-interaction and crossed-beam coupling, and (g) self-interaction only. The

orange curve shows the density profile, blue curves and green curves show the Intensity profiles of the two RPP beams.

tion of I02/I0 in Fig. 11. The values shown are taken late

in time, namely 2k1cst =200 when the CBET processes have

reached a quasi-stationary regime. The comparison between

the angular distribution of the transmitted light of the two

crossed beams are shown for four different cases: Figs.11(a)

and 11(b) show the cases of RPP beams, in presence and in

absence of self-interaction, respectively; the Figs. 11(c) and

11(d) show the angular distributions of the transmitted light

for regular beams. Generally, RPP beams clearly exhibit an

increasing angular spread of transmitted light with increasing

intensity; in addition, this angular spread is enhanced by self-

interaction. The results for regular beams (see Figs. 11(c)

and 11(d)) are dominated by the strong central beam struc-

ture close to θ ∼ 0. The angular width of this central beam

increases with I02/I0.

Two distinct beams can always be identified in the RPP

case; only for the case of RPP beams with self-interaction a

weak beam arises around θ ∼ 0. The resulting angular spec-

tra for RPP and regular beams start to broaden for I02 > I0,

shown in Figs. 11(a) with self-interaction. The case without

self-interaction is shown in 11(b) with less pronounced broad-

ening. Furthermore, the onset of angular spread contributes to

the increase in spatial and temporal incoherence (see also 2(b)

and Fig. 10(b)).

B. Nonlinear sound wave perturbations with self-interaction
and their role in CBET

As already mentioned, the energy transfer between the

crossing beams decreases according to Fig. 3 as a function of

the beam intensity for I02/I0 >3. This behaviour is correlated

with both (i) the increase in the angular spread as a function

of intensity, associated with enhanced spatial and temporal

incoherence in each beam with increasing beam power, and

with (ii) the onset of non- linearities in the IAW perturbations.

Thus, it is important to analyze the role of nonlinear density

perturbations in the plasma during CBET. For this purpose, we

present in Figs. 12-14 a set of simulation results for the same

laser-plasma parameters as used in Fig.2, however now with

different realizations and a smaller simulation domain (with
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FIG. 13. (Color online) (a): Lineouts of the perturbed plasma density

(along y and at x=1525λ01 in Fig. 12(a) ) for the self-interaction only

case, taken at 4 different time instants, 2k1cst =70, 100, 130, and

150. Panel(b) shows the spatial Fourier spectra in ky/k1 computed

from the lineouts shown in panel (a) at the 4 different time instants.

a length of 3500λ0 and 1200λ0 along the x(longitudinal) and

y(transverse) axes respectively). Figures 12(a) and (b) show

the intensity profile and the IAW perturbations in the plasma,

respectively, zoomed in the regions of overlap of the two

crossed RPP beams. For the case shown both self-interaction

and crossed-beam coupling are taken into account. Figures

12(c) and (d), show the same quantities as subplots 12(a) and

(b) for the case where only crossed-beam coupling is taken

into account while self-interaction is switched off. Compar-

ing Figs. 12(a) and (c), we clearly see strong deflection of the

RPP beams in the presence of self-interaction process while

no deflections are observed in the absence of self-interaction.

Also, comparing the corresponding density perturbations in

the Figs. 12(b) and (d), one can observe nonlinear density per-

turbations (in terms of deep density channels) only for the case

in the presence of self-interaction. In order to demonstrate this

effect in detail, we also plot the line outs of the intensities of

the two crossed RPP beams and of the plasma density pertur-

bations for the three different cases in the set of Figs. 12(e)-

(f). These line outs are taken at x ≈ 1525λ0 in the longitudinal

direction and along the transverse direction y from the fields

shown in Figs. 12(a) and (c). In these figures of line outs

the blue and green curves distinguish the intensity profiles of

the two crossed RPP beams, while the orange curve shows the

density profile. In Figs. 12(e), we can observe the dominant

short wavelength plasma density perturbations (orange curve),

having the wave length λcbet = 2π/|k1,y|. The oscillations are

seen in a wide zone around the resonant sonic flow region

due to the IAWs in the pure CBET-SBS case; the blue and or-

ange curves show the redistribution of energy between the two

RPP beams. The low amplitude oscillations in density (orange

curve in Fig. 12(e)) correspond to CBET between the average

RPP beams, similarly to what would be seen in regular beams.

We can also see regions with locally higher oscillations ampli-

tudes corresponding to CBET where the exchange is enhanced

between the average beam and intense laser speckles in the

other beam. Figure 12(f) clearly shows the impact of PSF

process in speckles along with the short-wavelength CBET-

SBS-driven IAWs. From the figure we see that redistribution

of energy between the two beams under the combined effect

of self-interaction and crossed-beam coupling leads to signif-

icantly higher intensity peaks as compared to the case with

only crossed-beam coupling (Fig.12(e)).

For the case without the CBET-SBS process, as shown in

Fig. 12(g), short-wavelength components are absent and the

density perturbations are merely due the imprint of the pon-

deromotive force from the speckles. In the set of Figs. 12,

sonic flow, i. e. M = 1, is located in the vicinity of y =655λ0

for x >600λ0, where one can observe a phase shift between

the induced density minimum and the intensity maxima. Out-

side the region of sonic flow, for y <645λ0 and y >665λ0, one

can systematically observe that significant intensity maxima

coincide spatially with density minima, as expected for pon-

deromotively induced density perturbations.

The two ponderomotive force terms on the r.h.s of Eq. (3b)

can be strong enough to induce nonlinear density perturba-

tions (as seen in Figs. 12(b) and (f)) in plasma with steepened

wave fronts, as discussed earlier in section III B. Also, the

plasma has a flow which affects the evolution of the density

channels due to the PSF, and the IAW perturbations due to

the CBET-SBS process, evolve in shock-like structures, char-

acterized here by ponderomotively driven density perturba-

tion that develop steep wave fronts when propagating in the

plasma. The time evolution of such a shock-like structures

is illustrated in Fig. 13(a). Plasma density perturbations are

recorded along the same lineout (as in Figs. 12(e)-(f)) for dif-

ferent time instants and for a simulation case where only the

∇Uself term was retained. Also, Fig. 13(b) shows correspond-

ingly the Fourier transform of the plasma density perturba-

tions at the same time instants. In the lineouts as a function

of y, the plasma flow is in three different regimes along the

transverse direction: the flow is sub sonic for y <1110λ0, it is

sonic around (y ≃1110λ0), and super sonic for y >1110λ0.

In Fig. 13(a), during the initial stage of interaction (2k1cst=

70, magenta curve) we only see small density perturbations

in the three regions; however,the density perturbations in the

respective regions increase with ongoing time with the de-

velopment of a wave train close to the sonic region, along

with a steeping in the density perturbation in the sonic region.

In Fig. 13, the observed shift in the position of the shock-

like structure around the sonic point (vp ≡ cs, at y=1110λ0)

with time, can be attributed to the plasma flow. The corre-

sponding Fourier analysis of the density perturbations in Fig.

13(b) shows that as the shock structure becomes more promi-

nent with time, the spectra develop a plateau in the region

0.6 . k/k1 ≤ 1, a feature characteristic of shock generation.

Also, as seen in Figs. 12(f),12(g) and 13(a), the typical size

of the non-linear structures in the density perturbation corre-

sponds to the size of laser speckles, and the perturbations are

strongest in the vicinity where the plasma flow is sonic.

In the set of Figs. 14 we present and compare Fourier trans-

forms of the nonlinear density perturbations for the three cases

shown in Fig. 12(e)-12(g). In the same figures we also com-

pare the wave number spectra with the change in damping

coefficient ν̂ (accounting for the both collisional and Landau

damping). Figure 14(a) shows the case with crossed-beam
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cross only

self + cross

self only

FIG. 14. (Color online) Spatial Fourier spectra of perturbed plasma

density in the crossing regions, similar to the cases in figure 5(e)-(g)

for different values of IAW damping, namely ν̂ = 3%,10% and 20%

in blue, orange and green color, respectively. The presence of IAW

harmonics is clearly visible in panel (a) for the SBS only case. The

other spectra correspond to the cases (b) with both self-interaction

and crossed-beam coupling and (c) self-interaction only. The value

of k1,y/k1 = 0.35 in the above spectra represents the normalized cen-

tral CBET-SBS wave number.

coupling only. The spectrum peaks around the value expected

for CBET-SBS at k1,y/k1 = 2sin(θ/2)∼0.35, followed along

k by other equally spaced peaks, corresponding to the sec-

ond and third harmonics. This means that the CBET-SBS-

driven density perturbations can evolve into non-linear wave

train structures when propagating through the plasma. These

higher harmonics to the density perturbations associated with

CBET-SBS decrease as a function of the IAW damping. In the

spectrum corresponding to the case with self-interaction only,

in Fig. 14(c), the contribution at the CBET-SBS wave num-

ber is evidently absent. More characteristic for this case is the

plateau region in k associated with the formation of isolated

shock-like structures. The wave number spectra for the case

with both self-interaction and crossed-beam coupling, in Fig.

14(b)), combines the features originating from both processes.

For all the three cases we observe that the magnitude of the

wave number components are reduced (note the log scale in

Figs. 14) with the increase in the damping ν̂ .

V. CONCLUSION

We have investigated the role of laser beam speckle struc-

ture in crossed beam energy transfer. It is an aspect of CBET

that has been considered only in recent studies. We have

demonstrated that the speckle structure plays an important

role for laser beams crossing in a plasma with a flow when

both self-focusing of intense laser speckles and forward SBS

in RPP beams come into play. This can be expected for

laser fluxes above ILλ 2
0 >1014Wµm2/cm2, i.e. for an inten-

sity regime that is relevant for current ICF parameters.

For plasmas with inhomogeneous flow, where CBET occurs

around sonic surfaces, the onset of self-focusing instability in

speckles is enhanced, leading to a significant beam deflection

and resulting in broadening of the angular light distribution

in the transmitted laser beams. A regime with a maximum

in the net transfer rate is attained for the intensity range of

1.5< ILλ 2
0 /(1014Wµm2/cm2) <3 with an observable deflec-

tion of the amplified beam to higher angles, and an increase

in the angular width. Beam deflection and angular broadening

may have significant impact on ICF laser energy deposition.

Broadening of the angular distribution in both beams can be

attributed to the plasma-induced smoothing and scattering off

non linear IAW density perturbations.

The temporal incoherence due to plasma-induced smooth-

ing observed in our simulations with RPP beams, see Fig.

10(a), corresponds to correlation times of the order of

2k1cstcorr ∼ 20 being equivalent to a short ps time scale for

λ0 =0.35µm, Te ∼3keV, and angles θ ∼20◦. While we have

not considered spatio-temporal smoothing, such as SSD, in

our study, the result indicates that the effect of SSD with

a bandwidth that is smaller than 50 GHz should be quite

marginal for the effects described in this study. Furthermore,

it is known that the available SSD bandwidth on the National

Ignition Facility has not prevented the onset of CBET. Higher

SSD bandwidth may be available e.g. on the Omega laser fa-

cility at LLE Rochester, as this may be necessary for the direct

drive ICF experiments.

Our study shows also that the presence of self-interaction

results in shock-like structures with steepened wave fronts in

the plasma density perturbation which can further lead to de-

flections of RPP beams in the inhomogeneous plasmas.
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