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Crossed beam energy transfer, CBET, is investigated by taking into account the speckle structure of smoothed laser
beams that overlap in a plasma with an inhomogeneous flow profile. Using the two-dimensional simulation code
HARMONY, it is shown how ponderomotive self-focusing of laser speckles in crossing beams can significantly affect
the transfer of energy from one beam to the other. The role of plasma flow on speckle self-focusing is investigated and
revisited, in particular its consequences in terms of redirection and increasing angular spread of the laser beams due
to beam bending and plasma-induced smoothing, respectively. At close-to-sonic flow the onset of self-focusing in the
beam speckle structure occurs at considerably lower beam intensities than expected for the case without flow. CBET and
speckle self-focusing can hence occur together when two crossed beams with equal frequency will resonantly exchange
energy via their ponderomotively driven density perturbations flowing with sound speed. From the simulations it is
found that consequences of ponderomotive self-focusing can be expected above an average intensity threshold scaling
as IL ∼ 2× 1014Wcm−2(λ0/1µm)−2(Te/keV) with impact on the spatial and temporal coherence of the transmitted
light. The density perturbations due to the ponderomotive force of the crossing beams can locally be enhanced in self-
focusing speckles, partly leading to shock-like structures. These structures eventually increase the effect of plasma-
induced smoothing and are at the origin of the stronger angular spread.

I. INTRODUCTION

In the two approaches to laser-driven inertial confinement
fusion (ICF) experiments, namely the direct-drive1–5 and the
indirect-drive6–8, crossed beam energy transfer (CBET) is of
prime importance since it governs the coupling of laser en-
ergy to plasma. The two schemes of ICF involve multiple
laser beams crossing each other at different angles and di-
rections. For indirect drive, beams cross in the low density
plasma of the laser entrance hole while propagating toward
the hohlraum wall; in direct drive, they cross in the coro-
nal plasma of the fuel capsule at considerably higher den-
sity. In both approaches and especially for the direct drive
ICF, plasma flow plays an important role in defining resonance
conditions and plasma response during the CBET. In addition
to the context of ICF, CBET is also the principal mechanism
for the amplification of a laser pulse of ps duration by a pump
laser pulse9,10 and in recent pump-probe plasma diagnostic
experiments11 and theory12. In the laser pulse compression
and amplification schemes, the energy transfer is devised to
occur in pre-formed (mostly gas-jet) plasmas to obtain spatio-
temporal growth of the probe.

The laser-plasma configurations in ICF experiments of con-
cern for CBET involve two laser beams with wave vectors
and frequencies (~k1,ω1) and (~k2,ω2), crossing at an angle θ

and leading to induced13–15 or stimulated Brillouin scattering
(SBS) of one beam into the other16–19. The laser light beams
scatter off the grating of ion acoustic waves (IAW) produced
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FIG. 1. Schematic sketch of the configuration of two laser beams
crossing under the angle θ in a plasma with flow. The ‘pump’ and
the ‘probe’ laser beam ponderomotively drive periodic density per-
turbations having the wave vector~ks. For two beams with the same
wave length and for plasma flow with a component~vp parallel to~ks,
the conditions for resonant CBET-SBS are fulfilled around the spa-
tial domain of sonic flow, i.e. |~vp| ' cs. A basis of coordinates η and
ξ , non-orthogonal for θ 6= ±90◦, can be defined which is used for
the solutions derived in section III A.

by the ponderomotive force of the two beams. In most of
the experimental configurations, plasmas are inhomogeneous
and are flowing with a velocity ~vp. Therefore, the CBET re-
quires that the three-wave SBS resonance conditions are ful-
filled for wave vectors (momentum) and frequencies (energy):
~ks ≡~k1−~k2 and ω1−ω2 ≡ ωs +~ks ·~vp respectively, where ωs
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and ks ' 2|k1|sin(θ/2) are the IAW frequency and wave num-
ber for light beams crossing at the angle θ . As the result of
CBET, the power distribution in the two beams is changed;
this can seriously affect the laser energy coupling to plasmas
in both the indirect and direct drive ICF schemes.

Our study in this article is focused on two important aspects
that prove to be important for CBET, namely
(1) the speckle (or hot spot) structure of the laser beams and
(2) the role of plasma flow.

Currently all ICF experiments are carried out with
‘smoothed’ laser beams resulting from spatial and/or spatio-
temporal smoothing techniques; in particular, in the case of
spatial smoothing only, random phase plates (RPP)20,21 in-
duce spatial incoherence in the laser beams. On a coarse scale
smoothed beams show a smooth average intensity profile in
their cross section, while on the fine scale of the laser wave-
length (λ0) they have a speckle structure with a known sta-
tistical distribution of the speckle peak intensity Isp

20–22. The
goal of using smoothed laser beams is to control the onset of
self-focusing in speckles, so as to restrict it to an energetically
unimportant, small percentage of intense laser speckles.

While the theory of crossed beam power transfer between
speckle beams has been developed in Refs. 23 and 24, most
of the current modelings of CBET between multiple RPP
beams in ICF experiments are described by averaging over
the realistic beam speckle structure6,25,26. Studies on the role
of speckles and their self-focusing for CBET in presence of
plasma flow are relatively recent.4,16,27 In the regime of mod-
erate laser intensity of the crossing beams, i.e. when no
self-focusing in laser speckles arises, recent studies19,28 have
shown that the role of speckles in the energy transfer is merely
of statistical nature: the deviation in the energy transfer arising
from different RPP realisations decreases with the number of
speckles in the crossing volume, and the expectation value of
the transfer corresponds to the value obtained when assuming
the average intensity of each beam.

The onset of ponderomotive self-focusing (PSF) in speckles
arises if the power in a speckle, P, exceeds the critical power
for PSF, Pc. For direct-drive configurations2–4 beams essen-
tially cross in counterpropagating geometry so that energy ex-
change can be computed on the basis of standard 1D models
for backward SBS29,30. PSF in such configurations appears in
the individual beams and on a longer time scale than CBET.

The scenario is different for indirect drive ICF where PSF
and CBET occur on a similar time scale. Furthermore, the
zone of sonic flow, in the vicinity of which efficient CBET
takes place between the crossing beams, is relatively large. It
is known that the transverse plasma flow reduces the thresh-
old for PSF in the sub-sonic regime.31–33 In the vicinity of the
spatial domain where the plasma flow is sonic, the so-called
effect of beam-bending occurs23,33–35 where a beam is redi-
rected into a direction different from its incident direction.
The latter has consequences to intense speckles in smoothed
laser beams: speckles located in the region of overlapping
beams and close to the region of sonic flow will eventually
be redirected towards the direction of the other beam.

On the other hand beam bending slows down the plasma
flow by momentum conservation and can locally lead to den-

sity profile steepening. Density and velocity perturbations in
the plasma that are enhanced by the PSF are carried by the
plasma flow away from the localized ponderomotive force
of the crossing beams and can eventually develop shock-
like structures characterized by steep wave fronts.36–38 These
structures will scatter electromagnetic waves, enhance lev-
els of ion acoustic fluctuations over wide range in the wave-
vector spectrum, and contribute to enhanced plasma-induced
smoothing of the transmitted light. In the transmitted light
beams the latter leads to broadening in the angular aperture
and introduces (or increases) temporal incoherence, resulting
in non-negligible temporal bandwidth.

Two smoothed beams crossing in an expanding inhomoge-
neous plasma, as sketched in Fig. 1, are relevant to indirect-
drive ICF experiments, where the plasma at the laser entrance
hole is weakly inhomogeneous, both in density and flow39–44.
Experimental studies with similar configurations have been
undertaken recently45,46, but also at smaller angles47,48, or
partially at larger angles49.

In this article we show how important becomes ponderomo-
tive self-focusing (PSF) in laser speckles when plasma flow is
present. For the case of two crossing RPP beams we show
that in inhomogeneous plasmas16 speckle self-focusing and
the deflection of speckles lead to a significant effect on the
CBET which increases with the laser beam intensity. We have
not considered spatio-temporal smoothing as ‘smoothing by
spectral disperion’ (SSD) in the current study, but we discuss
the impact of temporal incoherence on our results.

The article is organized as follows: the model used for de-
scribing CBET for beams with speckle structure in a plasma,
with the details concerning the fundamental equations used
in our modelling with the code HARMONY is presented in
section II. Particular attention is given to the ponderomotive
coupling in section III. We also recall the essential theory
for beam-to-beam CBET in III A. In III B we will develop a
model to explain ponderomotively induced density perturba-
tions that are seen in speckle beams. The simulation results
for several laser plasma parameters as obtained from the code
HARMONY are presented in section IV. In this section we also
discuss the role played by laser speckle structure, pondero-
motive self-focusing, and density shock structure on CBET.
Conclusions are presented in section V.

II. MODELING CBET BETWEEN TWO BEAMS IN A
FLOWING PLASMA

We will describe in the following the interaction between
two laser beams crossing at the angle θ in an inhomogeneous
plasma. Figure 1 shows the particular configuration that cor-
responds to two ‘s’-polarized beams crossing at a relatively
small angle θ , and having their common wave vector com-
ponent along the positive x direction, while the ponderomo-
tively generated ion acoustic waves (IAWs) propagate along
the y direction. Such a configuration of crossing beams may
be relevant to the basic element of the geometry of many
crossing beams at laser entrance holes (‘LEH’) in the in-
direct drive ICF experiments. We have also chosen an in-
homogeneous plasma flow profile, vp,y(y)~ey, with the dom-

ac
ce

pt
ed

fo
r p

ub
lic

at
io

n
in

Ph
ys

ic
s

of
Pl

as
m

as



3

inating direction of flow direction along the y-axis. This is
one of several possible situations that may be encountered
in LEHs flow profiles50, and it is the one with the strongest
possible exchange between beams that cross at a small an-
gle. For two ‘s’-polarized beams, with wave vectors and
frequencies (~k1,ω1) and (~k2,ω2), the SBS matching condi-
tions are satisfied when vp,y(y)/cs = (ω1−ω2−σωs)/(csks),
where σ is the sign of ω1−ω2 − (~k1−~k2) ·~vp, and where
cs ≡ [(c2

se/(1 + k2
s λ 2

De) + 3v2
i ]

1/2 is the IAW velocity, with
cse ≡ (ZTe/mi)

1/2, where Te is the electron temperature, λDe
the Debye length, vi the ion thermal velocity, mi and Z are the
ion mass and charge number, respectively.

A. Model equations
In the following we express the complex electric field en-

velope as the superposition of two beams incident at the an-
gles ±θ/2 to the x-axis, where ~k j‖ and ~k j,y are the paral-
lel and transverse components of the wave vectors, respec-
tively, with |~k j‖| = |~k j|cos(θ/2), |~k j,y| = |~k j|sin(θ/2) and
|~k j|=(ω2

j −ω2
p)

1/2/c (j=1,2). The electric field can then be
written as

E(~x, t)=
Ê
2

ei~k1‖·~x
[
a01e−iω1t+i~k1,y·~y+a02e−iω2t+i~k2,y·~y

]
+cc, (1)

where a01, and a02 are the electric field amplitudes of both
beams normalized to the field strength Ê. For not too large an-
gles θ between the two beams, the paraxial approximation can
be used, and for |ω1−ω2| ≡ 0 and~k2,y = −~k1,y the propaga-
tion of the incoming beams can be described by paraxial equa-
tions for a(~x, t) ≡ a01 exp{i~k1,y ·~y}+ a02 exp{−i~k1,y ·~y}, or,
alternatively, individually for a01, a02, coupled to the plasma
density perturbations51

[
2iω1(∂t + vgx∂x)+ c2(∇2)⊥

]
a(~x, t) = ω

2
p

δn
ne

a(~x, t) , (2)

where vgx ≡ vg cos(θ/2), ωp = (nee2/ε0me)
1/2 is the electron

plasma frequency; nc = ε0meω2
0/e2 denotes the critical den-

sity, me and e being the plasma electron mass and charge re-
spectively, δn = (n−ne) is the density perturbation about the
equilibrium density ne. Note, that Eq. (2) describes the evo-
lution of the electromagnetic wave amplitudes in the paraxial
approximation on the scale of hydrodynamical evolution and
long wavelength IAW response of δn/ne. The high-frequency
response for IAWs due to backscattered SBS is treated in
HARMONY via a harmonic decomposition52, that one has to
consider for large angles θ ∼180o. In HARMONY we solve
Eq. (2) by imposing a boundary condition for the entering
laser light at x =0 for a(x = 0,y, t).

The plasma dynamics is described by the standard hydro-
dynamic equations in the isothermal approximation,

∂tn+∇ · (n~υ)=0, (3a)

[∂t +~υ ·∇]~υ + c2
s

∇n
n

+2νs~υ =−c2
se

∇U
Te

, (3b)

where U stands for the ponderomotive potential and νs for the
ion acoustic damping. In our simulations we assume for νs

a linear wave-number dependence, and nνs~υ is computed in
Fourier space with νs(ks) = ν̂ ωs(ks), accounting for Landau
damping51,52.

For the electric field resulting from the superposition of
two beams of equal frequency, a(~x, t) ≡ a01 exp{i~k1,y ·~y}+
a02 exp{−i~k1,y ·~y}, the ponderomotive force ∇U ∝ ∇|a(~x, t)|2
can be subdivided into two separate contributions, provided
that the central wave vector component in y for each beam,
|~k1,y| and |~k2,y| exceeds the wave number spread4k related to
the angular aperture of each RPP beam; the latter is a function
of the focusing f -number, namely21 4k≡ |~k1|/[1+4 f 2]1/2 ∼
|k1|/(2 f ).

Keeping in mind the condition, that for two separate fields
the wave number separation needs to be greater than the angu-
lar aperture of the fields, |~k2,y−~k1,y|>4k, the ponderomotive
force in the right-hand side of the equation of motion can be
expressed in two distinct terms namely ∇U = TeΓ∇|a(~x, t)|2≡
∇Ucross +∇Uself , given by

∇Ucross/Te = Γ ∇

(
a01a∗02e2i|~k1|ysin(θ/2)+ cc.

)
, (4a)

∇Uself /Te = Γ ∇(|a01|2 + |a02|2), (4b)

where Γ = 〈v2
osc〉/v2

th = v2
osc/(2v2

th) is the coupling coefficient
which involves the thermal velocity vth = (Te/me)

1/2 and the
electron quiver velocity vosc = eÊ/(meω) of the field Ê to
which a01 and a02 are normalized. In practical units the coeffi-
cient is given by Γ =0.09I0λ 2

0 (1015Wµm2/cm2)/Te(keV) with
I0 standing for the beam average intensity.

The ponderomotive force contribution ∇Ucross acts essen-
tially on the plasma fluid due to the beating between the two
waves a01 and a02 in SBS. This term alone cannot account
for self-interaction occurring in an individual beam. The
ponderomotive force contribution denoted by ∇Uself is there-
fore the one accounting for ponderomotive self-interaction in
the paraxial approximation for each individual beam. This
self-interaction can be associated with self-focusing and with
forward-SBS inside each beam. Note, that in contrast to the
case of large angles, both contributions to the ponderomotive
force have major components along the y-direction, i.e. across
the main common propagation axis x.

In most of the studies on crossed-beam coupling, only
the ∇Ucross term was considered in the description of CBET.
This term is responsible for the coupling between the aver-
age beams, which we will denote as ‘beam-to-beam CBET’
later on in section III A. The term ∇Uself was mostly neglected
in the context of CBET because self-focusing effects are ex-
pected to occur for laser intensities that are above those con-
sidered in laser fusion configurations. This argument has to be
revisited in plasmas with the transversal flow, as it is done fur-
ther on in Section III B. We will draw attention to important
work that has been done in the past by considering plasmas
with flow even in the presence of a single laser beam.31–33
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FIG. 2. Snapshots from the 2D simulations showing the superposition of intensities of the two crossed laser beams in space. In the left
panels (a)-(c) are shown the results from two RPP beams, at the time instants (a) t = 0, (b)-(c) t =200 (2k1cs)

−1 (corresponding to ∼ 11ps
for λ0 =0.35µm and Te =3keV); in (b) both crossed-beam coupling and beam self-interaction (’self’) are taken into account, in (c) only
crossed-beam coupling. The corresponding right panels (d)-(f) show two crossed regular beams (i.e. without speckle stucture) under the same
conditions as in panels (a)-(c). The color bar shows the laser beam intensities normalized to the the average value, i.e. I01 = I02 = 6I0 with
I0λ 2

0 ≡1014Wµm2/cm2.

B. The simulation configuration in HARMONY

In the two dimensional (2D) simulations with our code
HARMONY 51,52, we have chosen a crossing angle of θ =20◦.
The plasma flow profile follows a linear ramp in y-direction,
as defined by vp,y(y)/cs=(y−Ly/2+Lv)/Lv with Lv (=200λ0
in the simulations) as the gradient length19, so that, assuming

equal frequencies for both beams, ω1 = ω2 = ω0, SBS match-
ing occurs at y = Ly/2 in the center. We have performed sim-
ulations for the case when both entering beams have the same
average intensity, I02 = I01. For this case, I02/I0 = I01/I0 ≡ 1,
the reference intensity, I0, corresponds for λ0 =0.35µm light
to an average laser intensity of I0 = IL '0.9×1015W/cm2 at
Te =3keV.
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FIG. 3. Power transfer ratio for beam 2, as a function of its input
flux I02 after exchange with laser beam 1 due to CBET. Four cases are
shown, (a) RPP-smoothed beams (solid lines) and (b) regular beams
(dashed) with and without accounting for self-focusing (blue and red
color, respectively). Both beams have initially the same flux, I02 =
I01. The green curve corresponds to results from Ref. 19 and follows
the theory53 exposed in section III A.

The laser wave amplitude, a(~x, t) in Eq.(2), at the laser en-
trance boundary is generated via a Fourier series for two sep-
arate wave-fields for a01 and a02. In Fourier space, each of the
wave-field contributions is centered around the wave vector
components |~k1,y|=−|~k1|sin(θ/2) and |~k2,y|= |~k1|sin(θ/2),
respectively. For a RPP with i = 1. . . NRPP elements in each
component j = 1,2, with random phases φ j,i, this reads
a0 j(y) = ei~k j,y·~y ∑

4k
ki=−4k |â j,i|eikiy+iφ j,i where the i-th element

has the wave number ki and amplitude â j,i, with the spacing
between them, ki+1−ki=24k/NRPP. The width in ky, is given
by21 4k ≡ |~k1|/[1+4 f 2]1/2 ∼ k1/2 f . The total field with the
a01 and a02 components has zero elements in the Fourier se-
ries for |ky| < |~k j,y| −4k, which corresponds to the angular
interval around θ = 0o. For an angular separation of a01 and
a02 the condition4k < |~k1,y| has to be fulfilled.

Note that we also have performed simulations in which a
single field array was used in stead of separating the fields
into two arrays. In this configuration the ponderomotive force
is given simply by ∇U = TeΓ∇|a(~x, t)|2. We have verified
that the simulations of both types of configurations show the
same results when both terms ∇Ucross and ∇Uself and taken
into account in the configuration with two field arrays.

III. LASER PLASMA COUPLING IN THE PRESENCE OF
FLOW AND OF TWO CROSSING LASER BEAMS.

The standard criterion for the ponderomotive self-focusing
of laser speckles in RPP beams, derived in previous work (see
e. g. Ref. [54]) reads

P̂ = P/Pc = 0.04η
Ispλ 2

0
Te

f 2 ne

nc
, (5)

with Isp being the peak intensity of a laser speckle given in the
units of 1014W/cm2, λ0 in µm, Te in keV, and f as the speckle
f-number; η is a numerical factor of the order of unity, being
η = 1.23 in 2D geometry54.

However, it is important to note that this criterion cannot be
applied to flowing plasmas, when CBET between laser beams
of equal frequency occurs at close-to-sonic flow.

We will continue to use P̂ in the text to indicate beam power
in a speckle, even if the ponderomotive self-focusing instabil-
ity may occur with flow already for values P̂ <1.

For crossing beams with speckle structure, like RPP beams,
the consequences of the onset of PSF in presence of flow
are manyfold: speckles located in the vicinity of sonic flow
will self-focus and grow in amplitude at an angle different
from their incidence angle31, a phenomenon denoted as beam
bending.23,33–35 The latter may eventually lead to the devia-
tion of the speckle into the direction of the other beam, thus
corresponding to beam bending CBET; also, the density per-
turbations ponderomotively induced in the plasma by the nu-
merous speckles, may develop shock-like structures charac-
terized by steep wave fronts in presence of flow, as shown
later on.

These effects become more and more pronounced with in-
creasing laser intensity. At beam intensities slightly above the
moderate intensity values considered in our previous work in
Ref.19,28 the difference in the description of CBET with and
without speckle structure becomes already striking.

To illustrate this we have carried out simulations with
two types of beams, namely optically smoothed beams with
speckle structure, and beams with a flat profile without speck-
les; both types of beams having the same average intensity.
For the current study we use RPP beams as prototype for
speckle beams.

We have not considered beams with temporal incoherence.
They usually are specific to the laser facility and in most cases
introduce temporal variations that, as we will demonstrate be-
low, involve longer time scales than plasma induced correla-
tions times of crossing RPP beams. Here, we concentrate on
the essential effects of PSF in speckles on CBET. The beams
without speckle structure we call ‘regular beams’. The prop-
erties of such ‘regular’ beams are reminiscent of plane waves,
i.e. with constant, steady wave fronts, with a unique phase
constant, and without any randomness. Such regular laser
beams are used in most of the theoretical models describing
CBET on large scale laser facilities6,55. We use those beams
for the comparison with RPP beam, in order to illustrate ef-
fects with and without speckle structure.

Figure 2 illustrates the difference between the two types
of beams for crossing beams of equal intensities. Shown are
snapshots of intensity profiles in x and y in the interaction re-
gion, for the case of RPP smoothed beams (with speckles, left
column, (a)-(c)) and "regular" beams without speckle struc-
ture (right column (d)-(f), see for more details in the section
IV on simulation results).

In the following three subsections we discuss the basic pro-
cesses that come into play and that are seen in our simulations
for the case of single speckle dynamics and for SBS model-
ing. We describe in III A the spatio-temporal evolution of the
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forward SBS responsible for CBET, in III B the modifications
of the filamentation threshold due to transverse plasma flow,
and in III C the linear plasma response to the ponderomotive
force of PSF in the flowing plasmas leading to beam bending
and steepening of the density perturbations. Although most of
these results have been discussed separately before, we found
this summary useful as it will inform our interpretation of the
RPP crossed-beam coupling and energy transfer in large scale
HARMONY simulations.

A. Beam-to-beam CBET

We will recall here results of CBET theory describing two
crossing structure-less beams and refer to Ref.19 or earlier
work53 for the details of the derivations. The equations de-
scribing the evolution of the laser field amplitudes a01 and a02
and propagating by the angle θ/2 with respect to their com-
mon axis x, take the following form:

(∂t +2ν1 +~vg1.∇)|a01|2 =+Γ
ω2

pe

ω1
ω

2
s ℑ

(
1
Ds

)
|a01|2|a02|2 ,

(∂t +2ν2 +~vg2.∇)|a02|2 =−Γ
ω2

pe

ω2
ω

2
s ℑ

(
1
Ds

)
|a01|2|a02|2 ,

(6)

ν1,2 stand for collisional damping (they can be neglected
for the ICF plasma conditions), ℑ(1/Ds) denotes the imag-
inary part of the resonance denominator 1/Ds where Ds =

(ω ′)2 +2iω ′sνs−ω2
s with ω ′s = ω1−ω2−~ks.~vp describes res-

onant coupling between the crossing laser waves and the ion
acoustic wave, ω2

s ≡ k2
s c2

s , and νs is the acoustic damping.
After a transient period of non-stationary energy exchange

between the beams, Eqs. (6) can be reduced to a set of sta-
tionary equations for the beam intensities |a01|2 and |a02|2.
An efficient way of expressing this coupling is realized by
introducing oblique, non-orthogonal coordinates η and ξ ,
x = η~ex.~eη + ξ~ex.~eξ and y = η~ey.~eη + ξ~ey.~eξ with ~ey.~eη =
−sin(φ −θ/2) and~ex.~eξ =−sin(φ +θ/2). Choosing φ = 0
as the angle between ~vp and ~ks =~k1 −~k2 leads to ~ey.~eη =
sin(θ/2) and ~ex.~eξ = −sin(θ/2) in the two-dimensional ge-
ometry (see Fig. 1) of HARMONY simulations (cf. Fig. 2).
For arbitrary ratios between |a01|2 and |a02|2, for which one
cannot neglect depletion of either beam 1 or 2, the set of equa-
tions to solve reads,

∂η ∂ξ |a01|2 =−2∂η( β (ξ ,η) |a01|2 |a02|2 ) ,
∂ξ ∂η |a02|2 = 2∂ξ ( β (ξ ,η) |a01|2 |a02|2 ) , (7)

that simplifies to first-order differential equations when the
depletion of one of the beams can be neglected, as for
|a01|2/|a02|2 �1 (or, � 1). The function β (ξ ,η) accounts
for the geometry of the rhombus-like shape of the crossing
zone,

β (ξ ,η) =
γ2

0/(νsvg,2)

1+ k2
s c2

s
ν2

s
[Q0−Q(ξ ,η)]2

. (8)

It depends on the spatial growth rate γ2
0/(νscs) for SBS

(vg,2 ≡ cs) where γ0 is the temporal growth rate, γ2
0 ≡

(ne/nc)(ω1/ωs)k2
s c2

s v2
osc/(4v2

th) = (ne/nc)(ω1/ωs)k2
s c2

s Γ/2
with the coupling coefficient Γ from Eqs. (4a-4b) involving
the quiver velocity vosc corresponding to the laser pump field
to which a01 and a02 are normalized. The auxiliary functions,

Q0 =
ω1−ω2

kscs
−1 , (9)

Q(ξ ,η) =

∣∣∣∣vpLy/2
cs
−η sin[φ−θ/2]+ξ sin[φ+θ/2]

Lv

∣∣∣∣cosφ ,

(10)

result, with vp,y(y)/cs=(y−Ly/2+Lv)/Lv, in

Q(ξ ,η) =

∣∣∣∣vp(Ly/2)
cs

+
2(y−Ly/2)sin(θ/2)

Lv

∣∣∣∣ .
The integration over the domain of interest, namely the beam
width D, see19 and Fig. 1, yields a spatial amplification de-
scribed by the gain G coefficient given by

G≡
2γ2

0 min{D/(2sinθ),Linh}
νscs

, (11)

where Linh = π(Lvνs/ωs)/|cosφ sin[φ −θ/2]| denotes the in-
homogeneity length, being Linh = π(Lvνs/ωs)/sin(θ/2) in
our case. For the case D/(2sinθ) > Linh, the resulting gain
is equivalent to the ‘Rosenbluth’ gain coefficient56.

B. The role of plasma flow and of speckles for CBET

For the case of non-flowing plasmas laser speck-
les are expected to self-focus with speckle power fol-
lowing the criterion Eq. (5). In terms of the
speckle peak intensity, Isp, it reads in practical units
(Isp/I0) ∼3.1(nc/10ne)( f/8)−2Te(keV). It yields that speck-
les self-focus when Isp > ( f/8)−2 9×1015W/cm2 at
λ0 =0.351µm for ne/nc =0.1, Te =3keV, and I0 =1015W/cm2.
For typical ICF conditions only very few speckles would
hence undergo PSF.

As already mentioned, this criterion cannot be applied in
presence of plasma flow. The criterion for the onset of the fil-
amentation instability has to be derived from the set of Eqs.
(2),(3a), (3b), and Eq. (4b), taking into account the advective
terms ~vp ·∇~v and ∇(n~vp) due to transverse plasma flow~vy. As-
suming for unstable modes the dependence ∝ exp(qx+ ikyy)
with respect to the x and y axis, and with flow along the y di-
rection, one obtains a criterion for the filamentation instability
in terms of the spatial growth rate q.

The resulting relation reads31 (for |q|2� k2
0)

q2 =
k2

y

4

(
〈v2

osc〉
v2

th

ne

εnc

1
1−M2 + iν̂M

−
k2

y

k2
0

)
, (12)

where M = vp,y/cs is the Mach number of the transversal flow,
the damping coefficient ν̂ = νs(k)/ωs(k), and ε = 1−ne/nc is
the dielectric constant in the plasma. Note that when consider-
ing Gaussian beams or RPP speckles, ky should be larger than
the minimum ky,min = ∆k' k0/2 f related to their focal width.
The resulting threshold for the instability, ℜq > 0 depends on
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transverse flow via a resonance denominator, in contrast to the
standard criterion without flow, i.e. M = vp,y/cs≡0. For small
damping, Mν̂�|1−M2|, Eq. (12) predicts growth of the fila-
mentation instability at wave vectors, ky, and 〈v2

osc〉 satisfying
threshold condition, (〈v2

osc〉/v2
th)(ne/εnc)(k2

0/k2
y)≡ 1−M2 for

subsonic flow, M2 < 1. This clearly indicates that the onset
of PSF is altered with flow. For the particular case without
flow, M =0, this criterion is equivalent to the onset of PSF,
Eq. (5), for speckles, by associating Pc ∼ v2

thnc/n with the
critical power and Psp ∼ v2

osc(k
2
0/k2

y) with the speckle power,
assuming k0/ky = k0/∆k' 2 f . There is, however, no instabil-
ity for supersonic flow |M| = |vp,y/cs| > 1. In detail this has
been worked out in Ref. 32 for the case of RPP smoothed laser
beam. This work clearly shows via numerical simulations that
PSF growth is enhanced for subsonic flow with respect to the
case without flow vp,y ≡0.

We have solved Eq. (12) as a function of ky for dif-
ferent values of the Mach number M for subsonic flow,
and for two cases with intensities ILλ 2

0 =1014W/cm2 µm2

and 2.5×1014W/cm2 µm2, respectively (and for ne/nc =0.1,
Te =3keV, and ν̂ =0.05). The unstable solutions found are
shown in Figs. 4. For the case without flow, M =0, one ob-
serves a clear cutoff kcutoff in ky above which, ky > kcutoff no
unstable solutions exist. For the two cases shown, this cutoff
corresponds to the threshold criteria for speckles with Isp = IL
and Psp/Pc =0.2 and 0.5, respectively, for f =8. In contrast to
this, one cannot observe a cutoff for the subsonic flow cases,
0< |M| <1. It is furthermore evident from the spatial growth
values q(ky) obtained, that for subsonic flow the ponderomo-
tive modifications expected from PSF are stronger than for
ky < kcutoff in the case without flow. The linear growth rate
of the filamentation instability Eq. (12) has been discussed
in Ref. 33 where it is shown that the enhanced density per-
turbations due to the instability contribute to the laser beam
deflection. Such a beam bending has been observed in simu-
lation results34,35 and can contribute to CBET.

Beam bending enhanced by the PSF of a single Gaussian
beam is illustrated in Figure 5. In the case shown the beam
is originally focussed at x =1000λ0. The plasma flow trans-
verse to the propagation direction of the entering beam is at
M =0.96. For the beam intensity chosen, the criterion accord-
ing to Eq. (5) yields Psp/Pc =0.5, it is thus below the onset
value for PSF. What can be seen shows, however, a clear on-
set of PSF and beam bending: the beam is deflected into a
direction oblique with respect to its incidence, and the beam
stays trapped in its own plasma density channel for distances
considerably longer than the Rayleigh length. We have fur-
thermore examined cases with still higher intensity values of
single beams (not shown), for which strong non-stationary be-
havior can appear together with flow, driving density chan-
nels in the plasma that eventually propagate freely, leading to
shock-like stuctures in the plasma density.

For crossing beams, it follows that the processes of beam
bending and speckle self-focusing leads to an effective energy
transfer into the other beam. For the described scenario of
transfer between speckles and the other beam at close-to-sonic
flow, one again has to consider the basic theory for CBET, as

0.02 0.04 0.06 0.08 0.10
ky/k0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

q(ky)/k0

IL λ
2=1014(W/cm2)μm2 , n/nc =0.1, T=3keV, M=0, 0.8, 0.92, 0.96

0.02 0.04 0.06 0.08 0.10
ky/k0

0.0005

0.0010

0.0015

q(ky)/k0

ILλ
2=2.5x1014(W/cm2)μm2,n/nc =0.1,T=3keV,M=0,0.8,0.92,0.96

FIG. 4. Spatial growth rate ℜq evaluated from Eq.(12) for the
cases with intensities ILλ 2

0 =1014W/cm2 µm2 (upper plot) and
2.5×1014W/cm2 µm2 (lower) (and for ne/nc =0.1, Te =3keV, and
ν̂ =0.05), as a function of the transverse wave number ky/k0 and for
different plasma (transverse) flow Mach numbers, M = vp,y/cs =0,
0.8, 0.92, and 0.96. The dotted curves indicate the optimum growth
rate as a function of ky.

outlined before in Eqs.(7)-(11). Two differences essentially
emerge as compared to ’beam-to-beam’ CBET, namely:
(i) the speckle width, f λ0 ∼D, is most likely smaller than the
inhomogeneity length, yielding f λ0/2sinθ < Linh, and
(ii) the local intensity inside a speckle can be several times
(say, up to 6-9 times) higher than the average beam intensity.
One can approximate |a01|2|a02|2 in Eqs. (7) by 〈I〉Isp/〈I〉2.

Consequently, the approximation for the gain describing
the transfer between speckles and the other beam results in
G' f λ0 sinθγ2

0,sp/(νscs) in which γ0,sp is the SBS growth rate
evaluated for the speckle intensity Isp. Compared to the gain
values expected for ’beam-to-beam’ CBET this gain value is
by the factor f λ0/min{D/(2sinθ),Linh} different. The width
of a single speckle, f λ0 is generally much smaller than the
width of a RPP laser beam or the width of the interaction re-
gion in an inhomogeneous profile, whereas the factor γ2

0,sp can
assume values up to 6-9 times higher than γ2

0, for the average
laser beam.

Amplification of individual speckles by crossing overall
beams has also been seen in experiments45. However, this
transfer process into intense speckles remains transient as has
been demonstrated in the experiments Ref. 45 involving rel-
atively short laser pulses, of 2-4 ps duration. For longer laser
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FIG. 5. Intensity contour map of an initially Gaussian beam, illus-
trating the deflection and the trapping of the beam in space x and y,
taken at an asymptotic stage, for the case of a plasma with transverse
flow at M =0.96. The beam was initially focussed at x=1000λ0. Fol-
lowing the standard criterion of PSF for this case, the rbeam power
to critical power ratio P/Pc =0.5 according to the criterion Eq. (5)
without flow.

pulse durations the transfer from one to the other beam affects
the whole beam. Transfer from speckles to the crossing over-
all beam is, on the other hand, very likely to happen, and is
also seen in our simulations. The consequences of the latter
process, as will be discussed and illustrated later on in section
IV B, lead mostly to enhancement in the angular spread of the
beam receiving energy from speckles.

C. Density perturbation and beam bending

Although the steepening of the ion acoustic waves is a
nonlinear process, the linear approximation of the plasma re-
sponse in presence of background flow already clearly points
to the shock formation, which is well reproduced in our sim-
ulations. It is helpful to recall a model of the plasma response
to the stationary ponderomotive potential in the presence of
transverse flow. The linear response of the plasma density
is described by the wave equation obtained from linearizing
Eqs.(3a)-(3b) ,(

∂
2
t +2νs∂t − c2

s ∂
2
y
)

δn/ne = c2
se∂

2
y U, (13)

where δn/ne is the density perturbation, νs the IAW damping;
U denotes in this section the normalized ponderomotive po-
tential, U ≡Uself /Te. A convenient way to introduce a trans-
verse flow into Eq. (13) is to consider a moving beam in a
stationary plasma35 that is equivalent to the flowing plasma
in y-direction and a stationary laser beam, or crossed beams
giving rise to the ponderomotive potential. In this new frame
of reference U = Uself (y+ vp,y0t) describes the ponderomo-
tive potential moving to the left with a uniform plasma flow
velocity vy0. The analytical solution to Eq. (13) can be ob-
tained using the procedure of Ref. 57, where we introduced
the Laplace transform of δn/ne and of U , {δ Ñ,Ũ}(y,s) =∫

∞

0 dt e−st{δn/ne,U}(y,s); δ Ñ satisfies the wave equation,

(
∂

2
y −β

2)
δ Ñ =−∂

2
y Ũ(y,s), (14)

for cs ' cse with β 2 = (s2 +2νss)/c2
s , having the solution

δÑ(y,s)=
e−βy

2β

∫ y

−∞

dξ eβξ
∂

2
ξ
Ũ− eβy

2β

∫ y

∞

dξ e−βξ
∂

2
ξ
Ũ. (15)

After integration by parts and calculating the inverse Laplace
transform, δN(t) = 1/(2πi)

∫ i∞+σ

−i∞+σ
ds estδÑ(s), we obtain the

following time dependent solutions for the density perturba-
tion in the frame of the moving plasma and for the stationary
ponderomotive potential: for plasma flow different from the
speed of sound, i.e. for M ≡ vy0/cs 6= 1, one obtains

δN(y, t)=− U(y)
1−M2 +

νs

2cs

[
I(+)

1−M
+

I(−)

1+M

]
(16)

+
1
2

e−νst
[
U(y+(1−M)cst)

1−M
+

U(y−(1+M)cst)
1+M

]
,

with I(±) =
∫ cst

0 dξ e−νsξ/csU(y± ξ −Mξ ) and with the ap-
proximation β ≈ (s+νs)/cs. For sonic plasma flow, M = 1,
the density response from Eq. (15) yields the expression,

δN(y, t)=
1−e−νst

2
∂yU(y)
νs/cs

−U(y)
2

+
U(y−2cst)

4
e−νst+

νsI(−)

4cs
.

(17)
In Figures 6-7 we show the density perturbation response to
the ponderomotive force for the case of a speckle in the y-
direction transverse to the laser propagation, close to focus,
taken at late times νst �1. Figure 6 illustrates, for differ-
ent Mach numbers, M =0.9, 1, and 1.1, the linear response
computed from the model Eq. (16) to a Gaussian-shaped
speckle, U(y) =U0 exp{−y2/( f λ0)

2}, namely (n−n0)/U0 =
δN(y, t)/U0, where n0 corresponds to the equilibrium density
and U0 to the peak value of the ponderomotive force in the
center of a laser speckle. The solid and dashed curves corre-
spond to the damping rates νs with (νs/cs)( f λ0) =0.15 and
0.05, respectively. For the lower damping rate the asymmetry
predicted from Eq. (16) is more pronounced. Note that for
the sonic case M =1, for which the 2nd term ∼∂yU(y) in Eq.
(17) dominates (because of (cs/νs) f λ0 >1), the density per-
turbations reach the highest amplitudes and display the steep-
est gradients. The asymmetry between maximum and mini-
mum of density response contributes to the beam bending33,35

and modifies CBET in our simulations.
Figure 7 shows the response obtained from simulations, for

M =0.9, 1, and 1.1, accounting also for non-linearity in Eqs.
(3a)-(3b). The gray curve shows the case when the speckle
power is well below PSF critical power (according to Eq. (5)),
P/Pc =0.05 for M =1, the other curves show the case with
P/Pc =1, where a departure from the linear response becomes
visible mostly in the loss of symmetry between n(y)− n0 >0
and the density depression n(y)− n0 <0 which is deeper but
also more localized. The corresponding spectra of n− n0 as
a function of ky are shown in Fig. 8: the Gaussian-shaped
form as a function of ky is preserved only in the linear regime,
with a peak around ky ' k0/ f . For the non linear case, here
with P/Pc =1, the peak in the spectrum is found at lower ky
values, almost ky ' k0/(2 f ) with a linear (Lorentzian-type)
exponential decrease. We shall see later that these spectra help
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FIG. 6. Density perturbation response as a function of y ac-
cording to Eq. (16) to a Gaussian-shaped laser speckle U(y) =
U0 exp{−y2/( f λ0)

2} for 3 different flow Mach numbers, M =0.9
(blue curves), 1 (black), and 1.1 (red), and for 2 different damping
rates, (νs/cs)( f λ0) =0.15 (solid lines) and 0.05 (dashed lines).

-30 -20 -10 0 10 20 30
y/λ0

-6

-4

-2

0

2

4

(n-n0)/U0

FIG. 7. Density perturbation response as a function of y from simula-
tions of a laser speckle at focus, having a Gaussian shape as bound-
ary condition at x = 0, same parameters as in Fig. 6, taken at fo-
cus (in x). The gray curve shows a low-intensity case, P/Pc =0.05
for M =1. The other cases, for P/Pc =1, show non linear respnse
with self-focusing, for 3 different flow Mach numbers, M =0.9 (blue
curves), 1 (black), and 1.1 (red). In all cases the damping rate is
(νs/cs)( f λ0) =0.15.

to partially interpret the ion density perturbations in a multi-
speckle environment of crossed beams.

IV. ANALYSIS OF THE SIMULATION RESULTS

In the present study, for all simulations in Figs. 2-3,9-11,
we have chosen a domain of 4500λ0 in length and 2300λ0
in width, i.e. along the x and the y axes, respectively; the
beams have a common wave vector component along x and
opposite wave vector components along y. In this chosen ge-
ometry, the gradients of the plasma profiles in density and ve-
locity point predominantly along the y-direction. The den-
sity profile is parabolic around the center, y = Ly/2, given

0.0 0.2 0.4 0.6 0.8

ky/k0
0.1

0.2

0.5

1

2

5

n(ky)/U0

FIG. 8. Fourier spectrum of the density perturbation response as
a function of ky from simulations with a Gaussian laser speckle at
focus, corresponding to Fig. 7, namely for a low-intensity case
(P/Pc =0.05, gray curve) with M =1, and for P/Pc =1, correspond-
ing to the non linear cases at 3 different flow Mach numbers, M =0.9
(blue curves), 1 (black), and 1.1 (red).

y(λ01)

self + cross

cross  only 

self  only

FIG. 9. Density imprint of two crossing RPP beams as a function of y
taken at x/λ0 =1500 in the front part of the rhombus-shaped crossing
zone. Subplots (a) shows the density perturbation when both crossed-
beam coupling (’cross’) via ∇Ucross and beam self-interaction via the
∇Uself term (’self’) are taken into account in HARMONY simulations,
the other subplots show the case when only the ∇Ucross term (b) or
only the ∇Uself term (c), respectively, are taken into account. The
shown results correspond to the same parameters as in the cases of
RPP in Fig. 2. The red line shows the flow profile vp,y(y)/cs with a
sonic point at y' 1100λ0.

by ne(y) =0.1nc exp−[(y− Ly/2)/1615λ0]
2. We apply a

linear density ramp starting at x =0 over 500λ0 along x in
order to avoid boundary effects at the laser entry. As al-
ready mentioned earlier in section II we apply a linear flow
ramp with sonic flow in the center of the crossing beams,
i.e. vp,y(y = Ly/2) = +cs, and a flow gradient Lv =200λ0.
We have focused our study on the case when both beams
have equal intensity I01 = I02 at the entrance x = 0, and both
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RPP beams with 'self'-interaction

RPP beams without 'self'-interaction

FIG. 10. The subplots (a) and (b) respectively show, as a function of
time, the angular spectrum of the transmitted light, computed on the
basis of a single RPP realization. The values are taken from fields at
the rear of the simulation box for RPP beams in Fig. 2, in presence
(a) and in absence (b) of the ∇Uself term in Eq. (3b). The upper part,
for angles >0, corresponds to beam 2, the lower part to beam 1.

beams have the same focusing f−number, namely f =6 for
RPP beams. Here the coefficient ν̂ takes the value ν̂ =0.1,
except in the study examining sensitivity of CBET on the
ion acoustic wave damping, see section IV B. In plasmas
with inhomogeneous flow, CBET occurs when the effective
beam width, Lbeam =D/(2sinθ ) is larger than the interaction
length Linh = π[ν(ks)/ωs][Lv/sin(θ/2)], where D is the beam
diameter19. This is equivalent to D/Lv > 4π (ν/ωs)sin(θ/2),
in practical units D/Lv∼ .2(θ/20◦)(ν/0.1ωs) for small θ .

A. The role of speckles and ponderomotive self-focusing on
CBET in RPP and regular beams

In order to illustrate the role of laser speckles and of pon-
deromotive self-focusing on CBET in presence of a flow,
we compare simulation results between the cases of (i) two
crossed RPP beams and of (ii) two ‘regular’ beams. The reg-
ular beams have the same average intensities and envelope
shapes as the RPP beams.

In the following we illustrate our results in two sub-
sections: in the first one we show results of interacting laser
beams based on a single realization of a RPP, in the second

subsection, section IV A 2 and the Figs. 3 and 11, we show re-
sults based on the ensemble average over eight realizations of
RPP. No ensemble averaging is necessary for ‘regular’ beams.

1. Results from a single realization of RPP beams

All snapshots shown in Figs. 2(a)-(c) are based on a single
RPP realization for each beam; they illustrate the local dynam-
ics arising due to the speckles of this realization. Figs. 2(d)-(f)
are based on regular beams. Figures 2(a) and 2(d) show the
initial (t = 0) beam geometry before interaction, for the cases
of two crossed RPP and of two ‘regular’ beams, respectively.
One may again consult Fig. 1 for the general geometry of the
simulations. We display the particular case where the average
beam intensities are I01 = I02 =6I0. The interaction region
of the two beams for both cases forms a rhombus-like shape
in the center of the simulation box. In our configuration, the
plasma flow profile is chosen in a way that sonic flow appears
along the major diagonal of the rhombus, which is parallel to
the longitudinal direction x. CBET is hence excited around
y = Ly/2 with a plasma flow gradient ∝ 1/Lv along the y-axis.

Crossing speckle beams: PSF and flow

Figure 2(b) shows that in the presence of self-interaction,
the two crossed RPP beams undergo significant deflections
with respect to the initial beam directions (see Fig. 2(a)); also
the angular aperture of each beam is broader than initially,
while without the ∇Uself force, see Fig. 2(c), the beams trans-
fer energy without significant deflection or broadening. Fig-
ure 2(b) exhibits also features of plasma induced smoothing54

and moving filaments58 at the rear of the simulation box. The
two terms ∇Uself and ∇Ucross in Eq. (3b) are responsible for
this additional spatial and temporal incoherence in the trans-
mitted light. In Fig. 2(b), an enhanced transfer of energy
from beam 1 to 2 (as will be shown later) and a strong angular
spread in presence of self-interaction are observed. These pro-
cesses are due to the fact that for I01 = I02 =6I0 a significant
population of speckles has sufficiently high power to be unsta-
ble with respect to PSF. As elaborated in section III B, due to
flow, PSF in speckles occurs already at intensities lower than
indicated by the standard expression Eq.(5) for Psp/Pc.

Our simulation results demonstrate the importance of the
plasma flow. For an inhomogeneous flow profile, as in our
simulations, resonant coupling between the crossing beams
takes place around the region where the plasma velocity is
close to the sound velocity, vp,y ∼ cs. This is where one can
see in Fig. 2(e) that beam bending arises so that some speck-
les are redirected towards the other beam and effectively con-
tribute to CBET.

Crossing regular beams: PSF and flow

Regular beams, because of the flat, almost plane wave-type
wave fronts can be unstable to PSF and to the filamentation
instability for the intensity range considered, so that any per-
turbation in the beam structure or in the plasma density will
trigger the onset of filamentation instability. Such initial per-
turbations in regular beams are produced by the ponderomo-
tive force of crossing beams. They can further develop and
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lead to filamentation in the simulations when the ∇Uself term
is taken into account. The interaction of two crossed regu-
lar beams illustrated in Fig. 2(e) (with both the ∇Uself and
the ∇Ucross terms taken into account) results in the transfer of
energy into a beam that propagates along a common axis. Fil-
amentary structure develops in the overlapping regular beams
where they interact with the density modulations due to the
ponderomotive forces induced by the crossing beams. The
regular beam filaments also undergo beam bending as seen
in Fig. 2(e) at near to sonic flow, vp = ±cs,34,59. This con-
tributes to the beam component propagating along x-axis, and
partially to angular broadening of the transmitted light. We
have also carried out a simulation without applying the ∇Uself
term, see Fig.2(f). For this case, perturbations in both beams
arise inside the (rhombus-shaped) resonant zone for CBET,
and – in contrast to the case with self-interaction – no fur-
ther filamentation develops in the small beamlets. Note that
the structures of regular beams induced by CBET and by fila-
mentation point mostly along the common axis between both
beams, a feature that is clearly not observed in the RPP beams
with speckle structure.

Induced density perturbations
For the case of crossing RPP beams, significantly different

density perturbations are excited in the plasma when taking
into account both the effects of ponderomotive self-interaction
and crossed-beam coupling together (’self + cross’ in Fig.
9(a) ), or only a single one of these effects, i.e. only crossed-
beam coupling (’cross only’ in Fig. 9(b) ) or only beam self-
interaction (’self only’), respectively. The latter is illustrated
via a the density perturbations defined as δn ≡ n(x,y, t)− ne
with ne ≡ n(x,y, t = 0), taken at x ' 1500λ0 in the front part
of the rhombus, and shown in the three subplots of Fig. 9,
also indicating the flow profile vp,y(y)/cs, with sonic flow at
y/λ0 =1100.

Angular broadening of the beams

In addition, and in order to illustrate the effect of deflec-
tion and angular broadening observed for crossed RPP beams
in Figs. 2(b) (in presence of beam self-interaction) and 2(c)
(in absence of beam self-interaction), we plot the temporal
evolution of the angular spectrum of the transmitted light (de-
tected at the rear of the simulation box) in Figs. 10(a) and
10(b), respectively. The light signals appearing in the upper
right corner of the simulation box between time 2k1cst =150
and 200 in Fig.10(a), show that in presence of self-interaction,
beam 2 – initially propagating at an angle of 10◦±3.5◦ – has
components up to large angles of ∼ 25◦, with a central direc-
tion at∼11◦ (width ±7◦), while in absence of the ∇Uself term,
Fig. 10(b), beam 2 does not undergo strong deflection: it is
simply characterized by an asymmetric angular spread around
∼11.5◦(+5◦/−4◦), at t =200. Similarly, beam 1 is character-
ized by an enhanced angular broadening around -10◦ (±5.5◦)
in the case with beam self-interaction (Fig. 10(a) ) by con-
trast with the case without beam self-interaction (Fig. 10(b)
), showing an asymmetry around -12◦(-5◦/+4◦); the latter is
interpreted as due to pump depletion.

To summarize these results, as seen in Figs. 2 and 10, one
can characterize the role of speckle structure for CBET as fol-

lows: (i) the importance of speckle structure for CBET in-
creases with beam intensity due to the increasing number of
speckles undergoing PSF; (ii) the onset of PSF in subsonic
flow regions occurs in speckles with peak intensities lower
than predicted by the standard criterion, Eq. (5), which even-
tually increases considerably the number of speckles affected
by PSF; (iii) at sonic flow, speckle beams are deviated by
beam bending which can lead to a net transfer into the other
beam. (iv) Particularly striking is the onset of temporal inco-
herence of the beams for the case with self-interaction around
+10◦, resulting in fluctuations with relatively short correlation
times of 2k1cstcorr∼20 (tcorr ∼ ps in real units), that can be
associated to the effect of plasma-induced smoothing.

2. Ensemble averaging over multiple RPP realizations

In the following we will revisit the previous results and ana-
lyze them further by both varying the beam intensity as well as
by examining the angular aperture of the transmitted beams.
To do so, we have averaged results of simulations over dif-
ferent RPP realizations. In Figure 3 we have summarized our
results from a series of simulations with RPP beams; we have
averaged over eight realizations. Shown is the energy transfer
as a function I02/I0, which clearly shows that the role of RPP
speckles in CBET can no longer be disregarded above the ref-
erence intensity, I0λ 2

0 =1014W/cm2µm2 at 3 keV. To illustrate
this we plot the transfer from beam 1 (downwards propagat-
ing) to beam 2 by increasing the incoming intensity values of
both I01 and I02, while keeping their ratio I01/I02 = 1 constant.
We compare the power gained by beam 2 for the RPP (sub-
plot (a), solid curves) and regular (subplot(b), dashed curves)
beam cases in presence (blue curves) and absence (red curves)
of the ∇Uself terms. To do so in the simulations with HAR-
MONY, we switched on and off this term on the r.h.s. of Eq.
3b. The power transfer ratio is defined as

Pout

Pin
≡
∫

ky>0 |E (k,x=Lx)|2dk∫
ky>0 |E (k,x=0)|2dk

, (18)

where E (ky) is the 1D Fourier transform of a(x,y, t) in y.
Note that Fig. 3(b) also displays a curve (in green color)

that corresponds to the results from Ref. 19 for the interval
0< I02 . 0.75 I0, for the same geometry, also obtained using
our code HARMONY. In this interval no significant differ-
ences in the transfer between the beams was seen when com-
paring regular and RPP beams, even when accounting for self-
interaction. The differences seen between the results for dif-
ferent RPP realizations are merely due to speckle statistics28.

From our new results, differences due to PSF in speck-
les appear for I02 & 0.75 I0, when one enters in the regime
where ponderomotive effects as self-channeling, deflection
via beam bending in a flowing plasma, as well as plasma-
induced smoothing occur. For RPP beams all these processes
depend on the laser speckle distribution.

We should mention here that experimental studies with
crossed RPP beams17 have reported both on angular broaden-
ing and on spectral broadening in an intensity regime between
2.4 - 8×1013W/cm2 at λ0 =1µm, however at lower temper-
ature (0.5keV) and higher density (0.3nc) than considered in
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‘self‘-int.‘self‘-int.

‘self‘-int. RPP beams without‘self‘-int.

FIG. 11. Contour plots of angular spectra of the transmitted light, as a function of the incident intensity I02/I0 for equal beam power at the
input, I01= I02, and deduced from the fields taken at the right edge of the interaction region at t=200. Panels a) and b) in the upper row show
the cases of RPP beams (average over 9 realizations), panels c) and d) show regular beam cases. The left column, panels a) and c), shows the
behavior with beam self-interaction via ∇Uself , while in the right column, panels b) and d), beam self-interaction is not taken into account.
Note: the color bar shows values normalized to the total power (∝ I02) of the corresponding beam intensity I02. Contours are interpolated from
five distinct values at I02/I0=0.75, 1.5, 3, 4.5, and 6.

this article, with effects of collisional absorption present.

The role of self-focusing in speckles
Our simulation results summarized in Fig. 3 show as a

function the the beam intensity, that for I02/I0 > 0.75, the
power transfer to beam 2 first increases for the case of RPP
beams with self-interaction (Fig. 3(a) solid blue curve), then
reaches a maximum around I02 = I01 = 3I0, and eventually
decreases for still higher intensities. There is a striking dif-
ference between the cases with and without the effect of self-
interaction : when neglecting the self-interaction effects, no
significant increase in power transfer as a function of I02 is
seen, and the onset of the decrease in the power transfer oc-
curs already for I02 = I01 & 1.5I0. Although the standard
threshold criterion for PSF in Eq. (5) would indicate that
only few extreme speckles can have Psp/Pc >1, it is the pres-
ence of flow that changes considerably the PSF in speckles
in the beam overlapping region, both for sonic and subsonic
flows. Consequently, the light is deflected towards the direc-
tion of beam 2, which is a net contribution to CBET for RPP
beams in the intermediate regime 1 . I02/I0 . 3. Also, for
I02/I0 > 0.75, comparing the blue and red curves in Fig. 3(a),
with and without the self-interaction effects, respectively –
as expected – it can be clearly seen that the power transfer
is systematically stronger when the contribution of the self-
interaction effects in the ponderomotive force is taken into ac-

count. The relevant regime corresponds, in practical units, and
for the plasma conditions considered here, to laser fluxes from
I02λ 2

0 >1014Wµm2/cm2. This means that onset of PSF effects
in speckles arises still in an intensity regime that is very rele-
vant with respect to current ICF parameters.

The power transfer between regular beams, shown in Fig.
3(b) for I02/I0 > 0.75, is also systematically lower than for
the power transfer between RPP beams. For regular beams
(dashed curves), without speckles, the self-focusing and for-
ward SBS play only a limited role, in spite of the differences
in the angular spectra observed in Fig. 11(c) and (d) for the
cases with (c) and without (d) self-interaction effects. For high
beam intensities, I02/I0 >2, one reaches a maximum power
transfer between the beams, beyond which the power trans-
fer decreases as a function of I02. This is due to the non-
linearities of the ion acoustic wave perturbations (see next
section). Nonlinear sound waves enhance forward scattering
and diffraction to a broader angular spread of the transmit-
ted beams, which yields asymptotically an effective equili-
bration between the angular spectra of both beams towards∫

ky>0 |â(k,x=Lx)|2dk '
∫

ky≤0 |â(k,x=Lx)|2dk.

Angular broadening as a function of intensity
The observed broadening of the angular spectrum, as dis-

played as a function of time in Fig. 10 for the single example
of a RPP beam with I01 = I02 =6I0, is summarized as a func-

ac
ce

pt
ed

fo
r p

ub
lic

at
io

n
in

Ph
ys

ic
s

of
Pl

as
m

as



13

  

self + cross

cross onlycross only

cross only

self + cross

self only

FIG. 12. (Color online) Simulation results showing beam deflection and shock generation: (a)-(d) show the zoomed in regions of interaction
between the two crossed RPP beams of the same intensity I01 = I02 = 6I0, crossing at an angle θ = 20o and ν̂ = 10%. Subplots (a)-(d)
respectively show a snapshot of the beam intensity (a),(b) and the perturbed plasma density (c),(d) taken at t =200 (2k1cs)

−1 (∼ 11ps for
λ0 =0.35µm and Te =3keV) in presence of both self-interaction and crossed-beam coupling . In subplots (a) and (b) both processes are taken
into account, in panels (c) and (d) only crossed-beam coupling. The figures (e)-(f), are lineouts (along y and at x =1050λ01 in (a)-(d) ) for the
three different cases (e) crossed-beam coupling only, (f) both self-interaction and crossed-beam coupling, and (g) self-interaction only. The
orange curve shows the density profile, blue curves and green curves show the Intensity profiles of the two RPP beams.

tion of I02/I0 in Fig. 11. The values shown are taken late
in time, namely 2k1cst =200 when the CBET processes have
reached a quasi-stationary regime. The comparison between
the angular distribution of the transmitted light of the two
crossed beams are shown for four different cases: Figs.11(a)
and 11(b) show the cases of RPP beams, in presence and in
absence of self-interaction, respectively; the Figs. 11(c) and
11(d) show the angular distributions of the transmitted light
for regular beams. Generally, RPP beams clearly exhibit an
increasing angular spread of transmitted light with increasing
intensity; in addition, this angular spread is enhanced by self-
interaction. The results for regular beams (see Figs. 11(c)
and 11(d)) are dominated by the strong central beam struc-
ture close to θ ∼ 0. The angular width of this central beam
increases with I02/I0.

Two distinct beams can always be identified in the RPP
case; only for the case of RPP beams with self-interaction a
weak beam arises around θ ∼ 0. The resulting angular spec-
tra for RPP and regular beams start to broaden for I02 > I0,

shown in Figs. 11(a) with self-interaction. The case without
self-interaction is shown in 11(b) with less pronounced broad-
ening. Furthermore, the onset of angular spread contributes to
the increase in spatial and temporal incoherence (see also 2(b)
and Fig. 10(b)).

B. Nonlinear sound wave perturbations with self-interaction
and their role in CBET

As already mentioned, the energy transfer between the
crossing beams decreases according to Fig. 3 as a function of
the beam intensity for I02/I0 >3. This behaviour is correlated
with both (i) the increase in the angular spread as a function
of intensity, associated with enhanced spatial and temporal
incoherence in each beam with increasing beam power, and
with (ii) the onset of non- linearities in the IAW perturbations.
Thus, it is important to analyze the role of nonlinear density
perturbations in the plasma during CBET. For this purpose, we
present in Figs. 12-14 a set of simulation results for the same
laser-plasma parameters as used in Fig.2, however now with
different realizations and a smaller simulation domain (with
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FIG. 13. (Color online) (a): Lineouts of the perturbed plasma density
(along y and at x=1525λ01 in Fig. 12(a) ) for the self-interaction only
case, taken at 4 different time instants, 2k1cst =70, 100, 130, and
150. Panel(b) shows the spatial Fourier spectra in ky/k1 computed
from the lineouts shown in panel (a) at the 4 different time instants.

a length of 3500λ0 and 1200λ0 along the x(longitudinal) and
y(transverse) axes respectively). Figures 12(a) and (b) show
the intensity profile and the IAW perturbations in the plasma,
respectively, zoomed in the regions of overlap of the two
crossed RPP beams. For the case shown both self-interaction
and crossed-beam coupling are taken into account. Figures
12(c) and (d), show the same quantities as subplots 12(a) and
(b) for the case where only crossed-beam coupling is taken
into account while self-interaction is switched off. Compar-
ing Figs. 12(a) and (c), we clearly see strong deflection of the
RPP beams in the presence of self-interaction process while
no deflections are observed in the absence of self-interaction.
Also, comparing the corresponding density perturbations in
the Figs. 12(b) and (d), one can observe nonlinear density per-
turbations (in terms of deep density channels) only for the case
in the presence of self-interaction. In order to demonstrate this
effect in detail, we also plot the line outs of the intensities of
the two crossed RPP beams and of the plasma density pertur-
bations for the three different cases in the set of Figs. 12(e)-
(f). These line outs are taken at x≈ 1525λ0 in the longitudinal
direction and along the transverse direction y from the fields
shown in Figs. 12(a) and (c). In these figures of line outs
the blue and green curves distinguish the intensity profiles of
the two crossed RPP beams, while the orange curve shows the
density profile. In Figs. 12(e), we can observe the dominant
short wavelength plasma density perturbations (orange curve),
having the wave length λcbet = 2π/|k1,y|. The oscillations are
seen in a wide zone around the resonant sonic flow region
due to the IAWs in the pure CBET-SBS case; the blue and or-
ange curves show the redistribution of energy between the two
RPP beams. The low amplitude oscillations in density (orange
curve in Fig. 12(e)) correspond to CBET between the average
RPP beams, similarly to what would be seen in regular beams.
We can also see regions with locally higher oscillations ampli-
tudes corresponding to CBET where the exchange is enhanced
between the average beam and intense laser speckles in the
other beam. Figure 12(f) clearly shows the impact of PSF
process in speckles along with the short-wavelength CBET-

SBS-driven IAWs. From the figure we see that redistribution
of energy between the two beams under the combined effect
of self-interaction and crossed-beam coupling leads to signif-
icantly higher intensity peaks as compared to the case with
only crossed-beam coupling (Fig.12(e)).

For the case without the CBET-SBS process, as shown in
Fig. 12(g), short-wavelength components are absent and the
density perturbations are merely due the imprint of the pon-
deromotive force from the speckles. In the set of Figs. 12,
sonic flow, i. e. M = 1, is located in the vicinity of y =655λ0
for x >600λ0, where one can observe a phase shift between
the induced density minimum and the intensity maxima. Out-
side the region of sonic flow, for y <645λ0 and y >665λ0, one
can systematically observe that significant intensity maxima
coincide spatially with density minima, as expected for pon-
deromotively induced density perturbations.

The two ponderomotive force terms on the r.h.s of Eq. (3b)
can be strong enough to induce nonlinear density perturba-
tions (as seen in Figs. 12(b) and (f)) in plasma with steep-
ened wave fronts, as discussed earlier in section III B. Also,
the plasma has a flow which affects the evolution of the den-
sity channels due to the PSF, and the IAW perturbations due to
the CBET-SBS process, evolve in shock-like structures, char-
acterized here by ponderomotively driven density perturba-
tions that develop steep wave fronts when propagating in the
plasma. The time evolution of such a shock-like structures
is illustrated in Fig. 13(a). Plasma density perturbations are
recorded along the same lineout (as in Figs. 12(e)-(f)) for dif-
ferent time instants and for a simulation case where only the
∇Uself term was retained. Also, Fig. 13(b) shows correspond-
ingly the Fourier transform of the plasma density perturba-
tions at the same time instants. In the lineouts as a function
of y, the plasma flow is in three different regimes along the
transverse direction: the flow is sub sonic for y <1110λ0, it is
sonic around (y'1110λ0), and super sonic for y >1110λ0.

In Fig. 13(a), during the initial stage of interaction (2k1cst=
70, magenta curve) we only see small density perturbations
in the three regions; however,the density perturbations in the
respective regions increase with ongoing time with the de-
velopment of a wave train close to the sonic region, along
with a steeping in the density perturbation in the sonic region.
In Fig. 13, the observed shift in the position of the shock-
like structure around the sonic point (vp ≡ cs, at y=1110λ0)
with time, can be attributed to the plasma flow. The corre-
sponding Fourier analysis of the density perturbations in Fig.
13(b) shows that as the shock structure becomes more promi-
nent with time, the spectra develop a plateau in the region
0.6 . k/k1 ≤ 1, a feature characteristic of shock generation.
Also, as seen in Figs. 12(f),12(g) and 13(a), the typical size
of the non-linear structures in the density perturbation corre-
sponds to the size of laser speckles, and the perturbations are
strongest in the vicinity where the plasma flow is sonic.

In the set of Figs. 14 we present and compare Fourier trans-
forms of the nonlinear density perturbations for the three cases
shown in Fig. 12(e)-12(g). In the same figures we also com-
pare the wave number spectra with the change in damping
coefficient ν̂ (accounting for the both collisional and Landau
damping). Figure 14(a) shows the case with crossed-beam
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FIG. 14. (Color online) Spatial Fourier spectra of perturbed plasma
density in the crossing regions, similar to the cases in figure 5(e)-(g)
for different values of IAW damping, namely ν̂ = 3%,10% and 20%
in blue, orange and green color, respectively. The presence of IAW
harmonics is clearly visible in panel (a) for the SBS only case. The
other spectra correspond to the cases (b) with both self-interaction
and crossed-beam coupling and (c) self-interaction only. The value
of k1,y/k1 = 0.35 in the above spectra represents the normalized cen-
tral CBET-SBS wave number.

coupling only. The spectrum peaks around the value expected
for CBET-SBS at k1,y/k1 = 2sin(θ/2)∼0.35, followed along
k by other equally spaced peaks, corresponding to the sec-
ond and third harmonics. This means that the CBET-SBS-
driven density perturbations can evolve into non-linear wave
train structures when propagating through the plasma. These
higher harmonics to the density perturbations associated with
CBET-SBS decrease as a function of the IAW damping. In the
spectrum corresponding to the case with self-interaction only,
in Fig. 14(c), the contribution at the CBET-SBS wave num-
ber is evidently absent. More characteristic for this case is the
plateau region in k associated with the formation of isolated
shock-like structures. The wave number spectra for the case
with both self-interaction and crossed-beam coupling, in Fig.
14(b)), combines the features originating from both processes.
For all the three cases we observe that the magnitude of the
wave number components are reduced (note the log scale in
Figs. 14) with the increase in the damping ν̂ .

V. CONCLUSION

We have investigated the role of laser beam speckle struc-
ture in crossed beam energy transfer. It is an aspect of CBET
that has been considered only in recent studies. We have
demonstrated that the speckle structure plays an important
role for laser beams crossing in a plasma with a flow when
both self-focusing of intense laser speckles and forward SBS
in RPP beams come into play. This can be expected for
laser fluxes above ILλ 2

0 >1014Wµm2/cm2, i.e. for an inten-
sity regime that is relevant for current ICF parameters.

For plasmas with inhomogeneous flow, where CBET occurs
around sonic surfaces, the onset of self-focusing instability in
speckles is enhanced, leading to a significant beam deflection
and resulting in broadening of the angular light distribution
in the transmitted laser beams. A regime with a maximum
in the net transfer rate is attained for the intensity range of
1.5< ILλ 2

0 /(1014Wµm2/cm2) <3 with an observable deflec-
tion of the amplified beam to higher angles, and an increase
in the angular width. Beam deflection and angular broadening
may have significant impact on ICF laser energy deposition.
Broadening of the angular distribution in both beams can be
attributed to the plasma-induced smoothing and scattering off
non linear IAW density perturbations.

The temporal incoherence due to plasma-induced smooth-
ing observed in our simulations with RPP beams, see Fig.
10(a), corresponds to correlation times of the order of
2k1cstcorr ∼ 20 being equivalent to a short ps time scale for
λ0 =0.35µm, Te ∼3keV, and angles θ ∼20◦. While we have
not considered spatio-temporal smoothing, such as SSD, in
our study, the result indicates that the effect of SSD with
a bandwidth that is smaller than 50 GHz should be quite
marginal for the effects described in this study. Furthermore,
it is known that the available SSD bandwidth on the National
Ignition Facility has not prevented the onset of CBET. Higher
SSD bandwidth may be available e.g. on the Omega laser fa-
cility at LLE Rochester, as this may be necessary for the direct
drive ICF experiments.

Our study shows also that the presence of self-interaction
results in shock-like structures with steepened wave fronts in
the plasma density perturbation which can further lead to de-
flections of RPP beams in the inhomogeneous plasmas.
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