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Résumé

L’observation de la Terre à l’échelle locale nécessite de disposer d’images hautement résolues spatialement et spectralement.
Les capteurs ne pouvant offrir simultanément de telles résolutions, une solution consiste à exploiter des images acquises par
deux instruments optiques différents. Les méthodes de pansharpening hyperspectral, notamment, permettent de combiner
une image panchromatique, à haute résolution spatiale, avec une image hyperspectrale, à haute résolution spectrale, afin
de générer une nouvelle image hautement résolue spatialement et spectralement. De telles méthodes présentent cependant
certaines limitations, en particulier le traitement des pixels mixtes. Cet article présente une nouvelle méthode de pansharpening
hyperspectral appelée Spatially Organized Spectral Unmixing (SOSU) et adaptée au traitement de tels pixels. Les performances
de cette méthode sont mesurées sur des données synthétiques puis réelles (simulées à partir d’acquisitions aéroportées), à
l’aide de critères spatiaux, spectraux et globaux, afin d’évaluer l’apport du traitement des pixels mixtes. En particulier, cet
apport est confirmé dans le cas d’un paysage périurbain par une augmentation de près de dix pourcents du taux de pixels
mixtes améliorés avec SOSU, par rapport à la méthode utilisée comme référence.

Mots clés : fusion d’images, panchromatique, hyperspectral, SOSU, pansharpening, démélange spectral

Abstract

Earth observation at a local scale requires images having both high spatial and spectral resolutions. As sensors cannot si-
multaneously provide such characteristics, a solution is combining images jointly acquired by two different optical instruments.
Notably, hyperspectral pansharpening methods combine a panchromatic image, providing a high spatial resolution, with a hy-
perspectral image, providing a high spectral resolution, to generate an image with both high spatial and spectral resolutions.
Nevertheless, these methods suffer from some limitations, including managing mixed pixels. This article introduces a new hy-
perspectral pansharpening method designed to deal with mixed pixels, which is called Spatially Organized Spectral Unmixing
(SOSU). The performance of this method is measured on synthetic then real data (simulated from airborne acquisitions), using
spatial, spectral and global criteria, to evaluate the contributions of the SOSU algorithm to mixed pixel processing. In particular,
this contribution is confirmed in the case of a peri-urban area via a nearly ten percent increase in the rate of improved mixed
pixels with SOSU, in comparison with the method used as a reference.

Keywords: Image fusion, panchromatic, hyperspectral, SOSU, pansharpening, spectral unmixing

1. Introduction

1.1. Context

Remote sensing is a tool adapted for Earth observation
at global and local scales. At the local scale, many applica-
tions need both high spatial resolution, to get a precise de-
scription of the geometry of the observed scene, and high
spectral resolution, to retrieve information about its state
and its structure (Sabins, 2007). However, sensor capabil-
ities are often limited and cannot simultaneously provide
optimal spatial and spectral resolutions (Lier et al., 2012).

A solution is combining images jointly acquired by two
different sensors with one of the desired high resolution

properties. On the one hand, panchromatic (PAN) images
provide high spatial resolution with a wide spectral band
covering the visible range [0.4 µm− 0.8 µm]. On the other
hand, hyperspectral (HS) images provide a variety of spec-
tral bands, at the expense of the spatial resolution. The
combination of HS and PAN images to generate a new im-
age with high spatial and spectral resolutions, represents a
case of image fusion called hyperspectral pansharpening
(abbreviated as HS+PAN fusion).

The various methods presented in the literature for im-
age fusion can be classified into several large classes de-
pending on the processing strategy (Loncan et al., 2015),
each of them having its own advantages and drawbacks.
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Initially, Component Substitution (CS), Multiresolution Anal-
ysis (MRA) and hybrid approaches were designed to com-
bine multispectral (MS) and PAN images (MS+PAN fu-
sion). New approaches have since been developed that are
adapted to HS images (typically for HS+MS fusion) using
Bayesian and matrix factorization methods. The HS+PAN
case is usually based on methods from these different
classes (when they can be adapted), either by considering
the HS image as a better spectrally resolved MS image, or
by considering the PAN image as an MS image providing a
single spectral band (Loncan et al., 2015).

1.2. Limits of the current HS+PAN methods

The analysis of the different HS+PAN fusion methods,
notably the comparative study performed by Loncan et al.
(2015) in the [0.4 µm− 2.5 µm] range, provides their main
limitations:

1) Degradation of the spatial and spectral information. The
different classes tend to preserve one type of information
(spatial or spectral), at the expense of the other one.

2) Limitation of the HS/PAN spatial resolution ratio. In most
studies, this ratio is fixed to 4 (Loncan et al., 2015). In the
generalized HS/MS case, it is usually comprised between
2 and 10 (Yokoya et al., 2017).

3) Spectral distortions in the HS range. HS bands which
are not included in the PAN domain can result in spectral
distortion during the fusion process. They are mostly visible
beyond 1 µm.

4) Exploitation of limited spectral ranges. HS pansharpen-
ing methods are usually applied to PAN images covering
the visible domain, and HS images covering the reflective
domain.

5) Errors from scenes with high spatial variability. These
scenes contain HS pixels whose spectral signature is made
up of spectra from different materials, also called mixed pix-
els (see Section 2.1.3), which are not well processed by
most of the existing fusion methods. Notably, in urban ar-
eas, Wu (2009) estimates that 40 % up to 50 % of pixels are
mixed at a 4 m spatial resolution.

6) Errors from shadows. Shadows alter the spectral infor-
mation of materials and add complexity to a scene (i.e. ad-
ditional pseudo-objects), depending on the geometry of the
observed scene (e.g. height and gap between objects).

7) Errors from non-uniform irradiance. A single material
can have very different reflectance values depending on
the age, the brightness, the inclination and the orientation
of the objects: this is referred to as intra-class variability.

1.3. Objective

The aim of this article is to introduce a new HS pan-
sharpening method, called Spatially Organized Spectral
Unmixing (SOSU). It has been designed to minimize the
limitations stated above (Section 1.2) mostly by managing
mixed pixels (transition areas, objects of small dimensions)
and preserving spatial and spectral information. This new
method is based on an existing fusion process, but sup-
plements it with preprocessing founded on spectral unmix-
ing and spatial reorganisation steps. The following assump-
tions are made with respect to the data:

— The PAN and HS images are fully registered. Fur-
thermore, the HS/PAN spatial resolution ratio, re-
ferred to as r, is an integer and is independent of
the spatial direction;

— The PAN and HS images respectively cover the vis-
ible and reflective spectral domains;

— All images are in spectral radiance.
The steps of SOSU are detailed in Section 2, showing

how it is adapted to managing mixed pixels. The protocol
enabling SOSU to be compared with other methods from
the literature (quality criteria, evaluation method) is also
presented (Section 2.3).

SOSU is tested on data sets described in Section 3.
Its performance is measured (by means of spatial, spec-
tral and global quality criteria) and the reconstruction qual-
ity of the fused image is visually, spectrally and spatially
analysed (Section 4). In addition, the quality of managing
mixed pixels is evaluated, to point out the contribution of
the method, as well as areas of improvement (Section 5).

2. Proposed method

2.1. General presentation of SOSU

2.1.1. Introduction
The Spatially Organized Spectral Unmixing (SOSU)

method relies on an existing method of spatial information
preservation, called Gain (see Section 2.1.2). SOSU sup-
plements Gain with a preprocessing step based on spectral
unmixing and spatial reorganisation, to detect mixed pixels
and improve their treatment. A first version of the SOSU
method was proposed as part of previous work (Loncan,
2016) but we have added several improvements as identi-
fied in the following subsections.

2.1.2. Fusion method
The selected pansharpening method is part of the Rel-

ative Spectral Contribution (RSC) subfamily from CS meth-
ods (Vivone et al., 2014). It is inspired from the Brovey
transform in the RGB+PAN case (Saroglu et al., 2004), but
generalizes it to the HS+PAN case (Loncan, 2016). This
fusion method, thereafter called Gain, injects spatial infor-
mation from the PAN image into the HS image oversampled
at the PAN resolution, as depicted in Fig. 1. To this end, a
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scale factor (or gain), which is independent of the spectral
band and specific to each pixel, is derived from the PAN im-
age and applied to the oversampled HS image. This scale
factor provides the preservation of the PAN spatial informa-
tion in the resulting image without affecting spectral infor-
mation from the HS image.

Figure 1 – Working principle of Gain method.
Specifically, let H be the HS image (3D hypercube),

P the PAN image (2D matrix) and F the fused image (3D
hypercube). We denote as X(k) the 2D matrix representing
the kth spectral band of an X hypercube. Operators • and

respectively stand for the term-wise multiplication and
division (Hadamard operators).

The first step of the Gain method is oversampling H

at the PAN spatial resolution. This image, denoted as H↑,
is then integrated over the spectral bands associated with
the PAN domain, to make a PAN pseudo-image, denoted
as HP . Here, integration consists of a weighted average of
the H↑ spectral bands included in the PAN domain, to get
a single band covering the PAN domain.

The choice of weights ensures the possibility to model
the non-uniform response of the measuring instrument.
However, we thereafter assume that the response is uni-
form, so the integration is merely an unweighted average.

The scale factor, or gain, is computed for each pixel of
the fused image by dividing the respective value of P by
the respective value of HP . Then, one simply pixel-wisely
multiplies each k band of the oversampled HS image H↑

by this gain matrix
(

P

HP

)
, as formulated in (1).

F (k) =
P

HP

•H(k)
↑ (1)

On the one hand, the spatial information is fully injected
into the fused image. Indeed, by integrating the fused im-
age over the PAN domain, we get the original PAN image
back, as shown in (2), where

∑
k refers to the integration

operator (weighted average) of a 3D hypercube over its k

bands in the PAN domain (pixel-wise operation).

∑
k

F (k) =
P

HP

•
∑
k

H
(k)
↑ =

P

HP

•HP = P (2)

On the other hand, the spectral information from the
oversampled HS image is fully preserved in the fused im-
age. Indeed, for a given pixel, the same gain value is ap-
plied to its entire spectrum. This means that spectra are
weighted, while keeping their original shape. It is therefore
impossible to distinguish, apart from scale factors, subpix-
els from the fused image which correspond to a same pixel
of the HS image.

To improve the spectral information of the fused image
so that one could distinguish materials at a finer resolution
than the original HS one, it is possible to preprocess the
oversampled HS image, using a spectral unmixing method.

2.1.3. Notations
The SOSU method relies on a correspondence be-

tween groups of pixels with different spatial resolutions
(PAN and HS), covering the same area in the observed
scene. This condition is met as we assume that the spatial
resolution ratio is an integer, and the images are registered
(see Section 1.3). In this case, an HS pixel is associated
with r × r PAN pixels (with r the spatial resolution ratio).
The former is referred to as a coarse pixel, while the latter
are referred to as subpixels (Fig. 2).

Moreover, an HS pixel covering an area composed of a
single material at the PAN resolution is denoted as a pure
pixel, while an HS pixel convering several materials is de-
noted as a mixed pixel. Here, we consider that a necessary
and sufficient condition for an HS pixel to be pure is that it
is composed of PAN pixels having identical (or very close)
radiance values, as depicted in Fig. 2, because we assume
that all subpixels are pure at the PAN resolution.

Furthermore, the spectrum of a single material is called
a pure spectrum, or endmember (term used thereafter),
while all the other spectra are hence qualified as mixed.
The spectrum of a pure pixel is by definition an endmem-
ber, but additional endmembers can be extracted using al-
gorithms implementing spectral unmixing. Note that, in the
studied spectral domain, as coarse HS pixels can be ex-
pressed as weighted averages of local HS subpixels, which
are supposed to be pure at this finer resolution, spectra of
mixed pixels are hence considered as linear mixtures of
pure spectra.

2.2. Description of the SOSU method

The proposed SOSU method has seven main steps
(Fig. 3). They are detailed below.

2.2.1. Mixed pixel detection
This step selects the HS pixels which will be unmixed

and reorganised. Pure pixels, which are composed of iden-
tical subpixels at the PAN resolution (assumption made in
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Figure 2 – Pure and mixed pixels, and associated subpixels
(Loncan, 2016).

Figure 3 – Flow chart of the SOSU method.

Section 2.1.3), can be ignored in the full preprocessing:
the reorganised pixel simply corresponds to the associ-
ated oversampled HS pixel. We therefore restrict the pre-
processing to the mixed HS pixels, hence it is essential to
detect them efficiently.

For that purpose, one should refer, for a given HS pixel,
to the group of PAN pixels covering the same area. The
methods consists then in measuring the radiance varia-
tions, and in setting a threshold above which the HS pixel
will be considered as mixed. These variations are esti-
mated using the variance: the higher it is, the more het-
erogeneous the associated zone will be.

2.2.2. Segmentation of the PAN image
The aim of the segmentation step is to distinguish, from

the radiance values of the PAN subpixels, the spatially ho-
mogeneous areas (called segments, or regions) in the ob-
served scene. They will be used to extract the different end-
members that will be attributed to the subpixels of the re-
organised image. Here, the number of segments plays an
important role. On the one hand, too few segments might
aggregate regions associated with different materials. On
the other hand, too many segments would unnecessarily
increase the number of extractions, while limiting their in-
put data.

Several segmentation methods have been tested, in-
cluding Watershed (Tarabalka et al., 2010), Felzenszwalb

(Felzenszwalb and Huttenlocher, 2004), SLIC (Achanta
et al., 2012), Quickshift (Vedaldi and Soatto, 2008) and
Edge Detection and Image SegmentatiON (EDISON), pro-
posed by Christoudias et al. (2002).

Two methods have been retained, namely EDISON and
Felzenszwalb. On the one hand, EDISON is based on an
edge detection step, called Confidence Based Edge Detec-
tor (Meer and Georgescu, 2001), followed by a segmenta-
tion step using the Mean Shift algorithm (Comaniciu and
Meer, 2002). This enables EDISON to finely delimit close
regions without over-segmenting the homogeneous parts
of the image. However, the lack of size limitation per region
(for example, a maximum number of pixels) might lead the
method to merge several distinct regions if edges are not
sharp enough.

On the other hand, Felzenszwalb’s method is less de-
pendent on edges. Its graph based approach enables it to
split the image into more localised regions, although this
might cause over-segmentation.

2.2.3. Endmember extraction per region
Once the segmented image has been generated, the

Vertex Component Analysis (VCA) method, introduced by
Nascimento and Dias (2005), is used to extract endmem-
bers constituting each of these segments. For a single seg-
ment, the VCA method is applied to all the pixels of the HS
image covering (even partially) this region at the PAN reso-
lution, and returns a list of associated endmembers. We do
not directly apply the VCA method to the entire HS image
because we choose to reduce the influence of intra-class
variability and thus favour local extractions, as further ex-
plained in Section 2.2.4.

Nevertheless, the VCA method relies on the pres-
ence of pure pixels in the treated regions. Other extraction
methods which are less dependent on that condition, like
the Simplex Identification via Split Augmented Lagrangian
(SISAL) method, proposed by Bioucas-Dias (2009), have
been tested, but the estimated endmembers are less accu-
rate.

The number of endmembers returned by this extraction
step can be either a configurable parameter (it is then the
same for all processed segments), or a variable automati-
cally estimated, for each segment, by the HySime method
(Bioucas-Dias and Nascimento, 2008).

2.2.4. Endmember selection
For each HS pixel detected as mixed, a list of possi-

ble endmembers is defined, in which the spectra of the
corresponding subpixels in the reorganised HS image at
the PAN resolution will be chosen. Note that the desired
spectra are necessarily endmembers since we assume all
subpixels are pure (see Section 2.1.3). This list of possible
endmembers gathers:

— the endmembers extracted from all segments in-
cluded (at least partially) in the processed mixed
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pixel at the PAN spatial resolution;
— spectra from pure pixels present in a given neigh-

bourhood of the processed mixed pixel.
In both cases, the endmember selection is local (pure

pixels and regions in the neighbourhood of the processed
mixed pixel). Indeed, a single material detected at two
distant locations of the image can have different proper-
ties (material age, direction, exposure to sunlight, shadow,
etc), which results in a spectral intra-class variability that a
global approach cannot take into account (Loncan, 2016).
That is why a local approach has been preferred.

Gathering several lists of local endmembers may result
in redundancy. That could be a problem when the abun-
dances of each material are estimated, distorting the ob-
tained proportions. One should therefore reduce the list of
potential endmembers, by removing spectra that are too
similar. Pearson (centered) correlation coefficient is used to
measure the spectral similarity, with a configurable thresh-
old, called correlation threshold, above which two com-
pared spectra are considered to share the same spectral
signature.

To reduce the list of potential endmembers, we com-
pute the correlation coefficients associated with each cou-
ple of endembers, then we process iteratively. The process-
ing order has a significant impact on the final result, so
we remove at first the endmember present in the largest
number of couples whose correlation exceeds the chosen
correlation threshold, and so on, until the correlation co-
efficients of the remaining endmembers are all below that
threshold.

The higher the correlation threshold, the more end-
members are kept, and the more combinations will be
tested in the spatial reorganisation step (Section 2.2.6),
which increases the memory used by the algorithm. Thus,
in practice, as the correlation threshold is very close to 1,
we choose instead to express it in terms of memory capac-
ity. Thereafter, we systematically set the correlation thresh-
old to limit this capacity (number of combinations × num-
ber of endmembers per combination × number of spectral
bands per endmember) to 109 elements.

2.2.5. Abundance estimation
Once the reduced list of endmembers has been set

for the processed HS pixel, estimating their abundances
provides their proportions in the mixed HS spectrum. This
means decomposing the HS spectrum as a linear combina-
tion of the retained endmembers, whose coefficients are all
positive with a sum equal to 1 (a 1 value corresponding to
100 % of the mixed spectrum), and are called abundances.

The method initially proposed by Loncan (2016) solved
a quadratic programming problem, based on the work
of Goldfarb and Idnani (1983). However, the Fully Con-
strained Least Squares (FCLS), detailed by Heinz et al.
(2001), has been adopted in this new version of SOSU. It is
a least squares method taking into account the sum-to-one

constraint as well as the non-negativity of the abundances.
Abundance estimation provides a second method for

filtering the list of endmembers: if we convert the abun-
dances into quantities of subpixels in the final pixel (de-
noted as occurrences), a given endmember must have an
occurrence at least equal to 1 to be attributed to at least
one subpixel and thus contribute to the final unmixed pixel.
This amounts, after normalisation, to a 1/r2 abundance,
where r is the spatial resolution ratio between the PAN and
HS images. Endmembers having an abundance lower than
the threshold are not retained for the reorganisation.

In practice, this threshold can be generalized with the
a/r2 expression, where a (denoted thereafter as abun-
dance threshold) is not necessarily equal to 1 and becomes
an input parameter, providing control over the endmember
filtering process. One should choose a value for a as low
as possible (a = 0 meaning no filtering) to keep as many
endmembers as possible and thus test as many reorgan-
isations as possible during the next step (spatial reorgan-
isation, Section 2.2.6). However, this results in increasing
the memory cost of the algorithm.

2.2.6. Spatial reorganisation
After choosing, during the abundance thresholding

step, the spectra constituting the final unmixed pixel, these
spectra still have to be attributed to the right subpixels. The
spatial reorganisation step therefore tries to find the best
arrangement respecting the spatial variability of the PAN
image, as depicted in Fig. 4. The difficulty lies in the choice
of the reorganisation method to determine the most accu-
rate reorganised pixel with respect to a primary criterion to
be defined. For example, possible criteria are:

— respecting the occurrence of each endmember;
— minimizing the gap with the associated group of

PAN subpixels;
— minimizing the gap with the associated HS pixel;
— following the geometry of the segmented image.
This is a crucial step, which has a direct impact on the

final result: regardless of the relevance of the selected end-
members, the result will only be acceptable if they are cor-
rectly attributed to the corresponding subpixels. It is also
the most complex part of the method to execute, because
a group of spectra, defined over a large number of bands
covering the reflective domain, has to be attributed to a
group of subpixels having only a PAN value (at this spatial
resolution), which is defined over one spectral band cover-
ing only the visible domain.

Figure 4 – Goal of spatial reorganisation (Loncan, 2016).
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To cope with these difficulties, several methods were in-
vestigated by Loncan (2016), each of them attributing end-
members one by one (by taking into account their occur-
rences and the values of the corresponding subpixels in the
PAN image). These approaches do not consider all the pos-
sible cases, removing combinations that could be more ac-
curate. The spatial reorganisation method proposed here
tests every relevant case with a combinatory analysis. It
considers each possible reorganised pixel as a whole, un-
like a subpixel-wise approach.

The principle of this method is to test all the possi-
ble combinations of single endmembers per segmented re-
gions included in the HS pixel to be reorganised. Therefore,
for each tested reorganisation, all the subpixels associated
with one single region are coupled to the same endmem-
ber, and, conversely, each endmember can only be asso-
ciated with one single region. The latter constraint ensures
that two neighbour regions cannot be merged into one ma-
terial by being assigned to the same endmember. This ap-
proach drastically limits the number of combinations, by
only keeping the ones which fully respect the segmenta-
tion map.

Once the possible reorganised pixels have been sim-
ulated for each endmember/region combination, choosing
the most accurate one can be done in several ways. The
simplest approach is to select the reorganisation minimiz-
ing the RMSE (see Section 2.3.2) with the PAN or HS im-
age:

— RMSE between the spectra of the tested pixel inte-
grated over the PAN domain and the corresponding
values in the PAN image (denoted as PAN error);

— RMSE between the spectrum of the spatially aver-
aged tested pixel and the corresponding spectrum
in the HS image (denoted as HS error).

The first criterion has the advantage of taking into account
the image geometry at the subpixel scale, but cannot com-
pare the error on each spectral band, as the HS error does.
Thus, to remove as much ambiguity as possible (for exam-
ple, two combinations having similar PAN or HS errors), we
choose to set a pre-selection of acceptable reorganisations
using the PAN error, and then we select among them the
reorganisation minimizing the HS error. Several threshold
values have been tested for the pre-selection. We even-
tually choose to keep the endmembers whose PAN error
does not exceed by more than 10 % the lowest error value.

The accuracy of this new reorganisation approach is
however offset by a much more significant need for mem-
ory. Indeed, the number of endmember/region combina-
tions directly depends on the segmented image precision
(Section 2.2.2), the number of endmembers extracted per
segment (Section 2.2.3), as well as the correlation (Section
2.2.4) and abundance (Section 2.2.5) thresholds, which fil-
ter potential endmembers.

2.2.7. Gain method
Once the reorganisation has been performed, the last

step is applying the fusion method to inject the spatial in-
formation from the PAN image into the reorganised one.

We use the Gain method, as defined in Section 2.1.2,
except that it is applied here to the reorganised unmixed
oversampled HS image (instead of the oversampled-only
HS image).

The two properties described in Section 2.1.2 justify the
choice of the Gain method as the fusion step. On the one
hand, the spectral content of the input image (here, the re-
organised HS image), obtained from all the previous steps,
is fully preserved (apart from scale factors). On the other
hand, the spatial information from the PAN image is fully
added into the reorganised HS image, via the new scale
factors.

2.3. Performance assessment protocol

2.3.1. Principle
To evaluate the SOSU method performance, simulated

images have been used. To this end, we start from a real
HS image called reference image, then we degrade it, spa-
tially to simulate the HS image, and spectrally to simulate
the PAN image. The fused image is obtained from these
two degraded images, and should have as many pixels
and spectral bands as the reference image (same spatial
and spectral dimensions). Measuring the gap between the
fused and reference images, by using adapted quality cri-
teria (Section 2.3.2), is a relevant evaluation of the fusion
process known as Wald’s protocol (Wald et al., 1997).

By extension, Wald’s protocol is a way to compare dif-
ferent fusion methods. It is used here to set a systematic
comparison between the proposed method without prepro-
cessing (Gain) and with (SOSU). This protocol is however
only possible in the case of simulated images (from real or
synthetic scenes), for which we have a reference image.

2.3.2. Quality criteria
Numerous quality criteria adapted to image fusion,

called Image Fusion Quality Metrics (IFQMs), have been
defined in litterature (Jagalingam and Hegde, 2015) to eval-
uate similarity between an estimated image and a refer-
ence image. They are generally divided into three cate-
gories: spatial, spectral and global (Loncan et al., 2015). Al-
though no consensus exists about the choices of quality cri-
teria, the selected IFQMs are the global RMSE (Root Mean
Squared Error) and ERGAS (Erreur Relative Globale Adi-
mensionnelle de Synthèse) described by Wald (2000), the
spectral SAM (Spectral Angle Mapper) defined by Kruse
et al. (1993), and the (non-centered) spatial CC (Cross Cor-
relation) described by Yoo and Han (2009). In addition to
being widely used in image fusion, they have the advan-
tage of being complementary, and constitute the most reli-
able criteria according to Pei et al. (2012).

Revue Française de Photogrammétrie et Télédétection 
https://doi.org/10.52638/rfpt.2022.508

 
           64

Numéro spécial Imagerie Hyperspectrale 
n° 224 (année 2022)



On the one hand, RMSE, ERGAS and SAM are error
measures, so the higher their values, the higher the error
(0 being the ideal value). On the other hand, CC is a sim-
ilarity measure, so the higher its value, the higher the sim-
ilarity between the two images, a value of 1 corresponding
to identical images.

2.3.3. Multi-scale evaluation processes
On the one hand, the error (between the fused and ref-

erence images) can be estimated at the global image scale.
It generaly consists in applying the quality criteria selected
in Section 2.3.2 to the whole set of pixels, but we also pro-
pose applying them to the mixed pixels only, since pure
pixels are treated in the same way with both methods.

On the other hand, the error can be estimated at
the local pixel scale. To this end, spectral criteria (here,
SAM) between a fused image and the associated refer-
ence image can be calculated for each pixel to determine
their spatial distribution, providing error maps. These val-
ues can be obtained by taking into account the reflective
domain, or by focusing on the VNIR (Visible and Near-
Infrared: [0.4 − 1.0 µm]) and SWIR (Short-Wave Infrared:
[1.0− 2.5 µm]) domains.

It is possible, from these error maps, to determine the
ratio of mixed pixels which have been improved (or de-
graded) by SOSU against Gain, by comparing the SAM val-
ues of each pixel. In what follows, this percentage is called
improvement rate, and we focus on mixed pixels only to
calculate it, for the same reason as above.

3. Data sets

3.1. Image generation

The simulated HS and PAN images have been obtained
by, respectively, spatially and spectrally degrading a refer-
ence image. The latter can be:

— a real HS image,
— a synthetic test image.

3.2. Description of real images

The contents of these three data sets are detailed in
Table 1. The first two ones were acquired by the HyMap
airborne instrument during the 2009 HyEurope campaign
(Barat and Dubois-Fernandez, 2008) at a 4 m spatial res-
olution. They respectively cover fields on the outskirts of
Garons (France), and agricultural lands of the Camargue
(France). The third data set was acquired by the SYSIPHE
imaging system (Rousset-Rouviere et al., 2011) during the
2015 Canjuers campaign (Rousset-Rouviere et al., 2017)
at a 0.5m spatial resolution, then we simulated it at a 1.5m

spatial resolution (spatial averaging). The SYSIPHE sys-
tem has two imaging instruments: Sieleters (ONERA) for
the II and III infrared bands, and Hyspex Odin (FFI/NEO)
for the reflective range. However, in this article, only the
reflective data are processed.

Data set Garons,
Camargue

Canjuers

Instrument HyMap Hyspex Odin
Environment agricultural suburban
Spectral domain [0.4− 2.5] µm [0.4− 2.5] µm

Number of bands 115 307

Simulated spatial
resolution

4 m 1.5 m

Size of the extrac-
ted images (pixels)

104× 104 64× 64

Table 1 – Data sets.

3.3. Construction of the synthetic image

A synthetic HS thumbnail image (104× 104 pixels) has
been generated (Fig. 6), using spectra from the SYSIPHE
data set. The different regions are generated by using ge-
ometric shapes with various dimensions and orientations.
Each of them is associated with one single class of ma-
terial, among four retained classes (volleyball court, road,
stadium, blue roof), as depicted in Fig. 5. For each of
these classes, ten representative spectra have been col-
lected, to simulate the intra-class variability of the mate-
rial. We choose to test classes of different variabilities,
therefore their spectrally averaged standard deviations (in
W ·m−2 ·sr−1 ·µm−1) range from 0.99 (blue roof) to 2.19

(volleyball court). As an order of magnitude, the averaged
radiance (in W ·m−2 ·sr−1 ·µm−1) of the whole set of spec-
tra is 71.1 in the VNIR range, and 14.4 in the SWIR range.
Spectra from the different classes are then randomly as-
signed (following a uniform distribution) to the correspond-
ing pixels.

Figure 5 – Synthetic image — Average spectral signatures
of the four classes (missing atmospheric absorption bands
in dotted lines).

The synthetic image is used to validate the operation of
SOSU and to identify its limits. We are interested in particu-
lar in the limits intrinsic to the unmixing and spatial reorgan-
isation steps. To avoid segmentation errors, the ideal seg-
mentation map (set by knowing the regions used to build
the reference image) is exploited. The rate of mixed pixels
is 42 %.
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3.4. Images derived from real data sets

For each real data sets (Table 1), several reference im-
ages covering reduced scenes have been extracted.

The HyMap main reference image, called "Fields" (Fig.
7), is extracted from the Garons data set. It represents
an agricultural landscape, split into relatively homogeneous
areas, and has 53 % of mixed pixels.

The SYSIPHE main reference image, called "Stadium"
(Fig. 8), contains several elements: buildings, two volleyball
courts, roads and a stadium part (right part of the image).
The scene has a significant number of details including ar-
eas difficult to unmix (volleyball courts) and sights (upper
left corner of the image). The image has 63 % of mixed
pixels, but this percentage takes into account the larger ho-
mogeneous area depicting the stadium. Excluding the sta-
dium, we have 84 % of mixed pixels in the left part of the
image only.

In addition, five other reference images are used lat-
ter in this article (Section 4.4). The first three images, A1-
3, which represent fields, have been extracted from the
Camargue (HyMap) data set. The last two images, B1-2,
which represent buildings and routes surrounded by vege-
tation (pine trees), have been extracted from the Canjuers
(SYSIPHE) data set.

3.5. HS and PAN degraded images

The HS and PAN images used as inputs of the fusion
methods are derived from a single reference image (see
Wald’s protocol, Section 2.3.1). The latter is either the syn-
thetic image (Section 3.3), or an image extracted from one
real data set (Section 3.4). In both cases, the generation
method for HS and PAN images is the same.

Regarding the PAN image, the degradation consists of
only averaging the spectral bands of the reference image
over the PAN domain.

The new HS image is obtained, for each degraded
pixel, by spatially averaging the subpixels of the r×r corre-
sponding window in the reference image. A value of 4 has
been chosen as the r resolution ratio for all simulated HS
images.

4. Results

4.1. Proof of concept (synthetic test image)

The SOSU method has been tested on the synthetic
image (Fig. 6) with the following parameters:

— Segmentation method: ideal;
— Number of endmembers per segment: automati-

cally determined by HySime;
— Variance threshold: 48 W 2 ·m−4 ·sr−2 ·µm−2;
— Neighbourhood of pure spectra selection: 6;
— Abundance threshold: 0 (all endmembers are kept

at this step).

(a) Reference (b) PAN simulation

(c) HS simulation (r = 4) (d) Ideal segmentation

Figure 6 – Synthetic test image.

(a) Reference (4 m) (b) PAN simulation (4 m)

(c) HS simulation (16 m) (d) Segmentation (4 m)

Figure 7 – "Fields" data set (spatial resolutions in brackets).

Because of the significant spatial discontinuity caused
by the random distribution of spectra within each single re-
gion (to simulate spectral variability with a simple protocol),
numerous pure pixels can be regarded as mixed by SOSU.
The variance threshold has thus been chosen to detect as
many pure spectra as possible, as long as no mixed pixel
is detected as pure. We therefore detect only 17 % of pure
pixels with respect to the 58 % pure pixels actually present
in the image.
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(a) Reference (1.5 m) (b) PAN simulation (1.5 m)

(c) HS simulation (6 m) (d) Segmentation (1.5 m)

Figure 8 – "Stadium" data set (spatial resolutions in brack-
ets).

4.1.1. Visual analysis
Fig. 9 visually compares the images fused by Gain and

SOSU. The preprocessed image is also presented.

(a) Reference image (b) SOSU preprocessing

(c) Gain (d) SOSU

Figure 9 – Synthetic image — Visual results, RGB repre-
sentation (Red-Green-Blue).

The performance of Gain is limited: one can still dis-
tinguish the subpixel groups derived from the HS image,
which leads to spatial discontinuities, as well as a poor de-
lineation of the different regions.

The image fused by SOSU, on the other hand, is visu-
ally comparable to the reference image and has no spa-
tial blur: regions are separate and distinct. Spectrally, end-

members have been properly assigned to almost all sub-
pixels. Indeed, the search neighbourhood for pure spectra
(6 pixels) completes the endmember extraction done with
the VCA method on the different segments.

However, wrong endmembers have been assigned to
some regions of the image. This is notably the case in the
upper left corner (red dots in Fig. 9), where several small
regions are composed of exclusively mixed HS pixels. The
endmember search is therefore limited in these regions be-
cause, on the one hand, the corresponding spectra are not
appropriate for the VCA method (few input data, and lack
of pure spectra). On the other hand, there are not enough
pure pixels in the neighbourhood of processed pixels to
complete the list of potential endmembers. Nevertheless,
spatially, the delimitations of these unmixed regions are still
accurate.

4.1.2. Spectral analysis
The SAM maps (Section 2.3.3) of the images fused by

Gain and SOSU in the VNIR and SWIR domains are given
in Fig. 10.

Figure 10 – Synthetic image — Spectral error maps (SAM,
in degrees) obtained in VNIR and SWIR for images fused
by Gain and SOSU.

Error maps corroborate the superior performance of
SOSU in comparison with Gain in both VNIR and SWIR
domains: respectively 93 % and 98 % of pixels have an er-
ror lower than 2 with SOSU, against 75 % and 80 % with
Gain. Moreover, about 3.2 % of pixels processed by Gain
(345 pixels) have a significant SAM value (higher than 10)
in the reflective range, against 0.04 % for SOSU (4 pixels).

Visually, the central rectangle as well as the bands as-
sociated with the spectral signature of the road have been
perfectly reconstructed with SOSU. However, in the upper
part of the image, we still distinguish some isolated pixels
which are poorly unmixed (SAM values between 5.0 and
11.8). We also notice that the average error in the bands as-
sociated with the spectral signature of the volleyball court
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is slightly higher than in the rest of the image (SAM val-
ues close to 2.5 in the VNIR range). This means a coher-
ent endmember has been assigned, although its spectral
shape does not perfectly match the ones of the correspond-
ing spectra in the reference image.

By exploiting these local SAM values, we determine
the improvement rate of SOSU against Gain in the reflec-
tive domain (in the mixed pixel case), as defined in Section
2.3.3. Thus we get:

— 68.3 % of improved mixed pixels;
— 31.7 % of degraded mixed pixels.
This ratio is clearly in favor of SOSU. For instance, Fig.

11 depicts a pixel of the synthetic image reconstructed by
SOSU with a spectral signature similar to the one corre-
sponding in the reference image. The average normalised
gap in the reflective range between the reference spectrum
and the reconstructed spectrum is 4.3 % with SOSU. With
Gain, however, this pixel keeps the spectral shape of the
mixed HS pixel, which corresponds to a 17.5 % average
normalised gap in the reflective range.

Figure 11 – Synthetic image — Example of a subpixel bet-
ter reconstructed with SOSU than Gain.

4.1.3. Quality criteria computation
Tables 2 and 3 respectively compare the quality criteria

computed on all pixels or mixed pixels only, between the
Gain method alone and the SOSU method.

SAM RMSE ERGAS CC
Gain 2.02 3.47 1.87 0.84
SOSU 0.85 1.22 0.89 0.97

Table 2 – Synthetic image — Criteria computed on the full
image.

SAM RMSE ERGAS CC
Gain 2.33 3.81 2.03 0.75
SOSU 0.92 1.31 0.94 0.95

Table 3 – Synthetic image — Criteria computed on mixed
pixels.

By comparing the tables, we notice that the criteria val-
ues are better with the full image than with the mixed pixels.
Indeed, mixed pixels are a more significant source of error
than pure pixels (see Section 1.2), that is why the average
error of mixed pixels is larger than in the full image. Fur-
thermore, note that the ratios of error criteria (SAM, RMSE
and ERGAS) between Gain and SOSU are similar for the
whole image and the mixed pixels only. It is because the
error source taken into account in both cases is nearly the
same (error from mixed pixels), while weighted on different
groups of pixels.

Both tables reveal a clear improvement of the image
fused by SOSU, with all four criteria. This means that the
performance of SOSU is significantly better than Gain in
terms of spatial, spectral and global qualities. In particular,
the errors (SAM, RMSE, ERGAS) decrease by more than
50 % with respect to Gain (up to 65 % for RMSE), which
confirms the conclusions previously drawn with the visual
and spectral analyses.

4.2. Application of SOSU (agricultural landscape)

The parameters used by SOSU on this image (Fig. 7)
are the following:

— Segmentation method: Felzenszwalb (Felzen-
szwalb and Huttenlocher, 2004);

— Number of endmembers per segment: 3;
— Variance threshold: 2 W 2 ·m−4 ·sr−2 ·µm−2;
— Neighbourhood of pure spectra selection: 6;
— Abundance threshold: 0.05.

Felzenszwalb’s method has been chosen because transi-
tions between the different fields are not sharp enough for
the edge detection step of EDISON to be relevant (see Sec-
tion 2.2.2).

We take advantage of the significant number of pure
pixels in the scene (47 %) by setting the neighbourhood of
pure pixel selection (as potential endmembers) to 6 pixels.

4.2.1. Visual analysis
Fig. 12 visually compares the images fused by Gain

and SOSU (preprocessing and full process).
The two images fused by Gain and SOSU are visually

comparable. In the relatively homogeneous areas, SOSU
brings almost no improvement as compared with Gain.
However, in the case of pixels detected as mixed through
the radiance variations of one single material, SOSU pre-
processing slightly degrades the fused image.

In contrast, the mixed pixels having a real transition be-
tween several distinct materials or areas of the image are
more successfully processed. At the level of field borders,
SOSU preprocessing reconstructs the regions better, mak-
ing the delimitation more precise. In this way, the reorgan-
ised image provides a relevant spatial information about the
scene at the PAN subpixel scale. However, the very borders
are not large enough to be detected as specific materials in
the HS image during the endmember extraction step. This
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is particularly apparent on the darkest borders, which are
absent from the reorganised image (Fig. 12.b).

(a) Reference image (b) SOSU preprocessing

(c) Gain (d) SOSU

Figure 12 – "Fields" — Visual results (RGB representation;
images at 4 m spatial resolution).

4.2.2. Spectral analysis
All four SAM maps (images fused by Gain and SOSU

in the VNIR and SWIR domains) are almost identical, with
at least 80 % of their respective SAM values inferior to 2.
Indeed, the pixels detected as mixed in the scene are more
related to the radiance variations of a single material (intra-
class variability) than the presence of several distinct mate-
rials. Thus, the unmixing of these pixels is, at best, useless,
and at worst, an additional degradation. Therefore SOSU
preprocessing is mainly irrelevant on this image. However,
for most mixed pixels treated this way, the shape of the as-
signed spectrum remains similar to the corresponding one
in the reference image, ignoring the scale factor, and thus
the application of Gain as the last step restores the initial
spectrum.

In view of the low impact of SOSU preprocessing on
this image, we count more degradations than improve-
ments on mixed pixels with SOSU as compared with Gain
considering the improvement rate (see Section 2.3.3) in the
reflective range:

— 46.5 % of improved mixed pixels;
— 53.5 % of degraded mixed pixels.

Fig. 13 spectrally depicts one of the pixels degraded by
SOSU. The average normalised gap (in the reflective
range) between its spectrum in the reference image and
the corresponding spectrum obtained by the fusion method
is 7.0 % with SOSU, against 4.7 % with Gain. Regarding the
spectral shape, the SAM computed in the reflective range
for this pixel is 4.1 with SOSU, against 0.5 with Gain.

Figure 13 – "Fields" — Example of a subpixel degaded by
SOSU.

4.2.3. Quality criteria computation
Tables 4 and 5 compare the quality criteria between

Gain and SOSU, respectively computed on the full image
or on mixed pixels only.

SAM RMSE ERGAS CC
Gain 1.74 2.39 1.82 0.94
SOSU 1.81 2.41 1.88 0.93

Table 4 – "Fields" — Criteria computed on the full image.

SAM RMSE ERGAS CC
Gain 2.44 3.00 2.30 0.92
SOSU 2.57 3.03 2.38 0.92

Table 5 – "Fields" — Criteria computed on mixed pixels.

The performance of Gain and SOSU are similar. Al-
though Gain does provide the best results for these quality
criteria, gaps between both methods are negligible, hence
their impacts on the fusion results are not significant. The
highest gap is however obtained with SAM: it increases by
4.0 % with SOSU in the full image, and by 5.3 % in the
mixed pixels. Therefore, it is more relevant to apply Gain
with this low complexity data set.

4.3. Contribution of SOSU (peri-urban landscape)

The SOSU parameters for this data set (Fig. 8) are:
— Segmentation method: EDISON;
— Number of endmembers per segment: 2;
— Variance threshold: 2.2 W 2 ·m−4 ·sr−2 ·µm−2;
— Neighbourhood of pure spectra selection: 1;
— Abundance threshold: 0 (all endmembers are kept

at this step).
To ensure keeping all the endmembers while avoiding

a too important data size for the combinations to test dur-
ing the spatial reorganisation step, we decrease in return
the number of endmembers extracted per segment by the
VCA method (2 spectra) as well as the neighbourhood of
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pure spectra selection (1 HS pixel). The latter choice is jus-
tified by the fact that the actual regions of the image are
mostly localised (as compared with the "Fields" data set),
so an extended neighbourhood might involve inadequate
pure spectra.

The variance threshold, although low, is not small
enough to detect the majority of mixed pixels constituting
the volleyball courts (too close radiance values in the PAN
image). However, further decreasing this threshold would
lead to detect pure pixels as mixed in the rest of the image,
and would thus cause more significant errors in the fused
image.

4.3.1. Visual analysis
Fig. 14 visually compares the images fused by Gain

and SOSU (preprocessing and full process).

n

(a) Reference image

n

(b) SOSU preprocessing

n

(c) Gain

n

(d) SOSU

Figure 14 – "Stadium" — Visual results (RGB representa-
tion; images at 1.5 m spatial resolution).

Transition areas and delineations are better recon-
structed by SOSU. For example, the dark border of the
road in the upper-right corner, as well as the small path in
the lower-left corner, are sharper and more accurate with
SOSU. Also, the blue central roof is more homogeneous,
with more visible borders, in the SOSU fused image.

The most complex area to unmix includes the two vol-
leyball courts (see white box in Fig. 14). In particular, the
vertical white lines are thin (1 pixel width), very close (less
than 2 m apart, or 1 pixel), with a complex arrangement (5
successive regions in an 8 m long area, or 5 pixels). This
affects several steps of the method, such as segmentation,
leading to regions unrepresentative of the edges (Fig. 8),
which compromise endmember assessment and lead to in-
acurrate reorganisations.

Other errors can be seen on the reorganised unmixed
image. The pixel colored in pink in the HS image (white cir-
cle in Fig. 14), which covers an area constituted of a red
container and a highly reflecting vehicle, is logically de-
tected as a mixed pixel by the method, but this does not
lead to any change in the reorganised image. Its spectrum
is so decorrelated from the other ones that it is retained,
unaltered, as a full-fledged endmember. It is therefore as-
signed to all the corresponding subpixels as the optimal
spatial reorganisation because the latter minimizes the HS
error (leading to a null error), preventing more accurate
endmembers to be chosen instead.

One can also see « isolated points », or small groups of
pixels, assigned to inadequate endmembers. This can be
the result of an inaccurately segmented zone (overflow of
the central blue roof on its left, for example) or an irrelevant
choice of the best spatial reorganisation (inadequate as-
signed endmembers, or adequate endmembers assigned
to the wrong pixels). This confirms the significant impact of
the segmentation on the reorganisation quality, as detailed
in Section 5.2.

4.3.2. Spectral analysis
The SAM maps (Section 2.3.3) of the images fused by

Gain and SOSU in the VNIR domain are depicted in Fig.
15. Error maps in the SWIR domain, on the other hand,
are almost identical, with at least 87 % of their respective
SAM values inferior to 2.

Figure 15 – "Stadium" — Spectral error maps (SAM, in de-
grees) in VNIR for images fused by Gain and SOSU.

As identified during the visual analysis, the volleyball
courts represent the largest source of error for both fused
images. The SAM values of the court edges in VNIR ex-
ceed 11 with both methods. In the image fused by Gain,
they remain below 19.7 whereas in the image fused by
SOSU, they reach 24.7. Thus, not only SOSU fails to un-
mix this part of the image, but the unmixing errors cause
further deterioration.

The improvement rates (Section 2.3.3) derived from
these SAM values in the reflective range are the following:

— 54.3 % of improved mixed pixels;
— 45.7 % of degraded mixed pixels.
The contribution of SOSU is confirmed by locally

analysing the different spectra of the fused image, as well
as their gaps with the reference spectra. On the one hand,
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Figure 16 – "Stadium" — Example of a subpixel degraded
by Gain and improved by SOSU.

Fig. 16 depicts a subpixel from a mixed area which has
been improved by SOSU: the average normalised gap in
the reflective range between the reference and fused spec-
tra is 41.5 % for Gain, against 1.6 % for SOSU. On the other
hand, Fig. 17 depicts the degradation of the subpixel asso-
ciated with the highest SAM value (24.7) with SOSU: the
average normalised gap in the reflective range between
the reference and fused spectra is 19.1 % for Gain, against
32.9 % for SOSU.

Figure 17 – "Stadium" — Example of a subpixel degraded
by SOSU preprocessing.

4.3.3. Quality criteria computation
Tables 6 and 7 compare the quality criteria between

Gain and SOSU. These values are similar between the two
methods, considering both the full image and mixed pixels
only. Specifically, they are strictly equal in terms of CC, and
slightly better for SOSU with SAM (2.3 % improvement for
the full image, 3.0 % for mixed pixels) and ERGAS (1.3 %

improvement for the full image, 1.9 % for mixed pixels), al-
though these gaps are not significant enough to rank the
methods. Therefore, the quality criteria are not represen-
tative of the SOSU improvement rate obtained during the
spectral analysis (about 10 % of additional mixed pixels im-
proved by SOSU as compared with Gain). This justifies the
use of multi-scale evaluation processes (quality criteria ap-

plied at the image scale, error maps and improvement rates
at the pixel scale).

SAM RMSE ERGAS CC
Gain 2.67 3.98 2.25 0.93
SOSU 2.61 4.02 2.22 0.93

Table 6 – "Stadium" — Criteria computed on the full image.

SAM RMSE ERGAS CC
Gain 3.95 5.02 3.14 0.89
SOSU 3.83 5.08 3.08 0.89

Table 7 – "Stadium" — Criteria computed on mixed pixels.

4.4. Global peformance analysis

To support the results obtained and analyzed with the
three precedend images and demonstrate the generaliza-
tion of SOSU, five additional real images, A1-3 and B1-2,
have been tested. They are defined in Section 3.4, while
their generated PAN and HS images are depicted in Fig.
18. For each of these additional data sets, the segmented
image has been processed with Felzenszwalb’s method
(Section 2.2.2).

Image A1 A2 A3 B1 B2
Endmembers per
segment

2 5 4 5 5

Variance threshold 2 2 2 0.2 2.2
Pure pixel
neighbourhood

2 2 2 2 2

Abundance threshold 0.06 0.06 0.06 0.003 0.06

Table 8 – SOSU parameter description.

The SOSU parameters chosen for the five tested
scenes are described in Table. 8. The corresponding fu-
sion results are provided (visually and numerically) by Fig.
18 and Table. 9. These results confirm most of conclusions
established by the analyses of the previous fusion results
(Sections 4.2 and 4.3).

Image Method SAM RMSE ERGAS CC

A1
Gain 2.15 2.70 2.80 0.93
SOSU 2.33 3.00 3.03 0.92

A2
Gain 2.34 3.02 3.11 0.97
SOSU 2.25 2.89 2.96 0.97

A3
Gain 2.78 3.78 3.63 0.94
SOSU 2.70 3.77 3.60 0.94

B1
Gain 4.58 6.99 5.53 0.92
SOSU 4.81 7.22 5.68 0.92

B2
Gain 4.48 4.40 3.73 0.96
SOSU 4.48 4.41 3.75 0.96

Table 9 – Criteria computed on the full image.
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Spatially, scenes involving numerous distinct areas
separating different classes, such as A2, A3 and buildings
from B1 and B2, are well processed by SOSU (Fig. 18).
For instance, the delineations between fields and edges of
structures are well reconstructed, as depicted in Fig. 19.
However, scenes involving large uniform areas (i.e. too few
materials) or regions which are not distinct enough (unclear
delineations or strong intra-class variability), such as vege-
tation from B1 and B2, lead to reorganisation errors. A1 is
a particular case, because it should be in the same case as
A2 and A3, but regions follow too closely the cutting of the
degraded HS image to have SOSU preprocessing provide
significant results.

Numerically, Gain and SOSU have comparable perfor-
mance, for all spatial, spectral and global quality criteria.
Yet, in most cases (in particular A2 and A3), SOSU pre-
processing significantly refines the spectral content of the
reorganised image at the PAN subpixel spatial resolution.
This confirms the need to go beyond these general qual-
ity criteria and evaluate the fusion results at the local pixel
scale (error maps, improvement rates), as previously per-
formed with the three main data sets.

5. Discussion

5.1. Analysis of results

The visual, spectral and numerical analyses of SOSU
and Gain for the different data sets confirm the contribu-
tion of the proposed method. Out of the main three data
sets, two fused images have been visually (transition ar-
eas) and numerically (improvement rates) enhanced by
SOSU in comparison with Gain: the synthetic image, and
the "Stadium" image.

These results have been established thanks to the
combined evaluation processes, which provided a new and
complete quality assessment protocol (global approach for
criteria applied to full image and mixed pixels, local ap-
proach for error maps and associated improvement rates),
bringing out complementary results. The contribution of this
proposed assessment protocol, as compared with a mere
global evaluation of the entire images, was confirmed by
Section 4.3 and 4.4.

Overall, the scenes which have been clearly enhanced
by SOSU (Synthetic, "stadium", A2, A3) involve a large
number of HS pixels detected as mixed due to a real tran-
sition between at least two distinct materials, and for which
the unmixing and spatial reorganisation steps provide rel-
evant additional information at the subpixel scale. These
results are promising for processing more complex scenes
with shadowed parts such as urban areas.

For some scenes (mainly "Fields" and B2), on the other
hand, SOSU preprocessing does not have enough impact
on the fused image. These scene involve few different ma-
terials, gathered into larger areas or with higher intra-class
variability. In this case, a significant part of the mixed HS

A1, PAN (4 m) A1, HS (16 m) A1, SOSU (4 m)

A2, PAN (4 m) A2, HS (16 m) A2, SOSU (4 m)

A3, PAN (4 m) A3, HS (16 m) A3, SOSU (4 m)

B1, PAN (1.5 m) B1, HS (6 m) B1, SOSU (1.5 m)

B2, PAN (1.5 m) B2, HS (6 m) B2, SOSU (1.5 m)

Figure 18 – PAN and HS input simulated images with
SOSU fusion result for each data set (spatial resolutions
in brackets).

Reference Gain SOSU

Figure 19 – Extract from A3 better reconstructed with
SOSU than with Gain (4 m spatial resolutions).

pixels are detected as such due to the radiance variations
of a single material. SOSU preprocessing is therefore less
accurate. The Gain method is thus recommended, because
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spectral shapes do not need to be altered and the scale
factor derived from the PAN image (Section 2.1.2) is suffi-
cient to represent the radiance variations of a single mate-
rial.

Moreover, the influence of the initial steps of the
method should be underlined. Indeed, the accuracy of the
mixed pixel detection (related to the intra-class variability
of the materials) and the quality of the segmentation map
play a key role throughout SOSU preprocessing. Any seg-
mentation error, or wrongly identified HS pixel, may locally
lead to reconstruction errors. Improvements of these steps
are thus proposed in Section 5.2.

However, the spatial resolution has little influence on
the fusion result. For instance, at a 4 m spatial resolu-
tion, A1 and A2 lead to numerical results with SOSU that
are respectively inferior and superior to the ones of Gain.
The same applies to B1 and "Stadium", at a 1.5 m spatial
resolution. In these examples, the difference between the
results rather comes from the composition of the scenes
(distinct regions, intra-class variability, etc), as explained
above.

5.2. Identification of additional improvements

The synthesis of the results established for the different
data sets highlights the three main sources of error, as well
as the related proposed enhancements:

1) Region and mixed pixel detection. The first two steps
of the method, which detect in parallel regions and mixed
pixels from the PAN image, are, subsequently, the largest
error sources of SOSU. Regarding the segmentation, there
is no optimal method, the segmentation map accuracy be-
ing related to the choice of the best compromise. Regard-
ing the mixed pixel detection, there is not always a vari-
ance threshold providing a perfect separation between the
whole pure pixels and the whole mixed pixels, because of
the intra-class variability. An alternative would be exploiting
the HS image, to avoid the ambiguity related to the single-
band radiance values of the PAN image (difficulty in dis-
tinguishing between material changes and intra-class vari-
ability cases).

2) NIR and SWIR domains neglected as compared with
the visible domain. On the one hand, as the PAN image
is defined in the visible domain, the NIR (Near Infrared:
[0.8 − 1.0] µm) and SWIR domains are insufficiently ex-
ploited at the subpixel scale. The PAN-based criteria, which
are mainly used instead, can lead to confusion errors. On
the other hand, even when the whole reflective domain
can be taken into account, the general shape of the spec-
tra gives more importance to the visible domain than the
NIR/SWIR domains, because radiance values are higher.
A solution to offset the weight put on the visible range
would be normalising spectra by spectral intervall (VIS,
NIR, SWIR) through spectal transformations.

3) Spatial reorganisation. Even if the list of possible end-
members is relevant, badly arranging them can lead to re-
organisation errors and thus ruin the fusion result. As this
step consists in testing all the possible combined pixels, the
only way to improve it is refining the minimisation criterion
used to retain the optimal combination. For example, using
the Peak Signal to Noise Ratio instead of the RMSE can
be a solution to avoid too noisy reorganisations resulting in
isolated defective subpixels.

6. Conclusion and future work

A new method of HS pansharpening, SOSU, has been
presented. Starting from a fusion method of the literature
preserving the PAN spatial information (Gain), we added
preprocessing steps to refine the spectral content of the
fusion result. The main steps of this preprocessing (mixed
pixel detection, segmentation, endmember extraction and
selection, abundance estimation and spatial reorganisa-
tion) have been described, and a performance assess-
ment protocol of the method, based on spatial, spectral
and global criteria, applied to different spectral domains
(VNIR, SWIR, reflective), has been proposed. SOSU has
been compared to the reference method on three scenes of
increasing complexity (synthetic, agricultural, peri-urban),
and a global performance analysis has been conducted on
five additional real scenes. By jointly using complementary
evaluation processes (quality criteria applied at the image
scale to all pixels or mixed pixels only, error maps and im-
provement rates applied at the pixel scale), results highlight
the significant contribution of the SOSU method as com-
pared with the Gain method. Regarding the most complex
scene (peri-urban area), the accuracy of the image reor-
ganised by SOSU increased the rate of improved mixed
pixels by nearly 10 % (in comparison with the application
of the Gain method only). Nevertheless, the performance
of SOSU and Gain remain quite similar with intermediate
scenes.

A synthesis of the results has been established, from
the contributions of the method as well as the errors of
spectral unmixing and spatial reorganisation still present.
It has notably brought out the impacts of the initial steps
of SOSU and intra-class variability on the fusion quality.
Improvements of the method have been proposed, such
as using the HS image during the mixed pixel detection
step, taking better account of the NIR and SWIR domains
by applying a normalisation method to the HS spectra, and
refining the minimization criterion of the spatial reorgani-
sation step. Our future work will include applying SOSU
to more complex scenes (urban areas with the issues of
mixed and shadowed pixels), evaluating the method for dif-
ferent spatial resolutions (varying sampling rates and mod-
ulation transfer functions) and for HS/PAN spatial resolution
ratios from 2 to 10.
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