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Degeneration to infinity may provide
information about kinematics

Michel Coste and Nestor Djintelbe

Abstract We propose to degenerate the kinematics of a mobile platform by letting
the lengths of its legs tend to infinity. The rationale for this approach is that the de-
generate situation is simpler to analyze and may provide relevant information for the
kinematic analysis of the platform. We implement this approach in the framework
of the Study model. We show its usefulness on the example of the general operation
mode of the Tsai 3-UPU platform, whose kinematic analysis is rather difficult.

Key words: Study quadric, degeneration, 3-UPU platform.

1 Introduction

The Study model has proved very useful for the algebraic modelization of problems
in robotics and their resolution in computer algebra systems. It realizes the group of
rigid motions as a subset of a 6-dimensional quadric (the Study quadric S) in the 7-
dimensional real projective space. Precisely, the group of rigid motions is identified
with the complement in S of a 3-plane E contained in S. For the Study model and
its use in kinematics, one can see [3–5].

The exceptional plane E can be seen as the boundary of the group of rigid mo-
tions in S, but there is no useful interpretation of its points as degenerate rigid mo-
tions. So we modify the Study model in order to have a boundary of dimension 5
whose points can be seen as degenerate rigid motions with infinite translation part.
This modification is described in Section 2. An alternative modification is described
in [2], using the notion of blowing-up.
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The purpose of the introduction of a meaningful boundary for the group of rigid
motions is to obtain information on the kinematics of the robots as the lengths of
their legs are large enough. We have chosen to illustrate this approach with the
example of the Tsai 3-UPU platform; a thorough kinematic analysis of this parallel
manipulator has been done in [6]. We present a short survey in Section 3, insisting
of the so-called general operation mode which is rather mysterious. In Section 4, we
show that the degeneration of this general mode produces new relevant informations
on its kinematic behaviour.

2 The Study model and its modification

We recall the Study model for the group of rigid motions and then define a modifi-
cation of this model. This modification aims at obtaining a boundary which allows
to degenerate rigid motions as the length of the translation vector tends to infinity.

2.1 The Study model

The Study model of the group of rigid motions is the quadric S with equation

(Σ) x0y0 + x1y1 + x2y2 + x3y3 = 0 (1)

where [x0 : . . . : x3 : y0 : . . . : y3] are homogeneous coordinates in the real projective
7-space. We denote x =

[
x0, x1, x2, x3

]T and y =
[
y0, y1, y2, y3

]T. We recall that to
each point of this quadric outside of the exceptional 3-plane E with equation x = 0,
we associate the rigid motion with rotation matrix

R(x) =
1
‖x‖2

x2
0 + x2

1− x2
2− x2

3 2(x1x2− x0x3) 2(x1x3 + x0x2)
2(x1x2 + x0x3) x2

0− x2
1 + x2

2− x2
3 2(x2x3− x0x1)

2(x1x3− x0x2) 2(x2x3 + x0x1) x2
0− x2

1− x2
2 + x2

3

 (2)

and translation vector

t(x,y) =
2
‖x‖2

x0y1− x1y0 + x2y3− x3y2
x0y2− x1y3− x2y0 + x3y1
x0y3 + x1y2− x2y1− x3y0

 where ‖x‖2 = x2
0 + x2

1 + x2
2 + x2

3 . (3)

2.2 Modification of the Study model

The modification of S with which we shall work is a subset S̃ of the real 9-
dimensional affine space with coordinates w0,w1,w2,w3,s,y0,y1,y2,y3. We denote
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w =
[
w0, w1, w2, w3

]T. This subset is defined by the equations and inequalities

‖w‖2 = w2
0 +w2

1 +w2
2 +w2

3 = 1 ‖y‖2 = y2
0 + y2

1 + y2
2 + y2

3 = 1
w ·y = w0y0 +w1y1 +w2y2 +w3y3 = 0 s≥ 0 (4)

The modification S̃ is related to S via the mapping π : S̃→ S defined by

(w,s,y) 7−→ [w0s : w1s : w2s : w3s : y0 : y1 : y1 : y2 : y3] (5)

The image of π is the complement in S of the 3-plane y = 0 corresponding to rigid
motions whose translation vector is zero. Every rigid motion with a non zero trans-
lation vector is the image by π of two points (w,s,y) and (−w,s,−y) of S̃ with
s > 0 ; it is easily checked that s is the inverse of the length of the translation vector.
So π restricted to the set of (w,s,y) ∈ S̃ with s > 0 is just a double covering of the
set of rigid motions with a non zero translation vector. The image by π of an ele-
ment (w,0,y) ∈ S̃ is the element [0: 0 : 0 : 0 : y0 : y1 : y1 : y2 : y3] of the exceptional
3-plane E. The element (w,0,y) ∈ S̃ may be seen as the degeneration of the rigid
motion associated to (w,s,y) ∈ S̃ as s tends to 0, i.e. as the length of the translation
vector tends to infinity. It retains the information on the rotation part in w and on the
direction of translation in t(w,y).

3 Tsai 3-UPU

We recall the kinematic analysis of a mobile platform with three degrees of freedom
known as the Tsai 3-UPU. We rely on [6], with slight changes in presentation.

3.1 Algebraic modelization

The Tsai 3-UPU is a mobile platform with architecture illustrated in Figure 1. The
centers Ai and Bi of the universal joints on the base (resp. mobile platform) form an
equilateral triangle. The rotation axes 1 and 5 in the kinematic chain for each leg are
tangent to the circumscribed circles. The rotation axes 2 and 4 are parallel, and both
orthogonal to (AiBi).

For the algebraic modelization, we work in the fixed frame attached to the base
where the points Ai have coordinates

a1 :
[
0, h1, 0

]T a2 :
[
0, −h1/2,

√
3h1/2

]T a3 :
[
0, −h1/2, −

√
3h1/2

]T
,

where h1 is the radius of the circle circumscribed to the base (in the computations,
we shall fix h1 = 1). The coordinates of unit vectors giving the direction of the
rotation axes 1 for each leg are:
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Fig. 1 A Tsai 3-UPU platform.

v1 :
[
0, 0, 1

]T v2 :
[
0, −
√

3/2, −1/2
]T v3 :

[
0,
√

3/2, −1/2
]T

.

We have a mobile frame attached to the platform where the points Bi have coordi-
nates bi similar to ai with h1 replaced by the radius h2 of the circle circumscribed
to the platform (we shall take for short h2 = h in the computations). The home pose
of the mobile platform is when the mobile frame coincides with the fixed one. The
coordinates of Bi in the fixed frame are R(x)bi + t(x,y).

The constraint equation for each leg express that the axis 1, the line (Ai,Bi) and
the axis 5 are coplanar. These equations are

det(vi, R(x)bi + t(x,y)−ai, R(x)vi) = 0 for i = 1,2,3 . (6)

After chasing denominators, these constraint equations are homogeneous equations
(Ci) of degree 4 in x,y, the Study parameters. Together with the equation (Σ) of the
Study quadric and the inequation Nx 6= 0, the equations (Ci) describe the possible
poses for the mobile platform.

3.2 The operation modes

We form the ideal 〈C1,C2,C3,Σ〉 generated by these four equations and saturate it
with respect to Nx in order to get rid of parasitic components contained in the ex-
ceptional 3-plane (cf. [1] Chap. 4, § 4). We obtain a homogeneous ideal I whose
projective variety is an algebraic subset of dimension 3 of the Study quadric. The
operation modes of the mobile platform are the irreducible components of this al-
gebraic set. These irreducible components are obtaine by computing the primary
decomposition of I (cf. [1] Chap. 4, § 8). We obtain:

• J1 = 〈y0,x1,x2,x3〉 : all poses obtained from the home pose by translation.
• J2 = 〈x0,y1,x2,x3〉 : all poses obtained by a half-turn with vertical axis followed

by a translation.
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• J3 = 〈y0,y1,x2,x3〉 : all poses obtained by rigid motion in the base plane.
• J4 = 〈x0,x1,y2,y3〉 : all poses obtained by a horizontal flip followed by motion

in the base plane.
• A component whose kinematic analysis is difficult. We give only the first two

and the last generators of the ideal produced by the computation):

J5 =〈2x1y1 + x2y2 + x3y3, 2x0y0 + x2y2 + x3y3, . . . ,

x3y0(3x2
2− x2

3)(h+1)+ x2y1(3x2
3− x2

2)(h−1)− (x2
2 + x2

3)y0y1〉

We shall follow the terminology of [6] and call “general mode” the fifth mode of
operation.

It is remarkable that a small change in the architecture of the 3-UPU platform
can drastically affect its kinematic behaviour. The SNU 3-UPU differs for the Tsai
one in the disposition of axes 1 and 5: they point towards the center of the circle
circumscribed to the base (resp. platform) instead of being tangent to this circle.
The analysis of the operation modes of the SNU 3-UPU is done in [7]. There is
an operation mode where the poses are obtained from the home pose by rotation
around the origin, the operation modes J1 to J4 are again present, but there is no
general mode J5. Instead, there are three new components whose kinematic analysis
is easy:

• J6 = 〈x0,y1,y2,y3〉 : all poses obtained by a half-turn with axis through origin,
followed by a translation in the direction of the axis of half-turn.

• J7 = 〈y0,x1,y2,y3〉 : all poses obtained by the half-turn with vertical axis through
origin, followed by a rigid motion of mode J6; the rotation part is a rotation with
horizontal axis.

plus a non-real component J8 whose real points correspond to poses obtained by a
translation along the vertical axis through origin, possibly composed with the half-
turn around this axis. These singular poses belong also to other modes of operation.

4 Degeneration of the general mode

The kinematic analysis of the general operation mode of the Tsai 3-UPU is difficult.
We are going to compute the boundary of this operation mode in the modification
of the Study model and obtain some relevant information from this degeneration.

4.1 The boundary of the general mode

The projective variety V5 =V (J5)⊂ S contains the poses of the general mode, plus
some points of the exceptional 3-plane E.



6 Michel Coste and Nestor Djintelbe

We compute the inverse image π−1(V5) of V5 in the modification S̃. This is done
by substituting the variables xi with wis in the generators of J5 and adding equations
(5) to the list of generators. We obtain in this way an ideal in the ring of polynomial
in variables w,s,y.

We then remove from π−1(V5) the parasitic components entirely contained in the
hyperplane s = 0. This is done by saturating the ideal obtained in the preceding step
with respect to s. This new ideal J̃5 describes a subset Ṽ5 ⊂ S̃. The points (w,s,y) ∈
Ṽ5 with s > 0 correspond to poses in the general mode ( (w,s,y) and (−w,s,−y)
give the same pose). The points (w,0,y) ∈ Ṽ5 may be seen as degenerate poses of
the general mode, as the length of legs tends to infinity, retaining information on the
rotation and the direction of translation. The intersection of Ṽ5 with the hyperplane
s = 0 form the boundary of the general mode. This boundary is a 2-dimensional
algebraic subset of the boundary of the group of rigid motions.

This boundary is computed by setting s = 0 in the ideal J̃5, thus obtaining an
ideal in the ring of polynomials with variables w,y. The primary decomposition of
this ideal reveals that the boundary of the general mode has several components:

• K6 = 〈w0,y1,y2,y3,y0−1,w2
1 +w2

2 +w2
3−1〉 : all degenerate poses obtained by

a half-turn with axis through origin, followed by an infinite translation in the
direction of the axis of half-turn.

• K6′ , same as K6 but with y0 =−1.
• K7 = 〈y0,w1,y2,y3,y1−1,w2

0 +w2
2 +w2

3−1〉 : all degenerate poses obtained by
the half-turn with vertical axis through origin, followed by a a half-turn with axis
through origin and then an infinite translation in the direction of the axis of the
latter half-turn; the rotation part is a rotation with horizontal axis.

• K7′ , same as K7 but with y1 =−1.

There are also two non-real components K8 and K8′ whose only real points are
(w = [±1, 0, 0, 0]T,y = [0,±1, 0, 0]T) and (w = [0,±1, 0, 0]T,y = [±1, 0, 0, 0]T),
corresponding to degenerate poses obtained by infinite translation in the vertical
direction, possibly composed with a half-turn with vertical axis.

We have found that the boundary of the general mode of the Tsai 3-UPU decom-
poses as the union of the boundaries of the modes J6, J7 and J8 of the SNU 3-UPU
and that the degenerate poses in this boundary have a simple kinematic description.

4.2 The degenerate direct kinematic problem for the general mode

The actuated joints in the 3-UPU platform are the three prismatic joints which contol
the lengths ri = AiBi. The inverse kinematic mapping (IKM) for the 3-UPU platform
associates to each pose the system of lengths r1,r2,r3. We degenerate the IKM to
the boundary of the set of poses in the modification of the Study model. We do this
for the general mode of the Tsai 3-UPU. Of course, the lengths of the legs all tend to
infinity, but the relevant information for the degeneration consists in the differences
of the lengths of the legs.
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We obtain ri for (w,s,y) ∈ S̃, using x = sw, as the length of the vector

1
s
(sR(w)bi + t(w,y)− sai) . (7)

Recall that here w, y and t(w,y) are unit vectors. Hence

ri =
1
s

√
1+2s t(w,y) · (R(w)bi−ai)+ s2 ‖R(w)bi−ai‖2 . (8)

It follows that the limit of ri− r3 (for i = 1,2) as s tends to 0 is

di = t(w,y) ·
(
R(w)(bi−b3)− (ai−a3)

)
. (9)

This formula gives d1 and d2 as polynomials in w and y. The remainders of these
polynomials by a Gröbner basis (cf. [1] Chap. 2, § 6) for the ideals K6 and K7 give
the formulation of the degenerate IKM for these two components of the boundary
of the general mode:

• for K6, with w0 = y1 = y2 = y3 = 0, y0 = 1 and w2
1 +w2

2 +w2
3 = 1:

d1 = (3/2)(h−1)w2 +(
√

3/2)(h−1)w3

d2 =
√

3(h−1)w3
(10)

• for K7, with y0 = w1 = y2 = y3 = 0, y1 = 1 and w2
0 +w2

2 +w2
3 = 1:

d1 =−(
√

3/2)(h+1)w2 +(3/2)(h+1)w3

d2 =−
√

3(h+1)w2
(11)

For the two real singular points of K8, we have d1 = d2 = 0.
These formulas are very simple: the di are linear functions of w. Hence, the de-

generate direct kinematic problem (DKP) for the general mode is very easily solved.
For any (d1,d2) inside the ellipse

d2
1 −d1d2 +d2

2 =
9
4
(h−1)2 (resp.

9
4
(h+1)2)

there are two solutions in the mode K6 (resp. K7). For d1 = d2 = 0 there are solutions
which are singular degenerate poses.

4.3 Comparison with the actual DKP

The triviality of the degenerate DKP is in sharp contrast with the complexity of the
actual DKP for the general mode. It is explained in [6] that the DKP for this mode
is of degree 64, and that there are 24 real solutions for some values of the ri. Due
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to this complexity, the comparison of the actual DKP with its degenerate version
can only be performed partially. Nevertheless, this partial comparison shows that
the degenerate DKP provides valuable information on the DKP for large lengths of
legs.

We take h = 3/2 and compare what happens for d2 = 0 and d1 variable and
what happens for r2 = r3 = 100 and r1 variable. For the degenerate DKP, the easy
computation gives 0 solution for |d1|> 15/4, 2 solutions for 3/4 < |d1|< 15/4 and
4 solutions for 0< |d1|< 3/4. For the DKP a heavy computation performed with the
library SIROPA shows that there are 0 solution for r1−100 <−3.75.. or r1−100 >
3.74.., 2 solutions for −3.75.. < r1−100 < −0.77.. or 0.72.. < r1−100 < 3.74..,
4 solutions for −0.77.. < r1− 100 < −0.18.. or 0.48.. < r1− 100 < 0.72..; for r1
closer to 100, there are up to 12 solutions.

The separation inside the general mode between the two boundary modes K6 and
K7 can be well seen for r1 = 100.6,r2 = r3 = 100. The rotation part of the four
solutions to the DKP are given by x0 = ±0.98..,x1 = 0.,x2 = 0.15..,x3 = 0. and
x0 = 0.,x1 =±0.73..,x2 = 0.,x3 = 0.68...

5 Conclusion

We have shown with the example of the Tsai 3-UPU platform that the degenera-
tion of an operation mode whose kinematic analysis id rather complex can give a
boundary whose kinematic behaviour is very easy to understand. Moreover, the de-
generate DKP for this boundary gives valuable information on the original DKP,
for large enough lengths of legs. This approach can also be used for other examples
of parallel manipulators with restricted degrees of freedom (3-RPS, SNU 3-UPU,
4-UPU . . . ).
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