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Abstract
We prove several results of concentration for eigenfunctions in Toeplitz quantization. With mild as-

sumptions on the regularity, we prove that eigenfunctions are O(exp(−cNδ)) away from the corresponding
level set of the symbol, where N is the inverse semiclassical parameter and 0 < δ < 1 depends on the
regularity. As an application, we prove a precise bound for the free energy of spin systems at high
temperatures, sharpening a result of Lieb.

1 Introduction
Localisation or microlocalisation estimates are central in semiclassical analysis. The most practical context
for studying localisation of quantum states is the case of a smooth symbol on a fixed, finite-dimensional
manifold. Indeed, in this case one can use the symbolic calculus to prove O(~∞) decay in the forbidden
region.

How to improve these bounds? One idea is to impose more regularity (e.g. real-analyticity) and try
to obtain more precise microlocalisation estimates (see section 3.5 in [24] for the pseudodifferential case
and [9] for the Toeplitz case). Among recent work developping or using exponential estimates in analytic
regularity, one can cite magnetic Schrödinger operators [14, 15], the focusing NLS equation [11], resonances
of Schrödinger operators [12] and the Steklov problem [13].

In this article, we are interested in localisation estimates in low regularity for Toeplitz quantization
[21]. Given a compact Kähler manifold (M,ω, J), where ω is a symplectic form with integer periods and
J is a complex structure, one can construct a Hermitian complex line bundle (L, h) over M , such that
curv(h) = 2iπω; then the essential ingredient for the quantization is the family of Szegő projectors (SN )N∈N:
for every N ∈ N, SN is the orthogonal projector from the section space L2(M,L⊗N ) to the subspace of
holomorphic sectionsH0(M,L⊗N ). Then, the Toeplitz operator TN (f) associated with a function f : M → C
is the composition of the multiplication by f and the Szegő projector:

TN (f) : H0(M,L⊗N ) → H0(M,L⊗N )
u 7→ SN (fu).

One should think of N as an inverse semiclsasical parameter: N = ~−1. The Toeplitz operator TN (f) is
well-defined, and uniformly bounded in operator norm, as long as f ∈ L∞. This fact already hints towards
a different behaviour of Toeplitz and Weyl quantization for low-regularity symbols (in Weyl quantization,
one must assume some regularity to obtain L2 → L2 boundedness).

We are now ready to state the first main result of this article.
∗alix.deleporte@math.uzh.zh
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Theorem A. Let (M,ω, J) be a compact, quantizable Kähler manifold. Let α = 1
2 if (M,ω, J) is C1,1 and

α = 1 if (M,ω, J) is real-analytic.
Let f ∈ L∞(M,R). For every δ > 0 there exist C > 0, c > 0, N0 > 0 such that, for any N ≥ N0, for any

ε > CN−
1
4 +δ, for any normalised u ∈ H0(M,L⊗N ) and any λ ∈ R such that

TN (f)u = λu,

with
W = {x ∈M,dist(x, {f ≥ λ+ ε}) > ε},

one has
‖u‖2L2(W ) ≤

C

ε
exp(−c(Nε4)

α
2α+1 ).

In particular, if W is at fixed distance from a sublevel of f (that is, if ε does not depend on N), then the
mass of u on W is always O(exp(−cN 1

4 )). This precision is much better than the symbolic calculus even for
smooth symbols on smooth manifolds (which only leads to O(N−∞)) and, in fact, it is more precise than
the knowledge of the Szegő projector.

In fact, Theorem A, as well as Theorems B and C, only depend on the off-diagonal decay of the Szegő
projector (Proposition 2.2). In particular, equivalents of these Theorems hold on various generalisations
of Kähler quantization, as long as this off-diagonal decay holds: spinc-Dirac quantization [23], or Bochner
Laplacians [16, 20]. Semiclassical constructions of quantizations, like the one used for almost Kähler quan-
tization (appendix of [3]) do are not precise enough here: they are only defined modulo O(N−∞) so the
kernel decay is blurred at this limit. However, all methods used here work in this context, yielding O(N−∞)
estimates for low-regularity symbols.

The factor Nε4, or equivalently the condition ε > CN−
1
4 +δ, does not correspond to usual statements

about microlocalisation. Usually, operator calculus works for symbols in mildly exotic classes S 1
2−δ

, so that
one can prove Oδ(~∞) decay at distance ~

1
2−δ.

The FBI transform (or equivalently, the Bargmann transform) allows to conjugate Toeplitz operators
on Cn with pseudodifferential operators on R2n. Unfortunately, the error terms in this conjugation are
usually much larger than the decay rates in Theorem A: indeed, even for C∞ symbols it is not better than
O(~∞). Thus one cannot apply Theorem A to pseudodifferential operators. Apart from the case of Gevrey
or analytic regularity, the only situation in which one is able prove exponential decay for pseudodifferential
operators is Agmon estimates for differential operators [1].

On the Toeplitz side, the quantization of indicator function of sets has raised recent interest [6, 25], in
connection with Fermi statistics. We also must mention the work [19], which obtains fractional exponential
decay (more precisely, O(exp(−cN 1

2 ))) at finite distance for Toeplitz operators with C∞ symbols; in fact,
the proof of this localisation result only uses C1,1 regularity of the symbol. The method used is a weighted
estimate for the Kohn Laplacian (or rather, the Bochner Laplacian): one writes SN as the kernel of an
elliptic differential operator, then conjugate with rapidly oscillating weights.

Using the decay properties of the Szegő projector, one can simplify a great deal the method used in [19]
and relax the regularity hypotheses. This leads to the following improvement of Theorem A.

Theorem B. Let (M,ω, J) be a compact, quantizable Kähler manifold of regularity C1,1.
Let f ∈ Lip(M,R). There exist C > 0, c > 0 such that, for any N ∈ N, for any ε > CN−

1
2 , for any

normalised u ∈ H0(M,L⊗N ) and any λ ∈ R such that

TN (f)u = λu,

if
W = {x ∈M,dist(x, {f ≥ λ+ CN−

1
2 }) > ε},
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one has
‖u‖2L2(W ) ≤ CN

1
2 exp(−cε

√
N).

A byproduct of Theorem B is that the eigenfunction u is O(N∞) (in fact, exponentially small) on
{|f−λ| > N−

1
2 +δ}, for any δ > 0. If λ is a regular value of f , the sharpness of this localisation region cannot

be improved: the uncertainty principle forbids quantum states in Toeplitz quantization to be concentrated
on a band thinner than N− 1

2 .
A version of Theorem B is used in [19] to study the low-energy spectrum of symbols with more regularity.

If f ∈ C1,1(M,R) and min(f) = 0, then testing against coherent states shows that the smallest eigenvalue
of TN (f) is of order min(Sp(TN (f))) = O(N−1). In this situation, one should expect the corresponding
eigenvector u to be concentrated on {f ≤ N−1+δ}. In the case where f ∈ C∞, this can be obtained from
the symbolic calculus [5, 8]. Here, we are able to modify the proof of Theorem B, yielding a sharper result.

Theorem C. Let (M,ω, J) be a compact, quantizable Kähler manifold of regularity C1,1.
Let f ∈ C1,1(M,R) with min(f) = 0. For every δ > 0 and every C0 > 0, there exists C > 0 and c > 0

such that, for any N ∈ N, for any normalixed u ∈ H0(M,L⊗N ) and any λ < C0N
−1 such that

TN (f)u = λu,

one has
‖u‖2L2({f≥N−1+δ}) ≤ Ce

−cN
δ
2 .

A natural set of quantum Hamiltonians which can be written as Toeplitz operators consists in spin
operators: here, the manifold is (CP1)d ≈ (S2)d, and the symbol f is a polynomial in the coordinates for
the natural immersion into (R3)d. Such a symbol is real-analytic, so for fixed d and N → +∞ this result is
weaker than the O(exp(−cN)) decay established in previous work [9]. However, in experimental situations
d is much larger than N , which raises the question of uniform (in d) localisation estimates for a reasonable
sequence of symbols.

Usual tools for the study of microlocalisation fail in this context. The symbolic calclulus makes sense for
fixed d but goes awry as d increases: for instance, the stationary phase lemma typically requires a number
of derivatives which grows linearly with d. Theorems B and C rely on the pointwise decay property of the
Szegő projector by means of the Schur test. This also fails in large dimension (see Subsection 2.2).

However, the method of proof used in [19] adapts to the limit d → +∞ quite well. Controlling the
various constants yields

Theorem D. Let g be a tame spin system (see Definition 6.2). There exists C > 0 and c > 0 such that,
for every N ∈ N, for every d ≥ d0(N) large enough, for every u ∈ H0((S2)d, L⊗N ) of norm 1 and λ ∈ R
such that

TN (g)u = λu,

then with
U = {|g − λ| < CN−

1
4d

3
4 }

and
W = {x ∈ (S2)d, dist(x, U) > CN−

1
2
√
d},

one has ∫
W
e
c
√
N dist(x,U)√

d |u(x)|2 ≤ C.
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Localisation estimates can be used to understand, at least at dominant order, the behaviour of the heat
operator generated by TN (f). This heat operator is the complex extension of the wave propagator, restricted
to imaginary time. The analysis of this operator is pertinent not only with respect to the Egorov theorem,
but also because it is believed to be related to geodesics in the space of Kähler metrics on M . Furthermore,
in the case of spin systems, the quantity Z = Tr(e−βTN (f)) is called partition function at inverse temperature
β and is a key element of the understanding of the statistical mechanics of spin systems.

Proposition 1.1. Let g be a tame spin system. Consider, for N ∈ N and β ≥ 0, the quantum free energy

fQ = − 1
βd

log(Tr(exp(−βTN (g)))).

Consider also the normalized classical free energy

fC = − 1
βd

log
[(

N + 1
π

)d ∫
(S2)d

e−βg

]
.

Then there exists c > 0 and C > 0 such that, uniformly in d and N , uniformly in β ≤ cN
1
2d−1, one has

|fC − fQ| ≤ CN−
1
2 .

As for the standard estimate found in [22], Proposition 1.1 is a “Weyl-law” type control: one estimates a
quantum quantity, related to the distribution of eigenvalues, using only the volume form on the phase space.
Such estimates cannot distinguish between situations where there is a phase space transformation preserving
the volume form but not the symplectic form (for instance, between a Heisenberg antiferromagnet and a
Heisenberg ferromagnet).

This article is organised as follows. In Section 2 we review the properties of the Szegő projector that we
will use to prove Theorems A, B and C. In particular, Subsection 2.2 is devoted to an analysis of the case
of a product of a large number of spheres.

In Section 3, we prove Theorem A. The method used is a decomposition of M into shells corresponding
to the distance to a level set. In Section 4, we derive weighted estimates by simplifying the methods of [19],
in order to prove Theorems B and C.

The two last sections of this article are devoted to Theorem D and Proposition 1.1. In Section 5, we
review the proof of the weighted estimate in [19], and we give an explicit dependence of the constants in the
objects (the manifold, the weight, and the symbol). In Section 6, we construct a weight adapted to a spin
system in large dimension, and conclude the proofs.

2 Rate of decay of the Szegő projector

2.1 General case

One of the essential properties of the Szegő projector is its rapid off-diagonal decay. It is much easier to derive
a good off-diagonal decay rate than to study the Szegő projector near the diagonal with a corresponding
degree of precision; in fact, safe for the case where M is real-analytic, the off-diagonal decay is faster than
the precision available on the diagonal.

Proposition 2.1 (Pointwise estimates). Let M be a compact Kähler quantizable manifold of complex di-
mension d. For N ∈ N, let SN denote the Szegő (or Bergman) projector on M . Then the following is
true.
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1. [10] If the metric of M is C1,1, then there exist C > 0, c > 0 such that, for any N ∈ N, for any
(x, y) ∈M2,

|SN (x, y)|2 ≤ CNd exp(−c
√
N dist(x, y)).

2. [2] If the metric of M is real-analytic, then there exist C > 0, c > 0 such that, for any N ∈ N, for any
(x, y) ∈M2,

|SN (x, y)|2 ≤ CNd exp(−cN dist(x, y)2).

In the previous Proposition, the decay rate of case 1 is essentially sharp (up to a power of log(N)) if the
metric of M is C∞ or less [7]. Case 2 is also sharp: in the easiest examples M = Cn or M = CPn, one has
exactly |SN (x, y)|2 = CP (N) exp(−cN(dist(x, y)2 +O(dist(x, y)4))). In the case of s-Gevrey regularity, one
can interpolate between cases 1 and 2, obtaining (N dist(x, y)2)

s
2s−1 , see [17]; we do not know if this decay

rate is sharp.
This pointwise decay immediately leads, via the Schur test, to a decay in terms of operators.

Proposition 2.2 (Operator estimates). Let M be a compact Kähler quantizable manifold of complex di-
mension d. For N ∈ N, let SN denote the Szegő (or Bergman) projector on M . Then the following is
true.

1. If the metric of M is C1,1, then there exist C > 0, c > 0 such that, for any N ∈ N, for any open sets
U, V of M ,

‖1USN1V ‖L2 7→L2 ≤ C exp(−c
√
N dist(U, V )).

2. If the metric of M is real-analytic, then there exist C > 0, c > 0 such that, for any N ∈ N, for any
open sets U, V of M ,

‖1USN1V ‖L2 7→L2 ≤ C exp(−cN dist(U, V )2).

The constant C is not trivial to get rid of. In particular, one gets estimates of the form

‖1USN1V ‖L2 7→L2 ≤ exp(−c′(N dist(U, V )2)1 or 1/2)

only under the condition that dist(U, V ) ≥ C1N
− 1

2 . This remark is of little importance on a fixed Kähler
manifold, but as we will see, the constant C blows up with the dimension in the case M = (S2)d, at least
when using a Schur test.

2.2 Products of spheres

This subsection is devoted to a discussion of Proposition 2.2 in the case M = (S2)d. Unfortunately, we are
not able to prove a d-independent version of Proposition 2.2 in this context, but we conjecture it is the case,
and give a simple proof of a weaker result.

We take the following scaling convention: the area of the sphere is 1. The Szegő kernel on (S2)d is easily
obtained from that on S2: one has

|SN,d(x, y)| = (N + 1)d
d∏

x=1
(xiẏi)N .

For fixed d and x 6= y, as N → +∞ this quantity decays exponentially fast. As d increases, however, this
behaviour is destroyed. It makes sense to try to estimate operator norms of the form

‖1USN1V ‖L2→L2

where U and V are at positive distance, independently on d. Indeed, in this version of the kernel estimate
the factor Nd is not present anymore (see the difference between Propositions 2.1 and 2.2). Moreover, in
the proof of Theorem A, we only use Proposition 2.2.
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Lemma 2.3. For 0 ≤ θ ≤ π/2 one has

cos(θ) ≤ exp(−θ2/2).

Proof. The two first non-zero terms in a Taylor expansion on both sides coincide, so that

exp(−θ2/2)− cos(θ) =
+∞∑
k=2

(−1)kθ2k
[

1
2kk! −

1
(2k)!

]
.

The claim then follows from the fact that the non-negative sequence(
θ2k
[

1
2kk! −

1
(2k)!

])
k≥2

is non-increasing and the alternating series theorem.
Indeed, the difference between two consecutive terms is

θ2k

2kk!

[
1− θ

2(k + 1)

]
− θ2k

(2k)!

[
1− θ

(2k + 1)(2k + 2)

]
.

Since θ
2(k+1) ≤

π
12 , the difference between two consecutive terms is larger than

θ2k

(2k)!

[
1 · 3 · · · (2k − 1)

(
1− π

12

)
− 1
]
≥ θ2k

(2k)!

[
2− π

4

]
≥ 0.

Proposition 2.4. Let d,N be positive integers and let D > 0. Let U, V be subsets of (S2)d such that
dist(U, V ) = D > 0.

Then
‖1USN1V ‖L1→L∞ ≤

4√
2πd

4d exp(−(N + 1)D2/16).

In particular,
‖1USN1V ‖L2→L2 ≤

4√
2πd

4d exp(−(N + 1)D2/16).

Proof. One has
‖1USN1V ‖L1→L∞ = sup

x∈U

∫
y∈V
|SN (x, y)|.

Letting P = [0, π]d and B(0, D) denote the Euclidean ball of radius D in Rd, one has

‖1USN1V ‖L1→L∞ ≤
(N + 1)d

2d
∫
P\B(0,D)

d∏
j=1

cos(θj/2)N sin(θj)︸ ︷︷ ︸
=2 cos(θj/2)N+1 sin(θj/2)

dθ1 · · · dθd.

From Lemma 2.3 and the classic inequality | sin(x)| ≤ x, one is left with

‖1USN1V ‖L1→L∞ ≤
(N + 1)d

2d
∫
P\B(0,D)

e−(N+1)θ2/8

 d∏
j=1

θj

 dθ1 · · · dθd.
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Letting P̃ = {z ∈ C, |z| < π}d and B̃(0, D) denote the Hilbert ball of radius D in Cd, one has P̃ ⊂ B̃(0,
√
dπ),

so that∫
P\B(0,D)

e−(N+1)θ2/8

 d∏
j=1

θj

 dθ1 · · · dθd = 1
(2π)d

∫
P̃\B̃(0,D)

e−(N+1)|z|2/8dz1dz1 . . . dzddzd

≤ 1
(2π)d

∫
B̃(0,
√
dπ)\B̃(0,D)

e−(N+1)|z|2/8dz1dz1 . . . dzddzd

= ω2d−1
2(2π)d

∫ dπ2

D2
e−(N+1)u/8ud−1du.

Here ω2d−1 = 2πd
(d−1)! is the volume of the unit sphere in dimension 2d− 1.

The Stirling formula yields

‖1USN1V ‖L1→L∞ ≤
(N + 1)d√

2πd

∫ dπ2

D2
e−(N+1)u/8

(
eu

4(d− 1)

)d−1
du

= 1√
2πd

∫ dπ2(N+1)

D2(N+1)
e−x/8

(
ex

4(d− 1)

)d−1
dx.

The quantity to be integrated is equal to

e−x/16
(
e
− x

16(d−1)
ex

4(d− 1)

)d−1
≤ 4d−1e−x/16.

In particular, one has
‖1USN1V ‖L1→L∞ ≤

4√
2πd

4de−(N+1)D2/16,

hence the claim.

Using the Schur test to estimate ‖1USN1V ‖L2→L2 seems rather weak. Indeed, an easy bound is
‖1USN1V ‖L2→L2 ≤ 1.

Theorem 2.4 beats this easy bound when d ≥ 3 under the condition

D ≥ 5
√

d− 1
N + 1 .

In particular, one has

Proposition 2.5. If d ≥ 3, if D ≥ 10
√

d
N+1 and if U, V are two open sets of (S2)d at distance D, then

‖1USN1V ‖L2→L2 ≤ exp
(
− 1

21(N + 1)D2
)
.

We will rely heavily on Proposition 2.5 later on.
Using the Schur test to estimate ‖1USN1V ‖L2→L2 is very crude. We conclude this section with the

following conjecture.
Conjecture 1. There exists a universal constant c > 0 such that, for any integers d,N , for any open sets
U, V in (S2)d, one has

‖1USN1V ‖L2→L2 ≤ exp(−cN dist(U, V )2).
This conjecture is at least true if U is a ball around one point, and V is the complement of a larger ball

around that same point. If we want to prove Theorem A in the context of a large product of spheres, one
would need to apply this conjecture to distances much shorter than

√
dN .
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3 Fractional decay of eigenfunctions without regularity
In this section we prove Theorem A.

Let f, u, λ be as above.
Let us fix U0 = {f ≥ λ+ ε}. Let (see also picture below)

a = ε
2

1+2αN−
α

2α+1

U ′0 = {x ∈ U0,dist(x, ∂U0) > a}

U ′′0 = {x ∈ U0,dist(x, ∂U0) > 2a}
V ′′0 = M \ {x ∈ U0, dist(x, ∂U0) ≥ 3a}
V ′0 = M \ {x ∈ U0, dist(x, ∂U0) ≥ 4a}
V0 = M \ {x ∈ U0, dist(x, ∂U0) ≥ 5a} .

Note that a = o(ε) and N−
1
2 = o(a) as N → +∞. We also let χ0 ∈ C∞(M, [0, 1]) be such that

supp(χ0) ⊂ V ′′0 and supp(1− χ0) ⊂ U ′′0 .

V ′′0 = suppχ0

V ′0

V0

U ′′0 = supp(1− χ0)

U ′0

U0

χ0

a

f large
f small

Now

0 = 〈u, (f − λ)u〉
= 〈χ0u, (f − λ)χ0u〉+ 2〈(1− χ0)u, (f − λ)χ0u〉+ 〈(1− χ0)u, (f − λ)(1− χ0)u〉.

Since f − λ ≥ ε on the support of 1− χ0, one has

〈(1− χ0)u, (f − λ)(1− χ0)u〉 ≥ ε‖u‖2L2(U ′′0 ).

Moreover,
〈(1− χ0)u, (f − λ)χ0u〉 ≤ max

U ′′0 ∩V ′′0
(f − λ)‖u‖2L2(U ′′0 ∩V ′′0 ).

It remains to bound
〈χ0u, (f − λ)χ0u〉 = 〈(f − λ)u, χ2

0u〉
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from above. To this end, observe that SN (f − λ)u = 0, and it remains to estimate

〈(f − λ)u, (1− SN )χ2
0u〉 =

∫∫
x∈M,y∈M

(f(x)− λ)u(x)SN (x, y)
[
χ2

0(x)u(x)− χ2
0(y)u(y)

]
dydx.

We first examine this integral restricted to x ∈ U ′0 ∩ V ′0 , that is,

A = 〈(f − λ)u,1U ′0∩V ′0 [1− SN ]χ2
0u〉

which we decompose as

A = A1 +A2

A1 = 〈(f − λ)u,1U ′0∩V ′0 [1− SN ]1M\(U0∩V0)χ
2
0u〉

A2 = 〈(f − λ)u,1U ′0∩V ′0 [1− SN ]1U0∩V0χ
2
0u〉.

Since dist(U ′0 ∩ V ′0 ,M \ (U0 ∩ V0)) ≥ a, one can apply Proposition 2.2, so that

|A1| ≤ C max
U ′0∩V ′0

(f − λ) exp(−c(Na2)α)‖u‖L2(U ′0∩V ′0).

Moreover, one has
|A2| ≤ max

U ′0∩V ′0
(f − λ)‖u‖2L2(U0∩V0).

Now we consider the integral restricted to x ∈M \ (U ′0 ∩ V ′0), that is

B = 〈1M\(U ′0∩V ′0)(f − λ)u, [1− SN ]χ2
0u〉.

One has, since χ0 = 0 on M \ V ′′0 ,

B = B1 +B2 +B3

B1 = 〈1M\(U ′0∩V ′0)(f − λ)u, [1− SN ]χ2
01U ′′0 ∩V ′′0

〉

B2 = 〈1M\V ′0 (f − λ)u, [1− SN ]χ2
01M\U ′′0 〉

B3 = 〈1M\U ′0(f − λ)u, [1− SN ]χ2
01M\U ′′0 〉.

From Proposition 2.2 one has

|B1| ≤ C max
M

(f − λ) exp(−c(Na2)α)‖u‖L2(U ′′0 ∩V ′′0 )

|B2| ≤ C max
M

(f − λ) exp(−c(4Na2)α)‖u‖L2(M\V ′0).

Moreover χ2
0 = 1 on M \ U ′′0 , so that, since SNu = u,

|B3| = 〈1M\U ′0(f − λ)u, [1− SN ]χ2
01M\U ′′0 〉

= −〈1M\U ′0(f − λ)u, [1− SN ]χ2
01U ′′0 〉.

Then again
|B3| ≤ C max

M\U ′0
(f − λ) exp(−c(N2a)α)‖u‖L2(U ′′0 ).

To conclude, from

0 = 〈χ0u, (f − λ)χ0u〉+ 2〈(1− χ0)u, (f − λ)χ0u〉+ 〈(1− χ0)u, (f − λ)(1− χ0)u〉,
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we obtain the inequality

c0‖u‖2L2(V ′′0 ) ≤ max
U ′′0 ∩V ′′0

(f − λ)‖u‖2L2(U ′′0 ∩V ′′0 ) + C max
U ′0∩V ′0

(f − λ) exp(−c(Na2)α)‖u‖L2(U ′0∩V ′0)

+ max
U ′0∩V ′0

(f − λ)‖u‖2L2(U0∩V0) + C max
M

(f − λ) exp(−c(Na2)α)‖u‖L2(U ′′0 ∩V ′′0 )

+ C max
M

(f − λ) exp(−c(4Na2)α)‖u‖L2(M\V ′0) + C max
M\U ′0

exp(−c(N2a)α)‖u‖L2(U ′′0 ),

which we simplify into(
ε− 4C max

M
|f |e−c(N2a)α

)
‖u‖2L2(U ′′0 ) ≤ 2C max

M
(f − λ)‖u‖L2(U0∩V0)

(
‖u‖L2(U0∩V0) + e−c(Na

2)α
)
.

Since N2a = Nε4 ≥ N δ, let us restrict ourselves to N large enough (depending on δ) so that

4C max
M
|f |e−c(N2a)α ≤ ε/2.

In conclusion, one has the following dichotomy.

• Either ‖u‖L2(U0∩V0) ≤ e−c(Na
2)α , in which case

‖u‖2L2(U ′′0 ) ≤ 4C
ε
e−c(Na

2)α .

• Or ‖u‖L2(U0∩V0) ≥ e−c(Na
2)α , so that

‖u‖2L2(U ′′0 ) ≤ 4C
ε
‖u‖2L2(U0∩V0).

In the second case, one proceeds to an induction, letting

U1 = int(M \ V0)

where int(E) is the interior of the set E. One has then

U1 = {x ∈M,dist(x, U0) > 5a}

‖u‖2L2(U1) ≤
4
C

ε

1 + 4
C

ε

‖u‖2L2(U0).

We proceed in the induction, considering sets Uk, Vk, and so on, until one of these conditions is satisfied:
k = ε

6a or

‖u‖2L2(Uk) ≤ 4C
ε
e−c(Na

2)α .

If we have reached k = ε
6a , then Uk is the set of points at distance at least 5

6ε+O(a) of U0, and

‖u‖2L2(Uk) ≤

 4
C

ε

1 + 4
C

ε


k

≤ exp(−cεk).
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In the other case, the last iteration Uk contains the set of points at distance ε of U0, and is such that

‖u‖2L2(Uk) ≤ 4C
ε
e−c(Na

2)α .

Now since k = ε
5a , one has

εk ≈ c(Na2)α ≈ N
α

2α+1 ,

where ≈ means “up to some constant”.
This concludes the proof.

4 Decay of eigenfunctions for Lipschitz symbols
In this section we prove Theorems B and C. They respectively follow from the two following weighted
estimates:

Proposition 4.1. Let M be a C1,1 Kähler manifold. Let ρ ∈ Lip(M,R).
There exist two constants c > 0 and C > 0 such that, for every α ∈ R with |α| < c, for every f ∈

Lip(M,R) with Lipschitz constant K, for any N ∈ N, for any u ∈ H0(M,L⊗N ) such that TN (f)u = λu for
some λ ∈ R, one has ∫

M
e2α
√
Nρ(x)

(
f(x)− λ− CK|α|N−

1
2

)
|u(x)|2dx ≤ 0.

Moreover, the constants c and C only depend on the Lipschitz constant of ρ.

Proposition 4.2. Let M be a C1,1 Kähler manifold, and let f ∈ C1,1(M,R) with min(f) = 0. Let u ∈
H0(M,L⊗N ) be such that TN (f)u = λu, with λ = O(N−1). For k ∈ N and ε > 0, define

gεk =
{
f − λ if k = 0
max(f − λ,N−1+ 1

2k
+2ε) otherwise.

If, for some k ≥ 0, for all ε > 0, there exists Ck > 0 and ck > 0 such that, for all |α| < ck, one has∫
M
e2α
√
N
√
f(x)

(
gεk(x)− CkN−1+ 1

2k+1 +ε
)
|u(x)|2dx ≤ 0,

then for all ε > 0 there exists Ck+1 > 0 and ck+1 > 0 such that, for all |α| < ck+1, one has∫
M
e2α
√
N
√
f(x)

(
gεk+1(x)− Ck+1N

−1+ 1
2k+2 +ε

)
|u(x)|2dx ≤ 0.

We postpone the proof of these estimates, and first use them to prove Theorems B and C.
Proof of Theorem B.
Letting M,f, u, λ be as in Proposition 4.1, we choose c, C corresponding to the Lipschitz constant 1;

indeed we will choose ρ = dist(·, U) where U will be defined later.
Now, for every |α| < c, one has, by Proposition 4.1

0 ≥
∫
M
e2α
√
Nρ(x)

(
f(x)− λ− CK|α|N−

1
2

)
|u(x)|2dx.
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Let us decompose this integral in two pieces, corresponding to the sign of f − λ − CK|α|N−
1
2 : with

λ1 = λ+ CK|α|N−
1
2 and λ2 = λ+ 2CK|α|N− 1

2 , one has

0 ≥
∫
{f≥λ2}

e2α
√
Nρ(x) (f(x)− λ1) |u(x)|2dx

+
∫
{λ1≤f≤λ2}

e2α
√
Nρ(x) (f(x)− λ1) |u(x)|2dx

+
∫
f≤λ1

e2α
√
Nρ(x) (f(x)− λ1) |u(x)|2dx.

The second contribution is positive, and one can remove it; with ρ = dist(·, {f ≤ λ1}), this yields

CK|α|N−
1
2

∫
{f≥λ2}

e2α
√
N dist(x,{f≤λ1})|u(x)|2dx ≤ (λ1 −min(f))

∫
{f≤λ1}

|u(x)|2dx.

To conclude the proof of Theorem B, we let α = c
2 ; then for ε > CN−

1
2 , with

W = {x ∈M,dist(x, {f ≥ λ2}) > ε},

on W one has dist(·, {f ≤ λ1}) > ε, so that∫
W
|u|2 ≤ e−cε

√
N

∫
{f≥λ2}

e2α
√
N dist(x,{f≤λ1})|u(x)|2dx ≤ CN

1
2 e−cε

√
N‖u‖2L2 .

This concludes the proof.
Proof of Theorem C. Let f ∈ C1,1(M,R) with min(f) = 0. It is well-known that

√
f is Lipschitz-

continuous. In particular, the initialisation of the induction in Proposition 4.2 is given by Proposition 4.1,
and thus, for all k ∈ N, for all ε > 0, one has∫

M
e2α
√
N
√
f(x)

(
gεk(x)− CkN−1+ 1

2k+1 +ε
)
|u(x)|2dx ≤ 0,

for |αk| < ck(ε).
Let δ > 0; for some k large enough and for some ε > 0 one has δ = 1

2k+1 + ε.
We now proceed as in the proof of Theorem B: let λ1 = λ+ CkN

−1+δ and λ2 = λ+ 2CkN−1+δ. Then

0 ≥
∫
{f≥λ2}

e2α
√
N
√
f (gεk − λ1 + λ)|u(x)|2dx+

∫
{f≤λ1}

e2α
√
N
√
f (gεk − λ1 + λ)|u(x)|2dx.

In particular,
CkN

−1+δe2α
√

2CkN
δ
2
∫
{f≥λ2}

|u|2 ≤ CkN−1+δe2α
√
CkN

δ
2
∫
{f≤λ1}

|u|2,

so that, finally, ∫
{f≥λ+CkN−1+δ}

|u|2 ≤ e−2(
√

2−1)α
√
CkN

δ
2 .

The proof of Propositions 4.1 and 4.2 rely on the following commutator estimates.
Lemma 4.3. Let M be a C1,1 Kähler manifold. Let ρ ∈ Lip(M,R).

There exist two constants c > 0 and C > 0 such that, for any α ∈ R with |α| < c, for any f ∈ Lip(M,R),
if K denotes the Lipschitz constant of f , one has

‖ exp(−α
√
Nρ)[SN , exp(2α

√
Nρ)] exp(−α

√
Nρ)‖L2→L2 ≤ C|α|

‖ exp(α
√
Nρ)[f, SN ] exp(−α

√
Nρ)‖L2→L2 ≤ CKN−

1
2 .

Moreover the constants c, C depend only on the Lipschitz constant of ρ.
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Proof. We first prove the second bound; the first bound is a consequence of the second one.
Recall from Proposition 2.1 that the kernel of SN is bounded everywhere: there exists C0 > 0, c0 > 0

such that for all (x, y) ∈M ×M , for all N ∈ N, one has

|SN (x, y)| ≤ CNd exp(−c
√
N dist(x, y)).

Here d denotes again the dimension of M .
The kernel of exp(α

√
Nρ)[f, SN ] exp(−α

√
Nρ) is

(x, y) 7→ SN (x, y)(f(x)− f(y)) exp(α
√
N(ρ(x)− ρ(y))).

Let L denote the Lipschitz contant of ρ; then the kernel above is everywhere bounded by

(x, y) 7→ C0K dist(x, y)Nd exp((−c0 + αL) dist(x, y)
√
N).

Let c = c0
L . For |α| < c, the Schur norm of this kernel is smaller than

C0K sup
y∈M

∫
x∈M

dist(x, y) exp
(
−c0

2 dist(x, y)
√
N
)
≤ C1KN

− 1
2 .

For the first bound, we proceed by differentiation with respect to α. The statement clearly holds for
α = 0, in which case [SN , 1] = 0. With

T (a) = exp(−α
√
Nρ)[SN , exp(2α

√
Nρ)] exp(−α

√
Nρ),

one has

T ′(a) =
√
N
[
exp(−α

√
Nρ)[SN , ρ] exp(α

√
Nρ)− exp(α

√
Nρ)[SN , ρ] exp(−α

√
Nρ)

]
.

We can now apply the second bound (with f = ρ); as long as |α| < c, one has

‖T ′(a)‖L2→L2 ≤ 2C1L
√
N.

This concludes the proof.

Proof of Proposition 4.1.
Without loss of generality, one can assume λ = 0 by replacing f with f − λ. As in [19], since SNfu = 0,

one can write

〈eα
√
Nρfu, eα

√
Nρu〉 = 〈[SN , e2α

√
Nρ]fu, u〉

= 〈[SN , e2α
√
Nρ][f, SN ]u, u〉.

To use Lemma 4.3, we need to introduce a few supplementary exponential factors:

〈[SN , e2α
√
Nρ][f, SN ]u, u〉 = 〈e−α

√
Nρ[SN , e2α

√
Nρ]e−α

√
Nρeα

√
Nρ[f, SN ]e−α

√
Nρe2α

√
Nρu〉.

Hence, if K denotes the Lipschitz constant of f one has, by Lemma 4.3

〈[SN , e2α
√
Nρ][f, SN ]u, u〉 ≤ C2|α|KN−

1
2 ‖eα

√
Nρu‖2L2 .

This concludes the proof.
Proof of Proposition 4.2.
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Let us modify the proof of Proposition 4.1 in this context where u is an eigenfunction of TN (gεk+1) only
up to some error, given by the induction hypothesis.

Let ρ be a Lipschitz function. Then, for all α′, one has

〈eα′
√
Nρgk+1u, e

α′
√
Nρu〉 − 〈[SN , e2α′

√
Nρ][gεk+1, SN ]u, u〉 = −〈eα′

√
NρSN (gk+1u), eα′

√
Nρu〉.

If f ∈ C1,1 is non-negative then
√
f is Lipschitz-continuous; we now fix ρ =

√
f . For |α′| small enough, we

want to estimate

e2α′
√
N
√
fSN (gεk+1u) =

(
e2α′

√
N
√
fSNe

−2α′
√
N
√
f
)
e2α′

√
N
√
f (gεk+1 − f + λ)u.

The operator e2α′
√
N
√
fSNe

−2α′
√
N
√
f is bounded independently of N from L2 to L2 if |α′| is small enough.

Moreover, gεk+1 − f + λ is supported on {f ≥ N−1+ 1
2k+1 +2ε}, so that∫

M
e4α′

√
N
√
f |gεk+1 − f + λ|2|u|2 ≤ C

∫
{f≥λ+N

−1+ 1
2k+1 +2ε

}
e4α′

√
N
√
f |u|2.

Let α > ck(ε)
2 (so that the weighted estimate of the induction is satisfied). Then, on {f ≥ λ+N

−1+ 1
2k+1 +2ε},

one has, for |α′| small enough, for some c > 0,

e4α′
√
N
√
f ≤ e−cN

1
2k+2 +ε

e2α
√
N
√
f ,

so that ∫
{f≥λ+N

−1+ 1
2k+1 +2ε

}
e4α′

√
N
√
f |u|2 ≤ e−cN

1
2k+2 +ε

∫
{f≥λ+N

−1+ 1
2k+1 +2ε

}
e2α
√
N
√
f |u|2.

By hypothesis, one has ∫
M
e2α
√
N
√
f(x)

(
gεk(x)− CkN−1+ 1

2k+1 +ε
)
|u(x)|2dx ≤ 0.

In particular,

0 ≥ CN−1+ 1
2k+1 +ε

∫
{f≥λ+2CN

−1+ 1
2k+1 +ε

}
e2α
√
N
√
f |u|2

− C|α|N−1+ 1
2k+1 +ε

eC|α|N
1

2k+2 + ε
2
∫
{f≤λ+N

−1+ 1
2k+1 +ε

}
|u|2,

so that ∫
{f≥λ+2CN

−1+ 1
2k+1 +ε

}
e2α
√
N
√
f |u|2 ≤ CeC|α|N

1
2k+2 + ε

2
.

Hence, for some c′ > 0, one has

‖e2α′
√
N
√
fSN (gu)‖2L2 ≤ Ce−cN

1
2k+2 +ε

eC|α|N
1

2k+2 + ε
2 ≤ Ce−c′N

1
2k+2 +ε

,

so that ∣∣∣〈eα′√Nρgu, eα′√Nρu〉 − 〈[SN , e2α′
√
Nρ][g, SN ]u, u〉

∣∣∣ ≤ Ce−c′N 1
2k+2 +ε

.

We can now, up to this error, reproduce the end of the proof of Proposition 4.1. Since the Lipschitz constant
of gεk is N−

1
2 + 1

2k+2 +ε, this yields∫
M
e2α′

√
N
√
f(x)

(
g(x)− λ− C|α|N−1+ 1

2k+2 ε
)
|u(x)|2 ≤ 0.

This concludes the proof.
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5 Weighted estimates: uniformity in the dimension
Kordyukov [19] has proposed a method for obtaining weighted estimates for eigenfunctions of Toeplitz
operators, based on the ellipticity of the Hodge Laplacian (thus generalizing results on the off-diagonal
decay of the Szegő projector).

In this section we revisit the proof of Theorem 1.3 in [19], while making the dependency on the geometry
more explicit.

Let M be a quantizable Kähler manifold of complex dimension d, with L its prequantum bundle. If ∇N
is the Levi-Civita holomorphic connection on L⊗N , then H0(M,L⊗N ) is the kernel of

�N = (∇N )∗∇N − π dim(M)N.

Let ρ ∈ C2(M,R) and α ∈ R. Conjugating �N with eα
√
Nρ yields

�N ;α = exp(α
√
Nρ)�N exp(−α

√
Nρ) = �N + αAN + α2BN ,

where, given a local orthonormal frame {ej}1≤j≤2d of TX,

AN =
√
N

2d∑
j=1

[
∇Nej ◦ dρ(ej) + dρ(ej) ◦ ∇Nej + dρ

(
∇TMej ej

)]
=
√
N(∆ρ+ 2∇ρ · ∇N ) (1)

BN = −N‖∇ρ‖2 (2)

Here, ∇ is the Riemannian gradient.
In this section, we consider an integrable Kähler manifold of the form M = Md′

0 , and obtain estimates
with explicit dependence on d′. Throughout the section, the constants appearing are, unless otherwise noted,
independent on d′.

If M is a product of manifolds M = (M0)d′ , then there holds a uniform bound on the spectral gap of
�N .

Proposition 5.1. LetM0 be a compact, quantizable Kähler manifold of regularity C1,1. There exists C0 > 0,
µ > 0 such that the following is true.

Let d′ ∈ N and let M = Md′
0 . For N ∈ N, we let �N be the Hodge Laplacian over M with semiclassical

parameter 1
N . Then for any λ ∈ C such that |λ| = µ0, one has∥∥∥∥∥
(
λ− 1

N
�N

)−1
∥∥∥∥∥

2

L2(M)→L2(M,L⊗N )

+ 1√
N

∥∥∥∥∥
(
λ− 1

N
�N

)−1
∥∥∥∥∥

2

L2(M)→Ḣ1(M,L⊗N )

≤ C0,

where the Ḣ1 quasinorm on sections of L⊗N is defined as

‖u‖2
Ḣ1(M,L⊗N ) =

∫
M
‖∇Nu(x)‖2`2(TX⊗L⊗N )dV ol(x).

Proof. The claim is true for d′ = 1, where it follows from the usual Hörmander-Kohn estimate [18]. Indeed,
in this case �N,M0 is a self-adjoint operator on L2(M0, L

⊗N
0 ) and this estimate implies that

σ(�N,M0) ⊂ {0} ∩ [CN,+∞)

for some C > 0.
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If (uj)j∈N is an orthonormal basis of eigenfunctions of �N,M0 , with eigenvalues (µj)j∈N, then the eigen-
functions of �N are tensor products of the uj ’s (acting on different variables), since

�N =
d′∑
j=1

I⊗j−1 ⊗�N,M0 ⊗ Id
′−j ;

moreover the eigenvalues of �N are the sums of d′ eigenvalues of �N,M0 . In particular, the spectral gap on
�N,M0 propagates to �N , leading to∥∥∥∥∥

(
λ− 1

N
�N

)−1
∥∥∥∥∥

2

L2(M)→L2(M,L⊗N )

≤ C0
2 .

for |λ| = 1
2C and C0 = 4

C .
Moreover, the family (uj)j∈N is also orthogonal for the Ḣ1 product, since

〈uj , uk〉Ḣ1
= 〈∇Nuj ,∇Nuk〉L2 = µk〈uj , uk〉L2 .

Thus the estimate on the operator norm L2 → Ḣ1 also propagates from M0 to M , which concludes the
proof.

By the usual resolvent identity, this leads to a spectral gap on �N ;α for |α| small.

Proposition 5.2. In the situation of Proposition 5.1, let ρ ∈ Lip(M,R). For all α such that

|α| ≤ min
[
‖∇ρ‖−1

L∞ ,
1

2C0

(
N−

1
2 ‖∆ρ‖L∞ + 3‖∇ρ‖L∞

)−1
]
,

one has ∥∥∥∥∥
(
λ− 1

N
�N ;α

)−1
∥∥∥∥∥

2

L2(M)→L2(M,L⊗N )

+ 1√
N

∥∥∥∥∥
(
λ− 1

N
�N ;α

)−1
∥∥∥∥∥

2

L2(M)→Ḣ1(M,L⊗N )

≤ 2C0.

Proof. One has(
λ− 1

N
�N ;α

)−1
−
(
λ− 1

N
�N

)−1
= 1
N

(
λ− 1

N
�N ;α

)−1 (
αAN + α2BN

)(
λ− 1

N
�N

)−1
.

Here AN and BN are given by (1). Writing AN = AN,0 + AN,1 · ∇N where AN,0, AN,1 are respectively ∆ρ
and 2∇ρ, one has

1
N

∥∥αAN,0 + α2BN
∥∥
L2→L2 ≤ |α|N−

1
2 ‖∆ρ‖L∞ + α2‖∇ρ‖2L∞

and
1
N
‖AN,1 · ∇N‖Ḣ1→L2 ≤ 2|α|N−

1
2 ‖∇ρ‖L∞ .

In particular, by Proposition 5.1,∥∥∥∥∥(αAN + α2BN
)(

λ− 1
N

�N

)−1
∥∥∥∥∥
L2→L2

≤ C0|α|
(
N−

1
2 ‖∆ρ‖L∞ + ‖∇ρ‖L∞ (2 + |α|‖∇ρ‖L∞)

)
so that, if

|α| ≤ min
[
‖∇ρ‖−1

L∞ ,
1

2C0

(
N−

1
2 ‖∆ρ‖L∞ + 3‖∇ρ‖L∞

)−1
]
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then
2 + |α|‖∇ρ‖L∞ ≤ 3.

In particular, ∥∥∥∥∥(αAN + α2BN
)(

λ− 1
N

�N

)−1
∥∥∥∥∥
L2→L2

≤ 1
2 .

Hence, the operator I −
(
αAN + α2BN

) (
λ− 1

N�N

)−1 is invertible on L2, with operator norm bounded by
2, so that the resolvent identity yields∥∥∥∥∥

(
λ− 1

N
�N ;α

)−1
∥∥∥∥∥
L2→L2

≤ 2
∥∥∥∥∥
(
λ− 1

N
�N

)−1
∥∥∥∥∥
L2→L2∥∥∥∥∥

(
λ− 1

N
�N ;α

)−1
∥∥∥∥∥
L2→Ḣ1

≤ 2
∥∥∥∥∥
(
λ− 1

N
�N

)−1
∥∥∥∥∥
L2→Ḣ1

.

One can then conclude from Proposition 5.1.

Remark 5.3. Proposition 5.2 can be used to obtain off-diagonal exponential estimates for the kernel of the
Szegő projector. For fixed d′ and ρ, |α| is bounded by a constant, which limits this method to a decay of
the form exp(−

√
N dist(x, y)).

As d′ increases, using a similar construction as in Subsection 6.1, this method is able to yield, at best,
a decay of the form

‖1USN1V ‖ ≤ C exp(−c1Nd
− 1

2 dist(U, V )),
which is too weak for our purpose; in particular, the more elementary estimate of Proposition 2.4 beats this
estimate on most of M ×M .

Following [19] we then obtain a dimension-independent version of Lemma 4.3.

Lemma 5.4. In the situation of Proposition 5.2, there exists C1(M0) such that

‖ exp(−α
√
Nρ)[SN , exp(2α

√
Nρ)] exp(−α

√
Nρ)‖L2→L2 ≤ C1|α|

[
N−

1
2 ‖∆ρ‖L∞ + ‖∇ρ‖L∞

]
.

Moreover, for every f ∈ C2(M,R), one has

‖ exp(α
√
Nρ)[f, SN ] exp(−α

√
Nρ)‖L2→L2 ≤ C1

[
N−1‖∆f‖L∞ +N−

1
2 ‖∇f‖L∞ (1 + ‖∇ρ‖L∞)

]
.

Proof. By Proposition 5.1 and the spectral gap property, the Szegő kernel is given by the following integral:

SN = 1
2iπ

∮
|λ|=µ0

(
λ− 1

N
�N

)−1
.

In particular, one has

exp(−α
√
Nρ)SN exp(α

√
Nρ)− exp(α

√
Nρ)SN exp(−α

√
Nρ)

= 1
2iπ

∮
|λ|=µ0

[(
λ− 1

N
∆N ;α

)−1
−
(
λ− 1

N
∆N ;−α

)−1
]

= 2α
N

1
2iπ

∮
|λ|=µ0

(
λ− 1

N
∆N ;α

)−1
AN

(
λ− 1

N
∆N ;α

)−1
.
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By Proposition 5.2 and the expression of AN given in (1), we obtain the desired control.
For the second estimate, we need to commute f with �N and �N,α. From the computations

[f,�N ] = ∆f + 2∇f · ∇Lp

[f,AN ] = −2
√
N〈∇f,∇ρ〉

[f,BN ] = 0,

and Proposition 5.2 one has∥∥∥∥∥
[
f,

(
λ− 1

N
�N,α

)−1
]∥∥∥∥∥

L2→L2

=
∥∥∥∥∥
(
λ− 1

N
�N,α

)−1 [
f,

1
N

∆N,α

](
λ− 1

N
�N,α

)−1
∥∥∥∥∥
L2→L2

≤ C
(
N−1‖∆f‖L∞ +N−

1
2 ‖∇f‖L∞‖∇ρ‖L∞ +N−

1
2 ‖∇f‖L∞

)
.

Now

exp(α
√
Nρ)[f, SN ] exp(−α

√
Nρ) = [f, exp(α

√
Nρ)SN exp(−α

√
Nρ)]

= 1
2iπ

∫
|λ|=µ0

[
f,

(
1− 1

N
�N,α

)−1
]
,

which concludes the proof.

In the case of a quantum spin system, f is a finite sum of eigenfunctions of ∆, in which case the
commutator is smaller.

Lemma 5.5. Under the hypotheses of Lemma 5.4, if ∆f = −µf , then there exists C2(µ,M0) such that

‖ exp(α
√
Nρ)[f, SN ] exp(−α

√
Nρ)‖L2→L2 ≤ CN−

1
2 ‖∇f‖L∞ (1 + ‖∇ρ‖L∞) .

Proof. The proof proceeds as previously, isolating ∆f = −µf in [f,�N,α]. A first application of the resolvent
formula yields

1
2iπ

∫
|λ|=µ0

[
f,

(
λ− 1

N
�N,α

)−1
]

= 1
2iπ

∫
|λ|=µ0

(
λ− 1

N
�N,α

)−1 (
αN−

1
2∇f · ∇ρ+N−1∇f · ∇N

)
︸ ︷︷ ︸

‖·‖L2→L2≤CN−
1
2 ‖∇f‖L∞ (1+‖∇ρ‖L∞ )

(
λ− 1

N
�N,α

)−1

+ µN−1f

2iπ

∫
|λ|=µ0

(
λ− 1

N
�N,α

)−2

︸ ︷︷ ︸
=0

+ µN−1 1
2iπ

∫
|λ|=µ0

[(
λ− 1

N
�N,α

)−1
, f

](
λ− 1

N
�N,α

)−1
.

By induction,∥∥∥∥∥ 1
2iπ

∫
|λ|=µ0

[
f,

(
λ− 1

N
�N,α

)−1
]∥∥∥∥∥

L2→L2

≤ CN−
1
2 ‖∇f‖L∞(1 + ‖∇ρ‖L∞)

+∞∑
k=0

(µN−1)k.

This concludes the proof.
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We are now in position to prove a weighted estimate on eigenfunctions.

Proposition 5.6. Let M0 be a compact Kähler manifold. There exists C3 > 0 such that, for every N ≥ 1,
for every f ∈ C2(Md′

0 ,R) and every ρ ∈ Lip(Md′
0 ), if SN denotes the Szegő kernel on Md′

0 and if λ ∈ R, u ∈
H0(Md′

0 , L
⊗N ) are such that SN (fu) = λu, then∫

Md′
0

e2α
√
Nρ(x)(f(x)− λ− C(f, ρ)|α|)|u(x)|2dVol(x) ≤ 0,

where

C(f, ρ) = C3

[
N−

1
2 ‖∆ρ‖L∞ + ‖∇ρ‖L∞

] [
N−1‖∆f‖L∞ +N−

1
2 ‖∇f‖L∞ (1 + ‖∇ρ‖L∞)

]
.

If f is a sum of eigenfunctions of −∆ on Md′
0 , with frequencies bounded by µ independently on d′, then one

can choose
C(f, ρ) = C3(µ)

[
N−

1
2 ‖∆ρ‖L∞ + ‖∇ρ‖L∞

] [
N−

1
2 ‖∇f‖L∞ (1 + ‖∇ρ‖L∞)

]
.

Proof. Up to replacing f with f − λ, one has λ = 0.
As in [19] one has

〈exp(α
√
Nρ)(f − λ)u, exp(α

√
Nρ)u〉 = 〈[SN , exp(2α

√
Nρ)]fu, u〉

= 〈[SN , exp(2α
√
Nρ)]SNfu, u〉+ 〈[SN , exp(2α

√
Nρ)](1− SN )fu, u〉

= 〈[SN , exp(2α
√
Nρ)][f, SN ]u, u〉.

We write

〈[SN , exp(2α
√
Nρ)][f, SN ]u, u〉 = 〈e−α

√
Nρ[SN , e2α

√
Nρ]e−α

√
Nρeα

√
Nρ[f, SN ]e−α

√
Nρeα

√
Nρu, eα

√
Nρu〉

so that, by Lemma 5.4,∣∣∣〈[SN , exp(2α
√
Nρ)][f, SN ]u, u〉

∣∣∣
≤ C|α|

[
N−1‖∆f‖L∞ +N−

1
2 ‖∇f‖L∞ (1 + ‖∇ρ‖L∞)

] [
N−

1
2 ‖∆ρ‖L∞ + ‖∇ρ‖L∞

]
‖ exp(α

√
Nρ)u‖22.

This concludes the proof in the general case.
If f is a sum of eigenfunctions of −∆, then one can remove the factor N−1‖∆f‖L∞ by Lemma 5.5. This

concludes the proof.

6 Case study: spin systems
In this section, we study Proposition 5.6 in the particular case of spin systems.

6.1 Construction of the weight

Let us construct a weight ρ adapted to Proposition 5.6.
Let U ⊂M = (S2)d be an open set. Let ρ0 : M → R be as follows:

ρ0 : x 7→
{

0 if dist(x, U) ≤ c0
√
d

dist(x, U)− c0
√
d otherwise.
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Let also χ : R→ R be as follows:

χ : x 7→
{

1− x2 if |x| < 1
0 otherwise.

We will inject in Proposition 5.6 the following function:

ρ : x 7→
[∫

y∈M
χ

(
2 dist(y, x)
c0
√
d

)
dy
]−1 ∫

y∈M
χ

(
2 dist(y, x)
c0
√
d

)
ρ0(y)dy.

Note that ρ is supported on {dist(x, U) ≥ c0
2
√
d} and is greater than 1

2 dist(x, U) on {dist(x, U) ≥ 3c0
√
d}.

Proposition 6.1. The following controls hold independently on c0 and d:

‖∇ρ‖L∞ ≤ 1

‖∆ρ‖L∞ ≤
16
√
d

c0
.

Proof. Let x0, x1 ∈ M . There exists u ∈ (so3)d, of norm 1, such that exp(dist(x0, x1)u)x0 = x1. From the
definition of ρ and the invariance of the integral kernel under (SO3)d, one has

ρ(x0)− ρ(x1) =
[∫

y∈M
χ

(
2 dist(y, x)
c0
√
d

)
dy
]−1 ∫

y∈M
χ

(
2 dist(y, x)
c0
√
d

)
(ρ0(y)− ρ0(exp(dist(x0, x1)u)y)dy.

From there, since ρ0 is 1-Lipschitz, ρ is 1-Lipschitz.
To estimate ∆ρ, let us bound ∫

y∈M

∣∣∣∣∇xχ(2 dist(y, x)
c0
√
d

)∣∣∣∣dy,
where the norm of the gradient is the `2 norm.

First, one has almost everywhere

∇xχ
(

2 dist(y, x)
c0
√
d

)
= 8
c2

0d
dist(x, y)1

d(x,y)≤ c0
√
d

2
γ,

where γ is the derivative at 0 of the unique unit speed geodesic from y to x with minimal length.
In particular, on the complement of

{
d(x, y) ∈

[
c0
√
d

2

(√
1 + 1

4d2 − 1
2d

)
, c0
√
d

2

]}
one has∥∥∥∥∇xχ(2 dist(y, x)

c0
√
d

)∥∥∥∥ ≤ 4
√
d

c0
χ

(
2 dist(y, x)
c0
√
d

)
so that ∫

B
(
x,
c0
√
d

2

(√
1+ 1

4d2−
1

2d

))
∥∥∥∥∇xχ(2 dist(y, x)

c0
√
d

)∥∥∥∥dy ≤ 4
√
d

c0

∫
M
χ

(
2 dist(y, x)
c0
√
d

)
dy.

To estimate the integral on the complement, we introduce f : R+
∗ → R+

∗ as the ratio of the area of spheres
on M versus Cd:

f : r 7→
V ol2d−1(SM (x, r))
V ol2d−1(SCd(0, r))

.

An essential property of f is that it is decreasing. Indeed,

f(r) = 1
V ol2d−1(SCd(0, 1))

∫
SCd (0,1)

d∏
i=1

1|zi|<π
r

sin(r|zi|)
r|zi|

dzdz
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where the quantity to be integrated decreases with respect to r.
Now∫
B
(
x,
c0
√
d

2

)
\B
(
x,
c0
√
d

2

(√
1+ 1

4d2−
1

2d

))
∥∥∥∥∇xχ(2 dist(y, x)

c0
√
d

)∥∥∥∥dy

= Vol2d−1(S2n−1)

∫ c0
√
d

2

c0
√
d

2

(√
1+ 1

4d2−
1

2d

) r2d−1f(r) 8
c2

0d
rdr.

For r in the integration range, f(r) ≤ f
(
r
(
1− 1

2d
))

since f is decreasing; moreover, for all d ∈ N,

r2d(
r
(
1− 1

2d
))2d =

(
1− 1

2d

)−2d
≤ 4.

Hence,∫
B
(
x,
c0
√
d

2

)
\B
(
x,
c0
√
d

2

(√
1+ 1

4d2−
1

2d

))
∥∥∥∥∇xχ(2 dist(y, x)

c0
√
d

)∥∥∥∥dy

≤ 4Vol2d−1(S2n−1)

∫ c0
√
d

2 (1− 1
2d)

c0
√
d

2

(√
1+ 1

4d2−
1

2d

)
(1− 1

2d)
r2df(r) 8

c2
0d

dr.

Since
1− 1

2d ≤
√

1 + 1
4d2 −

1
2d,

one is left with part of the integral controlled previously:

Vol2d−1(S2n−1)

∫ c0
√
d

2 (1− 1
2d)

c0
√
d

2

(√
1+ 1

4d2−
1

2d

)
(1− 1

2d)
r2df(r) 8

c2
0d

dr ≤ 4
√
d

c0

∫
M
χ

(
2 dist(y, x)
c0
√
d

)
dy.

Thus, one has the following control:(∫
M
χ

(
2 dist(y, x)
c0
√
d

)
dy
)−1 ∫

M

∥∥∥∥∇xχ(2 dist(y, x)
c0
√
d

)∥∥∥∥dy ≤ 16
c0

√
d.

Let x ∈M . Without loss of generality, x = (1, . . . , 1) is the North pole. Let (Xi)1≤i≤d and (Yi)1≤i≤d be the
vector fields on M corresponding to unit speed rotation around the X or Y axis on the i-th sphere. Then

∆ρ(x) =
(∫

M
χ

(
2 dist(y, x)
c0
√
d

)
dy
)−1 d∑

i=1

∫
M
∂Xiχ

(
2 dist(y, x)
c0
√
d

)
∂Xiρ0(y) + ∂Yiχ

(
2 dist(y, x)
c0
√
d

)
∂Yiρ0(y).

The semidefinite scalar product induced by (Xi) and (Yi) is everywhere controlled by the usual one: for all
u, v ∈ TM with same base point,∣∣∣∣∣

d∑
i=1
〈Xi, u〉〈Xi, v〉+ 〈Yi, u〉〈Yi, v〉

∣∣∣∣∣ ≤ |〈u, v〉| .
In particular, since ‖∇ρ0‖ ≤ 1, one has

|∆ρ(x)| ≤
(∫

M
χ

(
2 dist(y, x)
c0
√
d

)
dy
)−1 ∫

M

∥∥∥∥∇xχ(2 dist(y, x)
c0
√
d

)∥∥∥∥dy,

which concludes the proof.
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6.2 Implementing the weighted estimates

To begin with, let us define the class of symbols, called tame spin systems, with which we will work.

Definition 6.2. Let G = (V,E) be a graph with |V | = d vertices. Suppose that the valence at each site is
bounded by v. Assign to each edge e ∈ E a colour among k elements; one can decompose E = E1tE2t. . .tEk
into the disjoint union of the sets of edges of a prescribed colour. Now, for each colour j, let wj : M0×M0 → R
be a C2 function, whereM0 = (S2)m0 is a product of spheres; suppose that wj is a finite sum of eigenfunctions
of the Laplace operator.

Then the following function g is a tame spin system on (M0)G = {(xa), a ∈ V }:

g : x 7→
k∑
j=1

∑
(a,b)∈Ej

wj(xa, xb).

This very broad class of functions contains any finite-range spin system on a lattice, quasi-crystal, or
random graph with bounded valence, with any reasonable boundary condition. Examples of spin systems
not satisfying the control above are

• The boundary condition “all spins at the boundary are identical”, except for spin chains

• Infinite range interactions (with sufficiently slow decay)

• Mean field theories

• Random interactions (if the strength of the interaction is not bounded).

Since this section is concerned with the d → +∞ limit, we will consider d-dependent families of tame
spin systems. Without risk of confusion, we will call “tame spin system” a family of tame spin systems
where, with the notations of Definition 6.2, the objects m0, v, k, (wj)1≤j≤k are fixed.

The following property follows immediately from the definition.

Proposition 6.3. Let g be a tame spin system. There exists C such that, for every d, one has

‖g‖L∞ ≤ Cd

‖∇g‖L∞ ≤ C
√
d

‖∆g‖L∞ ≤ Cd.

We will not apply Proposition 5.6 to a tame spin system g itself, but to the N -dependent symbol f
which is such that

TN (f) = d−1TN (g − λ)2,

where λ is the eigenvalue to be studied.
The properties of f depend on the symbol calculus on S2.

Proposition 6.4. Uniformly in N and d, one has

‖∇f‖∞ ≤ C
√
d

‖∆f‖∞ ≤ Cd

f = d−1(u− λ)2 +O(N−1).
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Proof. For N ∈ N, let BN denote the Berezin transform, defined as follows: for f ∈ C∞(M,R), the operator
TN (f) has an integral kernel; we let

BNf : x 7→ π

N + 1TN (f)(x, x).

The Berezin transform is related to the symbol product ([4], Proposition 6). It admits an expansion in
negative powers of N :

BN = I +
+∞∑
k=1

N−kBk +O(N−∞),

where Bk is a differential operator of order 2k.
The operator BN commutes with the SO(3) action on S2 (since the Szegő kernel is invariant by this

action). In particular, there exist coefficients (c`,k)`≤k such that, for every k,

Bk =
k∑
`=0

c`,k∆`.

Moreover, one has BN (1) = 1 by definition, so that c0,k = 0 for all k ≥ 1. In other terms, for some differential
operators Ck one can write

BN = I +
+∞∑
k=1

N−kCk∆ +O(N−∞).

The symbolic product is then a polarisation of the Berezin transform: a monomial term in BN of the form
∆` leads to a term in the symbol product of a and b of the form ∂`a∂

`
b.

The Berezin transform on (S2)d is the tensor product of the Berezin transform on each sphere. In
particular, one has

df = (g − λ)2 +
∑

J⊂{1,...,d}
|J |≥1

∏
j∈J

(+∞∑
k=1

N−kC̃k;j

)(
∂J (g − λ), ∂J (g − λ)

)
.

Here, C̃k;j denotes the polarisation of Ck acting on the j-th coordinate (holomorphic derivatives act on
the first function, antiholomorphic derivatives on the second function). We, crucially, use the fact that the
Berezin transform, and the symbol calculus, lead to absolutely converging sums for spin systems.

If g is a tame spin system, then for any j0 ∈ {1, . . . , d} the number of J ⊂ {1, . . . , d} such that j0 ∈ J
and ∂J g 6= 0 is bounded independently on j0 and d. Using the notations of Definition 6.2, an upper bound
is 2m0v − 1. In particular, uniformly in j0 and d,

∑
J⊂{1,...,d}
j0⊂J

∏
j∈J

+∞∑
j=1

N−kC̃k;j

(∂J (g − λ), ∂J (g − λ)
)

= O(N−1).

In fact, N(df − (g − λ)2) is again a tame spin system (with classical dependence on N) and satisfies the
same type of bounds as g, as in Proposition 6.3. This yields the desired bounds on ∇f and ∆f .

Proof of Theorem D
Let ρ be constructed as in Section 6.1 (we will define U and c0 later) and let f be as above. The spectral

gap condition of Proposition 5.2 amounts (for d large enough) to

|α| ≤ c3N
1
2d−

1
2 c0
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and the constant in Proposition 5.6 is controlled by

C(f, ρ) ≤ C3(µ)N−1dc−1
0 .

In particular, one has ∫
M
ec4
√
Nαρ

(
f − C(µ)N−

1
2d

1
2

)
|u|2 ≤ 0.

Let now λ1 = C(µ)N− 1
2
√
d and λ2 = 2C(µ)N− 1

2
√
d. One has (h − Cc3(λ + N−

1
2d)) ≥ C(µ)N− 1

2
√
d on

{h ≥ λ2}.
We now choose

U = {f ≤ λ1}

c0 = N−
1
2

and α large enough. Then, decomposing the integral yields, for some c4 > 0,

0 ≥ C(µ)N−
1
2
√
d

∫
{
x∈M,dist(x,U)≥3N−

1
2
√
d
}
∩{f≥2C(µ)N−

1
2
√
d}
ec4
√
N dist(x,U)d−

1
2 |u|2(x)dx

− C(µ)N−
1
2
√
d

∫
{x∈U}

|u|2(x)dx.

Since f = 1
d(g − λ)2 +O(N−1), one has

{f(x) ≥ λ1} ⊂ {|g(x)− λ| ≥ CN−
1
4d

3
4 }.

This yields Theorem D.

Remark 6.5. The window |g − λ| ≥ CN− 1
4d

3
4 seems larger than what Theorem B allows for: by applying

Proposition 5.6 directly to g, we would have obtained |g − λ| ≥ CN−
1
2d

1
2 . However, since even the lowest

eigenvalue of TN (g) is typically of order N−1d if min(g) = 0, this constant appears in the lower bound for
the negative part of the weighted integral; this would yield an estimate of the form∫

W
ec4
√
N dist(x,U)d−

1
2 |u|2(x)dx ≤ CN−

1
2
√
d,

which, as d increases, is no better than the trivial estimate∫
W
ec4
√
N dist(x,U)d−

1
2 |u|2(x)dx ≤ CeC

√
N .

Remark 6.6. Letting c0 be a small constant rather than N− 1
2 in the proof of Theorem D, we obtain the

following variant: ∫
W
ec4N dist(x,U)d−

1
2 |u(x)|2dx ≤ C,

where
W = {x ∈ (S2)d, dist(x, U) ≥ Cc0

√
d}.
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6.3 The partition function

To conclude, in this subsection we use Theorem D to prove Proposition 1.1.
We let g be a tame spin system and β ≤ cN 1

2d−1. Let (uk)1≤k≤(N+1)d be a spectral basis for TN (g) and
(λk)1≤k≤(N+1)d be the associated family of eigenfunctions. Then

Tr(e−βTN (g)) =
(N+1)d∑
k=1

e−βλk .

We wish to compare
〈uk, e−βguk〉

and
〈uk, e−βTN (g)uk〉 = e−βλk ,

for β ≤ cN 1
2d−1.

Following Theorem D, let

W =
{
x ∈ (S2)d,dist(x, {|g − λk| < C0N

− 1
4d

3
4 }) > KC0N

− 1
2
√
d
}
.

Here C0 is the constant C in Theorem D, and K is an integer large enough.
Since ‖∇g‖ < C(w, v)

√
d by Proposition 6.3, for x ∈ (S2)d \Ω one has |g−λk| < CN−

1
2d. In particular,

for some C > 0 independent of N and d, one has

e−βλke−CN
− 1

2 βd

∫
W c

|u(x)|2 ≤
∫
W c

e−βg|u(x)|2 ≤ e−βλkeCN
− 1

2 βd

∫
W c

|u(x)|2.

A first application of Theorem D yields ∫
W
|u(x)|2 ≤ C0e

−c0K ,

so that, in particular, for K large enough

1
2 ≤

∫
W c

|u(x)|2 ≤ 1.

One can then simplify the previous inequality into

e−βλke−C
′N−

1
2 βd ≤

∫
W c

e−βg|u(x)|2 ≤ e−βλkeCN
− 1

2 βd,

for some C ′ > C.
It remains to give an upper bound on ∫

W
e−βg|u|2.

To this end, we observe that, on W ,

−β(g − λk) ≤ βCN−
1
4d

3
4 + dist(x, {|g − λ| < CN−

1
4d

3
4 })β‖∇g‖.

By Proposition 6.3, the bound on β and the definition of W , this simplifies into

−β(g − λk) ≤ C(N−
1
2βd−1)N

1
2d−

1
2 dist(x, {|g − λ| < CN−

1
4d

3
4 })

≤ c0N
− 1

2d−
1
2 dist(x, {|g − λ| < CN−

1
4d

3
4 })
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if β < cN
1
2d−1 with c small enough. Here c0 is the exponential constant in Theorem D.

Hence, by Theorem D, ∫
W
e−βg|uk|2 ≤ e−βλk ≤ e−βλk(eC′N

− 1
2 βd − 1).

To conclude,
1
2e
−βλke−C

′N−
1
2 βd ≤

∫
e−βg|uk|2 ≤ e−βλkeC

′N−
1
2 βd.

Summing this estimate over k yields:

Tr(exp(−βTN (g)))e−C′N
− 1

2 βd ≤
∫
e−βg

(∑
k

|uk|2
)
≤ Tr(exp(−βTN (g)))eC′N

− 1
2 βd.

Since the uk’s form an orthonormal basis of the Hilbert space, one has, for every x ∈M ,

∑
k

|uk|2 =
(
N + 1
π

)d
.

Up to this factor, the quantum partition function Tr(exp(−βTN (g))) is, approximately, given by the classical
partition function

∫
M e−βg. This concludes the proof.

Remark 6.7. The multiplicative error term eC
′Nδ−ε is better than the outcome of the method used by Lieb

[22]. In this method, one bounds the quantum partition function by a term of the form(
N + 1 + 2C

π

)d ∫
M
e−βg,

where C is the maximal order of the spin polynomial at one given site (the order of Sx,jSx,j+1 is 1, but the
order of Sx,jSy,j is 2). The error is then(

N + 1 + 2C
N + 1

)d
= O(exp(CdN−1)).

Remark 6.8. In this method, the upper bound on β is driven by the bound in the weighted estimate in
Theorem D. Following Remark 6.6, on the improved range β ≤ cNd−1, we obtain the weaker estimate

|fQ(N, β)− fC(N, β)| ≤ C.
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