
HAL Id: hal-02443143
https://hal.science/hal-02443143v1

Submitted on 29 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scalable lightning factories for Bitcoin
Alejandro Ranchal-Pedrosa, Maria Potop-Butucaru, Sara Tucci Piergiovanni

To cite this version:
Alejandro Ranchal-Pedrosa, Maria Potop-Butucaru, Sara Tucci Piergiovanni. Scalable lightning fac-
tories for Bitcoin. The 34th ACM/SIGAPP Symposium On Applied Computing (SAC ’19), ACM,
Apr 2019, Limassol, Cyprus. pp.302-309, �10.1145/3297280.3297312�. �hal-02443143�

https://hal.science/hal-02443143v1
https://hal.archives-ouvertes.fr

Scalable Lightning Factories for Bitcoin

Alejandro Ranchal-Pedrosaa,b,c,d, Maria Potop-Butucarub, Sara
Tucci-Piergiovannia

aCEA LIST, PC 174, Gif-sur-Yvette, France
bSorbonne Université, CNRS, Laboratoire dInformatique de Paris 6, LIP6, Paris, France
cDepartment of Networks and Telecommunication Services (RST), Télécom SudParis,

Paris-Saclay University, 91011 Evry, France
dDepartment of Information Engineering and Communications, Universitat Autónoma

de Barcelona, Barcelona, Spain

Abstract

Bitcoin, the most popular blockchain system, does not scale even under very
optimistic assumptions. The Lightning Network, a layer on top of Bitcoin,
composed of one-to-one lightning channels make it scale to up to 105 Mil-
lion users. Recently, Duplex Micropayment Channel factories have been
proposed based on opening multiple one-to-one payment channels at once.
Duplex Micropayment Channel factories rely on time-locks to update and
close their channels. This mechanism yields to a situation where users’ funds
time-locking for long periods increases with the lifetime of the factory and
the number of users. This makes DMC factories not applicable in real-life
scenarios.

In this paper, we propose the first channel factory construction, the Light-
ning Factory, that offers a constant collateral cost, independent of the lifetime
of the channel and members of the factory. We compare our proposed design
with Duplex Micropayment Channel factories, obtaining better performance
results by a factor of more than 3000 times in terms of the worst-case constant
collateral cost incurred when malicious users use the factory. The message
complexity of our factory is n while Duplex Micropayment Channel factories
need n2 messages, where n is the number of users. Moreover, our factory
copes with an infinite number of updates while in Duplex Micropayment

Email addresses: alejandro.ranchal_pedrosa@etu.upmc.fr (Alejandro
Ranchal-Pedrosa), maria.potop-butucaru@lip6.fr (Maria Potop-Butucaru),
sara.tucci@cea.fr (Sara Tucci-Piergiovanni)

Preprint submitted to Nuclear Physics B January 31, 2019

Channel factories the number of updates is bounded by the initial time-lock.
Finally, we discuss the necessity for our Lightning Factories of BNN,

a non-interactive aggregate signature cryptographic scheme, and compare it
with Schnorr and ECDSA schemes used in Bitcoin and Duplex Micropayment
Channels.

Keywords: Bitcoin, Blockchain, Scalability, Lightning Network.

1. Introduction

The Bitcoin blockchain aims at becoming the main system for e-commerce.
However, it has a big problem: it does not scale. The way Bitcoin works at
the time of writing, all (full) nodes need to know all bitcoin transactions ever
made. Following this approach, the Bitcoin Network will need to generate
more than 1TB of transactions per day to reach VISA’s peak transaction
rate [14]. Even if the network achieved such numbers, becoming a Bitcoin
node would be a very resource-consuming task. This hinders the use of stan-
dard computational resources which, in turn, leads to a centralized network
of a few powerful nodes, thus threatening its trustless nature.

It is, therefore, reasonable to consider ways of creating blockchain-enforceable
information, without actually bloating the network. This approach is sim-
ilar to that of the judicial system: citizens (members of the network) sign
contracts constantly (court-enforceable information), but they do not en-
force these contracts unless there is a dispute in which the counter-party
does not cooperate. This is actually the idea of payment channels, i.e.
blockchain-enforceable contracts, whose content is the balance of involved
parties. Opening and closing the contract takes place in the blockchain, but
from the moment parties open the channel till the moment they close it,
they can perform transactions with each other without publishing them in
the blockchain, unless there is a dispute, to enforce the correct transaction.
Let us note that this approach, called often Layer2 of the blockchain, does
not only improve scalability, but offers a number of advantages for end-users.
First, members of a payment channel can perform payments without paying
any fees, if they have an open channel, or with some fees determined by relay
nodes in the path, instead of a blockchain fee. Second, the payments per-
formed within a payment channel, provided all participants are online and
responsive, take place at the speed of their communication protocol. Third,
the possibility to perform fast, free of charge payments opens Bitcoin’s way

2

into a new set of applications based on micropayments.
Recently the idea of payment channels has been further improved by the

use of intermediate nodes that can also route payments, creating a network
of payment channels, such as Lightning Network [14]. However, as pointed
out by Poon et al. [14], the Lightning Network does not scale well enough.
Even under the very generous assumption that each user only publishes 3
transactions per year (to open and/or close channels), the network scales to
only 35 million users, far from covering the world’s population. For this rea-
son, Burchert et al. [5] propose Channel Factories. Channel factories allow
for various users to simultaneously open independent channels in one sin-
gle transaction, reducing drastically the number of blockchain hits required.
Their solution bases on Duplex Micropayment Channels (DMCs) [7], in which
closing transactions rely on timelocks relative to the funding transaction en-
tering the blockchain. The timelock makes the transaction invalid until an
amount of time in the blockchain elapses (either actual time in seconds, or
block-depth). This mechanism makes DMCs simple to setup and track, but
it shows an important trade-off between the lifetime of the channel and the
worst-case temporary lock-in of funds. On the one hand, a higher locktime
will reduce the number of blockchain hits. On the other hand, if one party
goes unresponsive, the counterparty will have to wait for the entire lock-
time before retrieving their funds. In contrast to DMCs, Lightning Channels
tackle this trade-off efficiently, leading to a constant worst-case locktime in-
dependent of the lifetime of the channel – for this reason we propose in this
paper a factory solution based on Lightning Channels instead of DMCs.

The contributions of our work is as follows. To the best of our knowl-
edge, we propose the first Lightning Factory, solving the trade-off between
the lifetime of the factory and the risk of funds lock-in. We compare our
Lightning Factories with DMC Factories (the current state of the art). We
show that Lightning Factory offers a constant collateral cost, independent
of the lifetime of the channel and members of the factory, enabling actual
applicability of factories for scalability, besides disincentivizing frauds by pe-
nalization. We obtain better performance results by a factor of more than
3000 times with respect to DMC Factories. From a cryptographic point of
view, our solution requires for multi-signatures a non-interactive aggregate
signature scheme. Maxwell et al. [10] recently proposed a scheme for Schnorr
Multi-signatures with applications to Bitcoin. This scheme is however, in-
teractive, not non-interactive, as we require. For this reason, we apply the
BNN [1] non-interactuve scheme for our Lightning Factory, instead of Schnorr

3

and ECDSA, used in Bitcoin and DMCs, and we compare them.
The remaining of this document is structured as follows: in Section 2

we discuss related work, while in Section 3 we introduce the necessary back-
ground and basic notions on payment channels; Section 4 shows our Lightning
Factory construction; in Section 5 we compare Lightning Factories with state
of the art, and finally we conclude in Section 6.

2. Related Work

Decker et al. [7] firstly introduced Duplex Micropayment Channels (DMCs),
with the usage of decreasing timelocks to update the channel. Poon and
Dryja’s Lightning Network and channel construction [14] followed, gaining
popularity as the most promising proposal for a payment channel network.
Decker et al. [6] recently proposed eltoo, a proposal for removing incentives
to updates for the updating phase of Lightning channels. Prihodko et al. [13]
proposed FLARE, a routing algorithm for the Lightning Network.

An important aspect of the Lightning Network not yet extensively studied
is its overall usage and impact, i.e. how the fees will be, how scalable the
routing will really be, the impact it can generate on the blockchain, etc.
Zohar et al. [4] studied this in two rather simple, static Lightning Network
topologies.

Other proposals focused on more versatile blockchains. Poon and Vitalik
released Plasma [12], a specification of off-chain childchains for Ethereum,
as an intermediate layer between Lightning and the rootchain. Miller et
al. [11] considered improvements in terms of collateral cost of HTLC-based
routing for Ethereum, wile Khalil et al. [9] proposed a rebalancing protocol
for exhausted channels.

Because payment channels do not scale well enough by themselves [14],
Burchert et al. [5] firstly suggested setting up multiple channels at once in
what they referred to as a DMC factory. Decker et al. [6] shortly mentioned
that their eltoo approach can be extended to factories. However, they did
not provide a protocol. While eltoo-based approach speaks of Lightning
penalizations as toxic, the absence of penalizations for fraud in an eltoo-based
factory can lead to all users committing to each valid state that maximizes
their benefit, bloating the network and causing tension and distrust in the
network, which can be more toxic when scaling to multiple parties than
penalizing fraudsters. Additionally, the diversity of options for a second

4

layer in Bitcoin required a common notation of them, which has not been
yet performed for Bitcoin, though it has for state channel networks [8].

3. Payment Channels and Factories

In this section, we sketch the functioning of payment channels and facto-
ries.

3.1. Channels

A payment channel between n parties, also called n-party channel, con-
sists of a funding transaction that locks up funds, and a sequence of update
transactions that deterministically specify how the locked funds are split
among participants/users. The structure of a generic transaction is intro-
duced below.
Transaction. Each transaction TS is a data structure specifying an agreement
among a set of subscribers S to move funds among accounts. TS has the
following fields: TS.out: the set of outputs of the transaction, i.e., a set of
elements of type oj, where oj indicates the fund o to transfer to the account
ai; TS.in: the set of inputs of the transaction. Each element of this set
is an output of another transaction T ′S′ .out, i.e. an amount spendable in
the transaction TS; TS.conds: the set of conditions for the transaction TS
to be valid. A valid transaction makes the outputs of the transactions TS
spendable (needed signatures, locktimes, etc.). Figure 1 shows the chaining
of two transactions through their inputs and outputs. From the bottom to
the top, the transaction T 1

B moves an amount of 20 from the B’s account to
the C’s one, i.e. T 1

B.out = {(20, C)}. The relationship between the T 1
B’s input

and T 0
A’s output (represented by an arrow in the figure) creates a dependency

between transactions, we say in this case that T 1
B spends (fully or partially1)

the output of the transaction T 0
A. Note that each transaction is executed

when registered in the blockchain and that by construction T 1
B cannot be

registered before T 0
A since T 1

B refers to T 0
A outputs.

Two-party Channels. Channels have two types of transactions: a fund-
ing transaction, that opens the channel, and subsequent refund transactions.
Note that specific protocols can instantiate these transactions in a specific

1Usually if the total referred amount is not used, as in this case, an additional transfer
from B to himself is added to fully spend the referred output. For sake of conciseness, in
the paper this additional transfer is not explicitly represented.

5

A:50, B:0, C:0

T 0
A T 0

A.out = (50, B)

A:0, B:50, C:0

T 1
B

A:0, B:30, C:20

T 1
B.in = T 0

A.out

T 1
B.out = (20, C)

Figure 1: Example of a chain of transactions moving funds from A to B and from B to C.
On the left-hand side of the picture, the state of balances before and after the execution
of each transaction.

way and/or add other types of transactions. We give an intuition about gen-
eral principles of channels before deepening into the details of the Lightning
channels.
Funding Transaction. Any payment channel is initialized with a funding
transaction T 0

i,j that creates a common account for the participants i and j.
The the set of inputs refers to input transactions spendable separately by ui
and uj; the output specifies instead an output moving funds to an account
shared by ui and uj; conditions refers to the fact that to spend the common
output the spending transaction must by signed by both ui and uj.
Refunding transaction. After locking up funds with the funding transaction
T 0
i,j, each subsequent transaction will represent a two-party agreement on a

new redistribution of funds, i.e. a refunding transaction. This means that
any refunding transaction T ki,j with k ≥ 1 has T ki,j.in = T 0

i,j.out, and outputs
move funds back to i and j on independent accounts ai and aj. This means
that spending transactions can spends T ki,j outputs only be signed by ui or
uj, depending on the output referred, either oi or oj.

Let us note that transactions are created by participants by following
a message-passing protocol to open a channel (creating the fund and the
first refund transaction) and to update the channel (creating the subsequent
refund transactions). Figure 2 shows a protocol to open a channel among
Alice and Bob. Transactions are exchanged through messages that must be
signed, i.e., T 0

.. indicates nobody signed yet. Once the transaction is created
and fully signed, it can be sent to the blockchain. Let us note that each refund
transaction spends the same locked funds, this means that only one of them
can really hit the blockchain, otherwise a double spending would occur. In
this respect, we say that a transaction is on-chain when the transaction is

6

registered in the blockchain in a confirmed block. We then refer to an off-
chain transaction as a transaction ready to be published on-chain, i.e. it is
blockchain-enforceable, but not yet sent to the blockchain.

BobAlice

T 1
ABT 1

AB

Blockchain

T0
B
.out

T 0
.. , T 1

A.

T0
.B
, T

1
AB

T
0A
B

Figure 2: Example of opening a channel by exchaning messages. The funding transaction
and the first refund transactions are created and the funding transaction is sent to the
blockchain.

Figure 3 illustrates a sequence of k update transactions, being the last
transaction T k, where each transaction spends the outputs of the funding
transaction T 0, which is on chain. In green, transactions T 1, T 2, · · · , T k that
spend from the same outputs of T 0 (conditition represented by the incoming
arrow) and are off-chain. These transactions are mutually exclusive, only one
of them can be included in the blockchain, condition represented by the

⊗
.

In purple, we show how much money each participant receives (that is, the
balance of each participant at each state).

In the context of n-party channels, a malicious party may want to publish
on-chain an old balance, if this balance favors them. Consider an older prefix
Ti,j such that the balance bi,k, k < n, is greater than bi,n, then ui may want the
blockchain to confirm T ki,j instead of T ni,j. Note that, if T ki,j hits the blockchain,
T ni,j will be discarded (albeit perhaps after some locktime), because both
transactions spend from the same outputs. From now on, we will refer to a
party that successfully makes the blockchain confirm an old transaction as
a party that commits a fraud. A party can go however unresponsive either
maliciously or involuntarily.

Once the funding transaction is created as well as the first refunding

7

Alice Bob

T 0⊗

T
−

1

A
.o
u
t T

−
1

B
.o
u
t

T 1

A : T1.oAB : T1.oB

T 2

A : T2.oAB : T2.oB

· · · T k

A : Tk.oAB : Tk.oB

Figure 3: Example of a channel between Alice and Bob. In red, the transaction T 0

that is on-chain. In purple, The initial inputs and the final outputs, split between
the participants Alice and Bob. In green, transactions T 1, T 2, · · · , T k that spend
from the same outputs of T 0 and are off-chain. These transactions are mutually
exclusive, only one of them can be included in the blockchain, represented by the⊗

.

transaction, other refund transactions T k can be created off-chain. In the
reminder of the paper we will interchangeably use the term refund transaction
T k and channel at state k, where at each state k the users of the channel
have balances determined by the execution of the transaction T k.

As already mentioned, a payment channel is implemented by a message-
passing protocol among participants. Any protocol to correctly implement
a payment channel must be fraud-resistant and cope with unresponsive be-
havior. Honest parties should always own enough transactions to be able
to get back at least an amount of funds equivalent to the last agreed-upon
balance (no-steal). Moreover, if a new update cannot be fully singed due to
an unresponsive behavior of one of the party, then the other party must get
back the initial fund published with the funding transaction (no-lock). For
instance, in Figure 2 the first update transaction is signed before the fund
transaction, to guarantee no-lock.

Underlying mechanisms of current proposals.. Depending on the update mech-
anism, we list here three different channels. Duplex Micropayment Chan-
nels [7] (DMCs) update by creating new transactions with decreasing time-

8

locks for each update, achieving the determinism of the updates. New up-
dates are locked for less time, thus replacing the older ones. Note that
in this protocol frauds cannot be commited under the assumption that the
blockchain well-behaves. Eltoo Channels [6] update by creating a set of trans-
actions that invalidate previous refund transactions when creating the new
update. New updates invalidate old ones, but frauds can be committed. In
this case the protocol can recover to the correct state under the assumption
that the fraud is detected. Lightning Channels [14] follow eltoo channels ap-
proach, but with the additional feature of penalizing parties that commits
frauds.

3.2. Factories

A channel factory is an n-party channel which creates a funding transac-
tion among n nodes, i.e. all of them sign the funding transaction. Further,
instead of having an update consisting of a refunding transaction signed by
all the parties, a special Allocation transaction create funding transactions
for 2-party channels. The update of the factory consists in updating the allo-
cation transaction. The channel factory concept has been introduced in [5] in
which the funding transaction to open the factory is called Hook transaction
and the first allocation transaction has an associated timelock. Updating the
factory means opening/closing channels, by creating a new allocation trans-
action with lower locktime. Finally, closing the factory means publishing
the lastly signed allocation transaction (with the lowest locktime), or else
cooperating to sign a last agreed-upon transaction with no locktime.

4. From Lightning Channels to Lightning Factories

In this section we present the Lightning Factory construction. We first
detail Lightning and Duplex Micropayment Channels, then introduce the
cryptographic scheme needed to cope with the challenges of extending light-
ning channels to n parties. Furthermore, we explain the protocol for opening,
updating and closing a Lightning Factory.

4.1. Lightning Channels

A Lightning channel is opened by creating a funding transaction and a
first refund transaction, as shown in Figure 2 . To align to Lightning we will
denote the funding transaction as FAB. For the channel update in Lightning,
outdated states are invalidated by creating specific transactions that we detail
in the following. These specific transactions, if a malicious party commits a

9

fraud, allow the honest one to remedy by publishing a specific transaction
that gets back all the funds to the honest party – a proof of fraud. The set of
created transactions and their dependency are shown in Figure 4. Let us note
that all the transactions have now a subscript indicating the party that, once
the transaction is created, stores the transaction locally. The figure shows
two so-called Commitments transactions: Ck,A

AB that only Alice can send to
the blockchain, and Ck,B

AB that only Bob can send to the blockchain. In
case of unresponsive party or because one party wants to unilaterally close a
channel, funds can be retrieved by A thanks to a so-called Revocable Delivery
transactions RDk,A

AB after a timelock (by B through RDk,B
AB , respectively),

illustrated in the dotted paths in Figure 4. During the creation of RDk,A
AB the

protocol makes sure to create as well Dk,A
AB which refunds B immediately (no

time-locks). Proofs-of-frauds can be achieved through the Breach Remedy
transactions BRk,A

AB , BRk,B
AB , respectively. These transactions spend the same

outputs as RDk,A
A,B and RDk,B

A,B, but without a timelock and they give all the
balance to the counterparty, illustrated in the dashed paths in Figure 4.

In the proposed scheme, if B (the same applies to A) gets unresponsive,
funds can be retrieved unilaterally by A thanks to RDk,A

AB , but only after a
timelock, this way no-lock is preserved. Moreover, if one of the two party
sends to the blockchain a stale state, the timelock allows for B to react and
send a breach remedy.

4.2. Duplex Micropayment Channel Factories[5].

Before defining our proposed Lightning Factory, and for the purpose of
comparing performance, let us outline the state-of-the-art factory construc-
tion: DMC Factories [5].

Suppose a set of users u0, ..., un−1 want to open an amount of channels
within them (e.g. {{u0, u1}, {u0, u2}, {u2, un}, ...}.). If they want to open m
channels, n ≤ m ≤

(
n
2

)
, they would need to publish m transactions. With a

DMC Factory, they can instead join together into a n-of-n multisig output,
called the Hook transaction, H{uj}n−1

j=0
(i.e. T 0 in figure 3). The output

of this transaction is the input of another transaction, called the Allocation
transaction A{uj}n−1

j=0
(i.e. T 1 in figure 3). The allocation transaction allocates

the funds of each channel, and has a timelock that is decreased in each update.
That is, having the first allocation transaction A1

{uj}n−1
j=0

(tlock : t1) then, when

updating, the new allocation is as follows: A2
{uj}n−1

j=0

(tlock : t2 ≤ t1 − δt),

being δt the minimum time required to guarantee inclusion of A2 before A1

10

Alice Bob

FAB⊗

T
−
1

A

.o
u
t T

−
1

B
.o
u
t

C1,A
AB C1,B

AB

D1,A
AB D1,B

AB

⊗

Alice Bob

RD1,A
AB BR1,A

AB

⊗
RD1,B

ABBR1,B
AB

Figure 4: Example of a channel between Alice and Bob. Alice can only broadcast
the left-hand side by publishing C1,A

AB . If Bob has BR1,A
AB then Alice loses all

her funds (dashed path). Otherwise, she can publish RD1,A after waiting some
locktime (dotted path), retrieving her funds. Bob receives his funds immediately
in this case through D1,A. C1,A and C1,B are mutually exclusive, only one can be
published.

in the blockchain, with a high probability. A more in-depth discussion about
δt, and ∆t, can be found in section 5.2. Therefore, the hook and allocation
transactions extend the DMC concepts of funding and refund transactions to
DMC Factories, respectively. Figure 5 shows an example of a DMC factory.

The creation of each channel (i.e. each funding an refunding transaction),
the first allocation transaction A1

{uj}n−1
j=0

and the hook transaction H{uj}n−1
j=0

represent the opening of the factory. Updating the factory means open-
ing/closing channels, by creating a new allocation transaction A2

{uj}n−1
j=0

, with

lower locktime relative to the hook. Analogously, users involved in a partic-
ular channel can update it by signing a new refund transaction with a lower
locktime. Finally, closing the factory means publishing the lastly signed al-
location transaction (with the lowest locktime), or else cooperating to sign a

11

Alice Bob Carol Dave

HA,B,C,D

50 5
0 5

0

50

A1
A,B,C,D

tlock: t1

FAB
no locktime

R1
AB

tlock: t1

FCD
no locktime

R1
CD

tlock: t1

10
0 1

0
0

A : 50 B : 50 C : 50 D : 50

Figure 5: DMC factory between Alice, Bob, Carol and Dave with two payment
channels inside: FAB and FCD. In red, the on-chain transaction. In green, trans-
actions that do not ever hit the blockchain if A,B,C and D cooperate.

last agreed-upon transaction with no locktime. We deepen into the protocol
specification of DMCs, analyzing their performance, in the appendix.

4.3. Cryptographic Scheme

Lightning Factories do not extend as straightforwardly from Lightning
Channels as DMC Factories do from DMCs. Let us note that in a two-party
Lightning Channel both participants sign everything because every change in
the Lightning Channel involves them, and an ejection of one of them implies
closing the channel. For this reason, a two-party Lightning Channel works
perfectly with a 2-of-2 multisignature, in which both participants sign the
same message m, which represents the last balance. Lightning Factories to
be effective need to take into account ejection of participants in the factory.
Moreover, participants in a Lightning Factory sign and share a part of a
transaction, so that each user can later reconstruct transactions as needed.

12

This requires for a cryptographic scheme based on aggregate signatures. As
detailed by Boneh et al. [2], an Aggregate Signature (AS) scheme is a digital
signature scheme with the additional property that a sequence of signatures
σ1, ..., σn of some message mi under some public key pki can be condensed
into a single, compact aggregate signature σ that simultaneously validates
the fact that mi has been signed under pki for all i = 1, ..., n. The verification
process takes input (pk1,m1), . . . , (pkn,mn), and accepts or rejects. Boneh
et al. [2] propose an aggregate signature scheme based on BLS [3], called
BGLS. Bellare et al. [1] improve this scheme by removing the per-signer
distinct messages restriction to BGLS in a new scheme, BNN.

Using a non-interactive aggregated signature scheme, such as BNN, Alice,
Bob and Carol sign a part of a transaction each, instead of the full transac-
tion. A part of a transaction can be considered similar to a partially signed
transaction with the sighash-single flag, or a partially signed n-of-n multisig.
Typically, this is referred to as an aggregate signature. We will also refer to
the signed message that needs to be aggregated with others to form a full
transaction as a transaction fragment. As such, an n-of-n aggregate signa-
ture needs n transaction fragments signed by n different users (each user
signs one), in order to get a fully signed transaction.

4.4. Lightning Factory Protocol

Actions of users. In order to depict the Lightning Factory protocol, we define
a set of actions that a user can perform. The protocol will decide the rules
for the actions to be taken and the kind of transactions to build.

• createi(T): the transaction T is created by ui and stored locally at ui;

• signi(T): the transaction T is signed by the user ui;

• broadcasti(T): the transaction is sent to all n-channel participants;,

• deliverji (T): the transaction T is delivered by ui from uj;

• publishi(T): the transaction T is published on-chain by ui and stored in
the blockchain, if and only if the transaction is valid (correct signatures
and timelocks expired).

Note that the party ui can store the transaction T if and only if they have
created it or another party uj shared it with i, i.e. ui delivered from uj.

In the following for each protocol phase we detail the types of transaction
built and we detail the corresponding protocol.

13

4.4.1. Opening a Lightning Factory

Lightning Factory sets up funds by locking them up into a n-of-n aggre-
gated output, by means of a hook transaction. A Lightning Factory extends
the concept of a Lightning Channel to Factories trough the equivalent of
an Allocation transaction Ak{ui}, i.e. a set of Allocation Commitment trans-

actions {Ck,j
{mi}}

n−1
j=0 , one per user per state to ascribe blame, same way we

defined commitment transactions Ck,A
AB , C

k,B
AB as the equivalent of a refund

transactions. The Allocation Commitment under the aggregate signature
scheme is Ck,j

{mi}n−1
i=0

=
∑n−1

i=0 C
k,j
mi

, where k is the state number, j is the user

that owns this commitment transaction, and {mi} indicates all required mes-
sages are aggregated. The input of this transaction is the output of the hook.
The output of this transaction points at a revocable allocation transaction
RAk,j{mi}n−1

i=0

=
∑n−1

i=0 RA
k,j
mi

, with a locktime relative to the inclusion of Ck,j

{mi}n−1
i=0

in the blockchain.
Specifically, a transaction fragment is a tuple < P ,S, T , I,O,St >.
Following, we explain each of the parts of the tuple, with an example of

the fragment Bob signs for the Alice’s commitment transaction at the initial
state, C1,A

mB
: P is the issuer of the message (e.g. Alice in the case of C1,A

mB
);S

is signer of the message (e.g. Bob in C1,A
mB

); T is the type of the message:
either timelocked or not. In the case of C1,A

mB
T has no locktime; I is the

input for this fragment’s transaction. The H{ui}n−1
i=0

channel hook (funding)
output for the fragment the transaction belongs to; O is the output for this
fragment’s transaction. For C1,A

mB
this output is the input of the Revocable

Allocation; St is state identifier for which this message is valid. In the case
of C1,A

mB
, state is 1.

Notice that only P and St are newly proposed fields for Bitcoin. P ,
the issuer, can be simply a one bit flag indicating that the signer of this
fragment is not the issuer. St can be defined in some of the remaining bits
still unspecified in the sequence no field2.

All users need to agree and sign for the state, so that they cannot reuse
a fragment for a future state. Therefore, the aggregated Allocation Commit-
ment transaction C1,A

{mi}n−1
i=0

=
∑n−1

i=0 C
1,A
mi

would contain the following extra

fields: S is σi, ∀C1,A
mi

; T is No locktime in the aggregated message in C1,A
{mi};

2https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki

14

O is one aggregate signature output, C1,A
{mi}.o. Throughout this paper, we use

Tmi
for the fragment of transaction T created and signed by user i, T{mi}ki=0

for an aggregation of fragments of transaction T created and signed by all
users {ui}ki=0, and T{mi} as the same as T{mi}n−1

i=0
.

Let us note that, for this application, we require only one output for
the commitment transaction (as detailed above). The output represents the
balance that this message commits to. It can only be relative to the signer,
i.e. Bob can only sign the amount Bob receives from the factory.

Analogously, one can also extend the concept of a revocable allocation
transaction into a set of transaction fragments {RA1,A

mi
} that, aggregated,

create a valid transaction RA1,A
{mi} =

∑n−1
i=0 RA

1,A
mi

spending the outputs of

C1,A
{mi}. As such, provided that Alice already committed to this state by broad-

casting C1,A
{mi}, an aggregated revocable allocation message for her, RA1,A

{mi} =∑n−1
i=0 RA

1,A
mi

, would result in each part of the aggregated tuple RA1,A
{mi} =<

P ,S, T , I,O,St >: P is any, ∀RA1,A
A,mi

; S is σi, ∀RA1,A
mi

; T is relative locktime

for all, ∀RA1,A
A,mi

, dependent on when the corresponding commitment transac-

tion was published; I is C1,j
{uj}, regardless of the j (similar to SIGHASH NOINPUT);

O is one aggregate signature output, O=oRA
1

i , ∀RA1,A
mi

; St is 1, ∀RA1,A
mi

.

Notice that
∑n

i=0 o
RA1

i = B, being B the total amount locked at setup

(the total balance). oRA
1

i act as the output of a funding transaction, used as
input for each refunding transaction of two-party channels. In order to allow
each signer to specify with which output to aggregate, we use output indices.
Also, each transaction fragment signs in its fragment the output indices with
a list of signatures that can aggregate to this output, in order to prevent an
outsider to lock funds of a channel by including their signature in the output.
3.

Figure 6 shows an example of a Lightning Factory for u0’s case (i.e. only
u0 can publish the commitment transaction shown). Transaction fragments
are shown within each transaction they form, vertically aligned with the user
that signed for it. The lowest transactions represent each individual com-
mitment transaction of each two-party lightning channel. Here we illustrate
them as commitment transactions, considering them as lightning channels,

3This requirement is no different from how other works require different ways of repre-
senting outputs [10] for further scalability)

15

but they can be refunding transactions from DMCs. Also, another factory
within the factory can be created at this level. Notice how, the same way

T−1
i .out. . .T−1

0 .out . . . T−1
n−1.out

Hm0 + . . .+ Hmi + . . .+ Hmn−1

C1,u0
m0

+ . . .+ C1
mi

+ . . .+ C1
mn−1

C1,u0
{ui}n−1

i=0

=

H{ui}n−1
i=0

=

RA1
m0

+ . . .+ RA1
mi

+ . . .+ RA1
mn−1

RA1
{ui}n−1

i=0

=

C1
u0,uh

. . . C1
uj ,uh

. . . C1
ui,uj

. . . C1
ul,un−1

Figure 6: Lightning Factory’s transactions and fragment for u0’s case (i.e. only u0 can
publish the commitment transaction shown). The transaction fragments are shown within
each transaction they form, vertically aligned with the user that signed for it. Notice how
the lowest Commitment transactions (e.g. C1

u0,uh
) are those of each individual channel.

inputs are aggregated as needed (initially all need to aggregate their key),
outputs are as well. Each user needs to sign also for which output indexes
they want to sign, in order to add its key to the output (and, thus, require
its signature in order to spend it). In the case of the hook, each transaction
fragment Hmi

signs only the input T−1
i .o, which only requires user ui’s key,

and the output n-of-n aggregated output H.o, which requires all other users.
As for the revocable allocation fragments RAmi

, the outputs user ui signs are
only those that are used as inputs in channels that involve ui. We provide
the protocol to open the factory LFsetup() in Figure 7), and we prove its
correctness in the Appendix.

4.4.2. Updating a Lightning Factory

Updating to state k + 1 requires a two-step process:

1. sign and share transaction fragments for the new commitment and
revocable allocation transactions for state k+1, Ck+1,A

{mi} =
∑n−1

i=0 C
k+1,A
mi

and RAk+1,A
{mi} =

∑n−1
i=0 RA

k+1,A
mi

2. invalidate the previous state k, creating Proofs-of-Fraud.

16

Function LFsetup();

//assign indices
...

//share outputs {T−1
j .o}

...
//set up channels {Cuj ,uk}
...
upon event channelsSetUp()
(1) RA1

∅ ← {P : any, S : ui, T : t1,

I : {C1
{ui}

.o}, O : RA1
{ui}

.oui , St : 1}
(2) C1

∅ ← {P : any but ui, S : ui, T : ∅,
I : {H.o}, O : C1

{ui}
.o, St : 1}

(3) {RA1
mi
, C1

mi
} ← signi{RA1

∅, C
1
∅}

(4) broadcast ({C1
mi
, RA1

mi
})

———————————————————————
upon event deliveri(C1

mj
, RA1

mj
) do

(5) store({C1
mj
, RA1

mj
})

(6) if allReceived(St : 1) then
//start with hook

(7) H∅ ← {P : any, S : ui, T : ∅,
I : {T−1

i .o}, O : H.o, St : ∅}
(8) Hmi ← signi(H∅)
(9) broadcast (Hmi)

Figure 7: Opening a Lightning Factory. The initial comments refer selecting an ordering,
sharing outputs to be spent, and setting up 2-party channels inside the factory.

Invalidation of Alice’s transaction for state k means for Alice to cre-
ate and share a Breach Remedy transaction fragment, BRk,A

mA
, that spends

from Ck,A
{uj} without a timelock, same as the fragment Ck,A

mi
does with a time-

lock ∆t. More in detail, BR1,A
mA

’s transaction fragment fields are as follows:

BR1,A
mA

=< P=any, S=Alice, T=no locktime, I=C1,A
{mi}, commitment trans-

action of Alice, St= 1, O= ∅ >.
This way, if Alice publishes the previous state, Bob or Carol can prove

fraud, and restore the channel without requiring Alice’s signature anymore.
Notice this requires for the transaction fragments {Ck,A

mj
}j 6=A to be only valid

for the particular state k. This is why St is required as part of the transaction
fragment.

There are two possible options when proving fraud with Breach Remedy
transaction fragments, we will refer to them as Breach Remedy Restoration
(BRR) and Breach Remedy Closing (BRC) transactions. Both can be signed
and transferred during the update protocol, but only one of them is required
to guarantee the invalidation of previous states and, therefore, correctness of

17

the factory.
BRRs: Proof-of-Fraud to expel fraudster. BRR is used to expel a
fraudster upon committing to a fraud, but leave the rest of the factory in-
tact. The output of a PoF in a BRR is simply a new (n-1)-(n-1) aggregated
signature, that removes the fraudster. This way, since the fraudster’s frag-
ments are not required anymore (nor are they accepted), then the Commit-
ment and Revocable Allocation transactions will not take them into account.
This means the key of the fraudster will not figure in the outputs that the
fraudster signed for in its Revocable Allocation fragment. Hence, every 2-
of-2 multisig output that funded a channel for this fraudster with someone
else becomes a single-sig output for the counter-party, effectively giving all
funds in the channel to the counter-party. In this sense, The BR acts as a
new hook for a new Lightning Factory without the fraudster.

In order for BRRs to be reproducible, we also introduce idle transaction
fragments (Is). That is, each participant signs one and gives it to all the rest,
once for the entire lifetime of the factory. This fragment simply adds the key
of the signer for the input and the output of the Proof-of-Fraud, making
sure a non-fraudster is still part of the factory, whereas the BR only adds
the key to the input. Therefore, when a fraudster tries to commit fraud by
publishing an invalid Commitment Transaction, any participant must create
a BRR transaction by aggregating the BR of the fraudster with the idle
transaction fragments of the rest of the factory members.

We illustrate an example for a 4-party factory in figure 8, where Alice tried
to commit fraud. In this channel factory, Alice aggregates C1,A

A,B,C,D = C1,A
mA

+

C1,A
mB

+C1,A
mC

+C1,A
mD

and their public keys, i.e. pkA,B,C,D = pkA+pkB+pkC+pkD,
thus it is certainly possible that a BRR, BRR = BR1,A

mA
+ ImB

+ ImC
+ ImD

=
BR1,A

mA
+ ImB ,mC ,mD

, with BR1,A
mA

signed by Alice, could point its output to

pkB,C,D, being C2,B
B,C,D a valid transaction that spends this output. After A

cheated, her messages are not necessary, and her buildable transactions not
valid.

Imi
serves as confirmation that user i agrees with unlocking the current

output o of the commitment transaction Cj,A
{ui}, as long as the new output o′

is such that pki is still part of it, and no new members have been added (only
removal). On the other hand, BRj,A

mA
agrees with unlocking this output. This

approach is similar to that of a member of a multisig signing a new state in
which this member is not part of the multisig anymore. In this case, if o was
the output of a hook transaction that depended on the four, HA,B,C,D, o′ is

18

HA,B,C,D

C1,A
A,B,C,D

BRR1,A
{mi} = BR1,A

mA
+ ImB ,mC ,mD

“HB,C,D”

C2,B
A,B,C,D

C2,B

�ZA ,B,C,D���
��XXXXXC2,A

A,B,C,D

Figure 8: Expelling fraudster using a Breach Remedy Restoration transaction
(BRR). After A cheated, her messages are not necessary, and her buildable trans-
actions not valid.

the output of a BRR that depends on Bob, Carol and Dave only, similar to a
hook HB,C,D. Hence, a new BRRB,C can be created, should Bob try cheating

with C2,B
{mi}, by aggregating BRR2,B

B,C = BR2,B
mB

+ ImC ,mD
, which would result

in the funds depending only on Carol and Dave’s keys. This reproducibility
is necessary to guarantee correctness.
BRCs: Proof-of-Fraud to close factory. To close the factory while
proving fraud, one can create a BRC transaction, made out of Breach Remedy
and Revocable Allocation transaction fragments. The challenge here, as for
BRRs, is to point at the proper outputs. Note that a BRC might be at the
same time a fraud in itself by a second fraudster, and a third honest party
must be able to proof two nested frauds (i.e. it must be reproducible). This
is why this Proof-of-Fraud is revocable, as opposed to previous cases. BRRs
already tackle this problem, since the factory is restored, not closed.

Figure 9 shows this scenario in a channel factory between Alice, Bob,
Carol and Dave, for which the set of state updates are as follows:

User State 1 State 2 State 3
A 50BTC 20BTC 20BTC
B 50BTC 80BTC 20BTC
C 50BTC 50BTC 110BTC
D 50BTC 50BTC 50BTC

Notice how it is Alice’s interest to publish state 1, even if it is deprecated.

19

Therefore, Alice tries cheating by publishing C1,A
{mi} =

∑n−1
i=0 C

1,A
mi

. After

that, Bob, who is also dishonest, prepares a transaction BRC
{1,A},{2,B}
{mi} =

BR1,A
mA

+C2,B
mB

+C2,B
mC

+C2,B
mD

, indicating that this transaction invalidates the
committed state 1 by Alice, and commits to state 2 by Bob. Finally, Carol,
who is honest and whose best interest is also to publish the last state, prepares
the last BRC

{1,A},{2,B},{3,C}
{mi} = BR2,B

mB
+ C3,C

mC
+ C3,C

mD
.

In this case, if there was a two-party channel between Alice and Bob in
the factory, then A’s and B’s balances in the last valid state would go as fees.
The remaining parties can, when cooperative, create new sets of Commitment
transactions that split among them the balances of the malicious parties.

HA,B,C,D

C1,A
{mi} = C1,A

mA
+ C1,A

mB
+ C1,A

mC
+ C1,A

mD

BRC
{1,A},{2,B}
{mi} = BR1,A

mA + C2,B
mB + C2,B

mC + C2,B
mD

BRC
{1,A},{2,B},{3,C}
{mi} = BR2,B

mB + C3,C
mC + C3,C

mD

A:0 B:0 C:110 D:50 fees:40

Figure 9: Nested BRCs. Valid state is state 3, not 2. Bob was trying to cheat with a
BRC.

Update Protocol. Figure 10 shows the update protocol, regardless of how
BRs are used (as part of a BRR or a BRC). Notice that this protocol does not
generate a new state if one user is offline, which can be exploited to retrieve
all required signatures for a new state, without sharing them, affecting the
correctness. For this reason, any update that does not fully succeed paralyzes
the money-flow in the factory, leaving it stale, until a further update/close
event finishes. We refer to this as a stale factory, and a stale factory attack.
However, a stale attack does not have a big performance impact for Lightning
Factories, as detailed in section 5. It is nevertheless possible to select an
ordering of the users and require users to share keys one by one only when

20

receiving one key. A protocol like this would require dn
2
e users to collude in

order to successfully achieve a stale situation.
Nonetheless, a stale attack can be suspected any time an update is not

fully finished, and, given the trustless-oriented nature of blockchains, one
should always assume that the rest of users of the factory might be colluding
to steal one’s funds. Furthermore, this protocol performs significantly faster
than ordering and sharing the fragments one by one with one particular user
at a time, since all fragments are delivered to all.

Function LFupdate(Ck
{uj}

, RAk
{uj}

);

//set up, update channels {Fuj ,uk} ...
upon event channelsUpdated()

(1) Ck+1,i
∅ ← {P : i, S : ui, T : ∅, I : {H{uj}.o},
O : Ck+1

{uj}
.o, St : 1}

(2) RAk+1
∅ ← {P : any, S : ui, T : t1, I : {Ck+1

{uj}
.o},

O : RAk+1
{uj}

.oui , St : k + 1}
(3) Ck+1

∅ ← {P : any but ui, S : ui, T : ∅, I : {H{uj}.o},
O : Ck+1

{uj}
.o, St : k + 1}

(4) {Ck+1,i
mi

, RAk+1
mi

, Ck+1
mi
} ← signi({C

k+1,i
∅ , RAk+1

∅ , Ck+1
∅ })

(5) broadcastk+1
0 ({Ck+1

mi
, RAk+1

mi
})

———————————————————————

upon event deliveri({Ck+1
mj

, RAk+1
mj
}) do

(6) store({Ck+1
mj

, RAk+1
mj
})

(7) if allReceived(St : k + 1) then //start with breach remedy
(8) BRk,i ← {P : any, S : ui, T : ∅, I : {C1,i.o}, O : ∅, St : k}
(9) BRk,i

∅ ← createi(BR)

(10) BRk,i
mi
← signi(BR

k,i
∅)

(11) broadcasti(BR
k,i
mi

)
———————————————————————
upon event timeout protocol do
(12) if notAllReceived(St : k + 1) then

//publish lastly valid one (no breach remedy issued)

(13) publishi(
∑j−1

j=0 C
k,i
mj

)

Figure 10: Updating a Lightning Factory.

4.4.3. Closing a Lightning Factory

In order for user uj to properly close a Lightning Factory, being lf −1 the
last state of the factory, they add the proper last Allocation Commitment
fragments into an Allocation Commitment transaction Ck,j

{mi}n−1
i=0

=
∑n−1

i=0 C
k,j
mi

.

Then, after waiting for the timelock ∆t, any user uj′, including uj, can publish

21

RAk,j′{mi}n−1
i=0

in order to close the factory. Notice that, should all users agree,

they can create a last state lf , not revocable, that directly outputs into the
accounts they agree upon, instead of setting up the channels of the factory
when closing the factory.

5. Complexity, Resilience and Performance Analysis

In this section, we analyze the correctness and performance of our Light-
ning Factory construction, and compare it with others. We show better
performance by a factor of more than 3000 by decreasing the worst-case col-
lateral cost of Lightning Factories, when compared to Duplex Micropayment
Factories, among others. For this purpose, we first define here correctness,
Bitcoin as a Clock, the adversarial model and components of payment chan-
nels.

5.1. Correctness specification

Any protocol to correctly implement a payment channel must be fraud-
resistant and cope with unresponsive behavior. Honest parties should always
own enough signed transactions to be able to get back at least an amount
of funds equivalent to the last agreed-upon balance (no-steal). If an update
transaction is not fully signed and retrieved by all parties before the protocol
times out, then the party must get back the initial fund published with the
funding transaction (no-lock).

More formally, given a sequence of transactions Ti,j = {T−1
i , T−1

j , T 0
i,j, . . . , T

k
i,j, . . . T

n
i,j} :

n > 1, then we define the following properties:
No-steal. The two-party protocol guarantees no-steal if and only if all

honest parties own enough off-chain and on-chain transactions to enforce
their last balance unilaterally.

No-lock. the transaction T 0
i,j is never on-chain, nor has it any partici-

pant fully signed (off-chain), without having all participants at least one,
fully-signed off-chain T ki,j that spends the outputs of such funding T 0

i,j. This
guarantees no participant can publish T 0

i,j and then not cooperate, not sign-
ing, to lock funds.

We prove in the appendix the correctness of Lightning Factories.

5.2. Bitcoin as a Clock

n-party channels meet the no-steal property assuming Bitcoin as a Clock
is somewhat reliable. That is, we require that the blockchain has some degree

22

of reliability to guarantee that after some time t any transaction that has met
an average fee will hit the blockchain. If this can not be guaranteed, timelocks
can be overdue and valid transactions can be invalidated. In general, one
should take great care in deciding the timelock for transactions T i. As a
matter of fact, full correctness can not be guaranteed for certain, without
assuming an ideal blockchain resilient to attacks that delay the inclusion of
transactions in the blockchain, only with high-probability. A study of the
proper time to select is a work in itself and is out of the scope of this paper.
We will simply define two different times:

δt, considering it as the minimum time that two subsequent transactions
that spend from the same output must differ in order to guarantee inclusion of
the newest with a desired probability. Therefore, an update from T kAB(tlock :
tk) would require signing a new T k+1

AB (tlock : tk − δt). DMCs and DMC
factories require new update transactions to have a timelock at least δt smaller
relative to the previous update.

∆t, considering it as the minimum time a transaction must wait before
spending an output to guarantee enough time for a counterparty to realize
that the output is spendable (i.e. the transaction that generated the output
hit the blockchain), prepare a transaction with no locktime, and publish it
first. Lightning Channels and Lightning Factories require ∆t to give enough
time to counterparties to prove fraud. Notice that ∆t > δt.

Additionally, other factors have a significant impact in the decision for
∆t and δt, or even in publishing the current state to prevent risk, such as
forced expiration spam attacks, colluding miner attacks, or even signed fees
becoming obsolete (i.e. too low to be included by miners) [14]. These attacks
and their workarounds are out of the scope of this document.

Having such basic notation, it is possible to deepen into correctness prop-
erties and performance measures of channels and factories.

5.3. Components of n-party Payment Channels.

We will assume that a group U of n users want to create an n-party
channel. Any n-party payment channel has four components:

1. A cryptographic scheme, with specified algorithms and protocols for
key generation, signing and verification. For a Lightning Factory, we
require a non-interactive Aggregate Signature (AS) scheme, such as
Bellare et al.’s [1] BNN.

2. A channel creation protocol, in which members of U sign and share
signed messages mi in order to set up the channel.

23

3. A channel update protocol, in which members update the outputs of the
channel, that precedes and/or invalidates all previous updates’ outputs,
including the first one of the setup.

4. A channel close protocol, with which members enforce the last update.

These components must be correct. That is, as long as the adversary does not
get explicit access to honest parties’ keys, these components must guarantee
the no-lock and no-steal properties of honest parties’ funds, described in
section 5.

5.4. The Adversarial Model

We consider an adversary F with the following capabilities:

• F can control the network to read, drop or redirect all messages. While
this is all the correctness a channel requires, its performance improves
if F is allowed to drop messages, but not to read or redirect them to a
new recipient.

• F can take full control and corrupt any subset of players S U at
any time, learning its entire state (stored messages, signatures, etc.).
if S = U then there is no honest party (i.e. there is no victim of the
adversary).

• For any uncorrupted user ui, F can decide to conduct and adaptive
chosen-message-and-subroup attack: at any time, it can request ui to
execute the protocol on some specified message with some specified
co-signers (who might be, in turn, corrupted by F).

5.5. Attacks in Factories

In this section, we present two attacks common to factories in general,
before we compare the impact of these attacks in the different factories. To
the best of our knowledge, we are the first to bring up these attacks.

5.5.1. Broken factory attack

Burchert et al. [5] propose a workaround in a channel factory F{ui}n−1
i=0

in which one of the members, uj, goes unresponsive, either during updating
(Stale Factory attack) or not. When this happens, the factory cannot be
updated, meaning that opened channels must remain open for the period

of time that they lastly signed when uj was still responsive, A
lf

{ui}n−1
i=0

(tlock :

24

tmin < t1− (lf − 1)δt), being A
lf

{ui}n−1
i=0

the lastly signed allocation transaction

of a DMC factory. However, inner-channel states that do not depend on uj
can still be updated within the factory. According to Burchert et al. [5],
there is a workaround to create a new factory with these channels in which
uj has no stake, in a way that does not require waiting for tmin, by splicing
out uj from the new factory. We show this procedure in figure 11, proving
that the workaround does not work, since it can be exploited.

25

Alice Bob Carol Dave

HA,B,C,D

50 5
0 50

50

A1
A,B,C,D

FAB⊗
R1
AB R2

AB R3
AB

FBCFAC FCD⊗⊗
R1
BCR2

BCR1
AC R2

AC R1
CD

A1
A,B,C A : 50 B : 50

Figure 11: Redirection of inner-channel outputs to a new factory, in the event Dave goes
unresponsive, as claimed by Burchert et al. [5]. Notice how the new refund transaction
R3

AB invalidates the Allocation A1
A,B,C , both in purple. Alice and Bob are the only ones

required for such update. Carol might think Alice and Bob’s last state is R2
AB , and might

accept payments from them in channels of the channel factory of AA,B,C . Afterwards,
Alice and Bob can publish R3

AB , which will hit the blockchain first and thus Alice and
Bob will steal from Carol.

The two signed offline transactions in purple, A1
A,B,C and R3

AB, are at

26

conflict. If R3
AB, the third (and last) refunding transaction of the DMC

between Alice and Bob, is published, then A1
A,B,C , the allocation transaction

of the new factory, is not valid. Also, Carol does not know that R3
AB exists,

thus Alice and Bob are stealing from Carol.

5.5.2. Stale factory attack

A stale factory attack does not affect the correctness of the factory (con-
trary to a broken factory attack), but rather its performance. Before explain-
ing a stale factory, let us consider a stale channel.

Stale Channel. Suppose a channel between Alice and Bob, with current valid
state R1

AB, in which they wish to update to a new state R2
AB. Alice prepares

the transaction R2
A., signs it, and gives it to Bob. In such a case, if Bob is

malicious, he can decide to stop responding, and Alice will not know if R1
AB

will be valid, or if Bob will publish R2
AB instead. We show a stale channel in

figure 12.

BobAlice

{Ri
AB}k−1

i=0 , R
k
.B,{Ri

AB}k−1
i=0 , R

k
AB

R1
.B

R1
AB

. . .
Rk.B

Figure 12: Stale channel. Alice becomes unresponsive after receiving Rk
.B . Bob cannot

know whether Rk−1
AB is still valid, or if Alice will sign and publish Rk

AB instead.

This situation creates an ambiguity that damages Bob as much as Alice,
by timelocking his own funds. Also, it does not directly affect the no-steal
and no-lock property, but creates ambiguity for an amount of time O(t1).

Stale Factory attack. A Stale Factory attack does not affect the correctness
of the factory, but rather its performance. It can be, however, significantly
damaging for the performance of a DMC Factory. This attack takes place at

27

the moment of updating the factory. In a DMC Factory, or channel, there
is no moment in which two states are equally valid, since one of them will
always have a lower locktime. For this reason, an update can be a critical
moment, if the last member to sign is malicious.

In a DMC Factory F{ui}n−1
i=0

, regardless of the communication protocol

to update [5], there will always be a set of users {ui}j−1
i=0 that receive the

signatures of the rest {ui}n−1
i=j first. As such, not all users will get all signed

transactions simultaneously, but some of them will have to sign and provide
before ({ui}j−1

i=0 in this case). Without loss of generality, we treat the set
of users who receive the signatures first as a single malicious user, uj, who
receives the new state A2

{ui}i6=j
(tlock : t2) signed by everybody else but them.

If uj is malicious, they can decide not to communicate the signed A2
{ui}n−1

i=0

,

and to go offline instead. Should this happen, any other channel that was
modified by this update cannot be used anymore, since the members of the
channel have no idea if they have to update the old channel or the new one,
resulting in all these channels completely paralyzed for the amount of time
t2. The rest of channels can continue normal operation, and perform their
inner-channel updates.

Notice that, contrary as previously thought [5], updating both states for
as long as there exists ambiguity is sometimes not possible. If previous state
A1
{ui}n−1

i=0

has two channels {FAB, FCD}, and the new state A2
{ui}n−1

i=0

has two

different channels {FAC , FBD}, then a payment Alice to Bob can not happen
in the new state, whereas it can in the previous one. Routing within the
factory in the second state is also not possible. Same happens for a payment
Alice to Carol. As such, Alice’s funds are timelocked.

The stale factory attack is a significant drawback of DMC factories. Even
if the communication protocol to update, in the best of cases, requires for a
stale factory attack that n − 1 of the members collude, only with one user
going unresponsive is sufficient for the rest to suspect that the other n − 1
might be colluding for a stale factory attack. That is, any update request
that was initiated and not finished is potentially a stale factory attack.
5.6. Complexity Analysis

In this section we compare the complexity and security performances of
our Lightning Factory versus DMC Factories.

Worst-case lock-in time DMC Factories’ worst-case lock-in time is t1,
where t1 being A1

{ui}(tlock : t1). Lightning Factories have a constant worst-
case lock-in time of ∆t. Notice that ∆t = cδt, c ∈ R, and ∆t << t1.

28

Blockchain check time DMC Factories only have to check the blockchain

at t1 − (lf − 1)δt, where (lf − 1) being A
lf−1

{ui} the lastly signed state. Light-
ning Factories have to periodically check the status of the blockchain at least
every ∆t, in order to have enough time to prove fraud.

Memory footprint DMC Factories simply need to store the lastly signed

A
lf−1

{ui} . Lightning Factories need to store, for Alice’s case, {C lf−1,A

{ui} , RA
lf−1,A

{ui} }
along with all {Imi

}i 6=A and the last {BRlf−1,i
mi }i 6=A, since the last Breach

Remedy fragments can make use of
SIGHASH NOINPUT to match previous old states. However, if memory
is a constraint, Breach Remedy fragments can also be aggregated, and Idle
transaction fragments are not necessary for the correctness of the factory,
requiring ultimately the size of 3 transactions, compared to that of 1 for
DMC Factories. Recall that, at the moment of writing, DMC Factories have
been proposed with Schnorr signatures, whose size is twice as much as our
proposed BLS signatures, resulting in a final 3/2 ratio of size required for
Lightning Factories compared to DMC Factories.

Number of updates DMC Factories are upper-bounded in the number
of updates by b t1

δt
c, where t1 being A1

{ui}(tlock : t1). Lightning Factories have
an unlimited amount of updates.

Message complexity The protocol proposed by Burchert et al. [5] re-
quires exchanging n2 messages for each update. Lighting Factory requires
2n messages, being ordered in two sets. A first set of n allocation commit-
ment and revocable allocation fragments that are broadcast in an indistinct
order, and a second set of n breach remedy fragments that are broadcast
afterwards. Note that fragments and their signatures are smaller in size to
the transactions and signatures reported in DMC Factories. That is, BLS
signatures are half as big as Schnorr.

5.7. Resilience Analysis

Previous work [5] suggested a mechanism for splicing out unresponsive/malicious
parties which attempts against the correctness of the factory. The authors
suggest the redirection of inner-chanel outputs to a new factory. We have
the evidence that this splicing out mechanism is vulnerable to broken factory
attack, which cracks the no-steal correctness property.

Using Lightning Factories, there is no risk for a counter party going unre-
sponsive, since the factory can be closed uncooperatively with a small lock-
time ∆t to allow for disputes, instead of a period of time representative of

29

the lifetime of the factory t1, where t1 the timelock for the first state, as with
DMC. This means that the trade-off between locktime and lifetime of the
factory is addressed, being possible to have unlimited lifetime with constant
locktime. Also, malicious parties are disincentivized to try fraud, since any
other member of the factory can publish a Proof-of-Fraud, and make them
lose all funds.

Furthermore, the attacks possible in a channel factory make it difficult for
DMC factories to tackle their trade-off, since the properties of long-lasting
channels/factories (high number of updates) and low worst-case lock-in time
of funds are in direct conflict. However, in a Lightning Factory, given the
smaller locktime, not dependent on the number of updates, and the fact
that invalidation of states are only signed once everybody has a validation of
the new state, the stale factory attack is significantly less bothersome. We
compare the impact of such an attack in section 5.8.

Broken factory attack in Lightning Factories. The broken factory attack is
common to all factories constructions, including Lightning Factories. The
purpose of the broken factory attack is to illustrate that splicing out an un-
responsive member from the factory will require waiting the entire timelock,
which means that splicing out a member takes as much time and transactions
as closing and reopening the factory. For a DMC Factory F{ui}n−1

i=0
with initial

Allocation transaction A1
{ui}(tlock : t1), the number of updates possible in

the factory is b t1
δt
c. Considering the factory breaks (i.e. one member becomes

unresponsive) at state At1{ui}, then the amount of time that it takes to wait
before being able of ’splicing out’ this member is t1 >> δt. We can see how,
in order to make the factory useful, t1 should be high enough. However, the
greater i, the greater the worst-case lock-in time t1.

For a Lightning Factory, this issue is much less relevant. Since all states
are invalidated and have a constant locktime ∆t, not only is the number of
updates not upper-bounded, but also the worst-case lock-in time is constant
∆t, regardless of the number of possible updates.

Stale factory attack in Lightning Factories. The stale factory attack is not
damaging in Lightning Factories. In a DMC Factory, a stale factory attack
uses the fact that all states are actually valid, but with a different locktime.
New states have a lower locktime, which means that the existence and the
publication of a new state invalidates previous ones, since these have a higher
locktime. As such, if a set of users with current state defined by A

k,uj
{ui}(tlock :

30

tk = t1 − (k − 1)δt) initiate but do not finalize sharing with each other the

fully signed new Allocation transaction A
k+1,uj
{ui} (tlock : tk+1 = t1 − k ∗ δt),

users cannot be sure of which of the two transactions will be published, since
they do not know if any other user actually obtained a fully signed A

k+1,uj
{ui} , or

if all users have only a partially signed version (i.e. A
k,uj
{ui} would be the lastly

enforceable state). As such, the factory cannot be further used, at least for a
subset of the channels (see section Appendix B.4). In this case, again, users
will have to wait tk >> δt time, unless a new Ak+2

{ui}(tlock : tk+2 = t1−(k+1)δt)
becomes fully signed.

A Lightning Factory, however, can have two equally valid states, at the
same time. Since users do not invalidate the previous state until they receive
a new, fully signed one, they are sure that they always have an enforceable
state of the factory. As such, if a state update does not complete, and they
suspect there is ambiguity as to which state is the valid one in the factory,
they can simply publish their owned state, wait for ∆t, and close the factory
with their enforceable version of the state.

5.8. Performance Analysis

In this section, we compare the impact of different timelocks, that of a
Lightning Factory and of a DMC Factory. If the factory faces a stale factory
situation, some funds from some channels or, in the worst case, all funds from
all channels may be locked for the locktime that was set by the timelock. If
the factory simply can not be updated because of one or several users being
offline, the funds can be moved within the already opened channels, but not
outside, for as long as the timelock has not finished.

In both cases, we consider the cost of holding unusable liquidity during
each locktime. We call this the interest rate. Similar to the value chosen by
Zohar et al’s [4], we choose an interest rate of r = 0.0001096 per iteration
step, when fixed. For our simulation, we consider the factory wishes to update
at each iteration step, and each iteration steps reduces the timelock by one.
The two above-mentioned cases will change the impact of the locktime, that
is, the value of r, but the locktime is not dependent on it. Hence, we use a
generic model that works for both cases.

Let p be the probability of a user going unresponsive and/or malicious
during an update (or in between updates) in a binomial distribution, and let
p be the same for all users, then the expected number of possible updates
is E(n) = 1

1−(1−p)n . If the factory was opened defining lf updates, then the

31

remaining updates are lf −E(n) otherwise. Finally, to consider the cost, we
consider the remaining updates and multiply them by the interest rate r,
being the cost (lf − E(n))r if E(n) < lf .

Figure 13 shows the simulation results4 of the remaining percentage of
updates as a function on the total lifetime of the factory lf and on the number
of users n, expected number of updates j as a function on the probability of a
malicious/offline party p, and simulation results showing resulting cost when
increasing the lifetime, from left to right. Both in Figure 13 and Figure 14,
when fixed, the chosen values of each parameter are: p = 10−7 (1 user
in 10 million goes unresponsive, either during update or not), lf = 10000
(after 10000 updates the DMC Factory closes), n = 1000 (1000 users in the
factory). One can see how increasing the number of users immediately affects
the lifetime of the channel, due to the increasing chance of a stale attack.
Increasing the lifetime of the channel also increases such chance, given the
more tries. This is strongly dependent on the value on p chosen, as shown
in Figure 13, which we consider to be generous for the DMC construction in
our results.

Figure 14 shows the cost as a function on the number of users n, the
probability of a malicious/offline party p and the interest rate r, from left to
right. The right-most plot of Figure 13, along with the tables in Figure 14,
illustrate how the cost, dependent on the interest φ, is much lower in our
construction compared to a DMC factory, by a factor of more than 3000
in almost all results, and increasing for DMC while remaining constant for
our construction LF. These results were obtained by a simulation on 1000
factories per result.

It is, therefore, clear that Lightning Factories scale well better when con-
sidering the locktime of fund than DMC factories, regardless of the actual
values for n, lf , p and r. Additionally, we prevent selfish users from continu-
ously publishing outdated states that maximize their rewards, by penalizing
them.

5.9. BNN vs Schnorr

Schnorr-based signatures schemes have recently been suggested for Bit-
coin [10]. Here, we compare our proposal of a non-interactive AS scheme

4the code to obtain such results is available at https://github.com/ranchalp/

LightningFactories-simulations

32

Figure 13: Remaining percentage of updates as a function on the total lifetime of the
factory.

n LF DMF
10 φ 3437φ

100 φ 3576φ
3000 φ 6839φ

104 φ 8977φ

Interest LF DMF
φ φ 3785φ

5φ 5φ 3729φ
9φ 9φ 3551φ

10φ 10φ 3686φ

p LF DMF
10−7 φ 3645φ

2 · 10−7 φ 5661φ
5 · 10−7 φ 7963φ

10−6 φ 8957φ

Figure 14: Cost as a function on the number of users n, the probability of a mali-
cious/offline party and the interest rate.

based on BLS [3], such as BNN, with Schnorr-based interactive AS schemes
proposed by Maxwell et al. [10].

Signatures size is an important matter in the blockchain, since every bit
that is stored in it has a cost, and it will be replicated by all nodes. BLS
signatures consist of one group element (i.e. 256 bits), whereas Schnorr
signatures are longer, with one group element plus one integer of the size of
the group order, (i.e. 512 bits). Therefore, the improvements in terms of
size, derived by Maxwell et al. [10], from switching from ECDSA to Schnorr
are not only preserved with our proposed BLS-based system, but improved
by a factor of 2.

While this design is not exclusive to Bitcoin, adapting it to Bitcoin would
require additional modifications from the perspective of validation semantics.
Again, this is not a new requirement, and in fact Maxwell et al. [10] already
require a new Opcode for cross-input multi-signatures.The reason is that it
is necessary to enforce all and only the required transaction fragments at
each step. This can be implemented with a new Opcode, in a backward
compatible way, such that miners that do not want to upgrade will simply
believe transactions involving this Opcode in other miners’ blocks.

Furthermore, key aggregation, as an improvement in terms of size for
multi-signatures, is not always possible in Bitcoin-like blockchains without a

33

non-interactive AS. Flags such as sighash-single5, which allows modification
of other outputs in the same transaction, make it impossible to aggregate
this other outputs non-interactively with Schnorr-based schemes. Moreover,
cross-input multi-signatures, i.e. aggregating all transactions and inputs in a
block into one signature, would not be possible with Schnorr-based schemes,
since they require the interaction of each input signer. Therefore, there are at
least two of Bitcoin’s state-of-the-art proposals that are not possible without
a non-interactive AS.

6. Conclusions and Discussion

In this paper, we proposed the first extension of Lightning Channels to
Lightning Factories, solving the trade-off between the lifetime of the factory
and the risk of temporary funds lock-in existing in DMC Factories. Our
design scales well better than DMC Factories, offering a constant collateral
cost, independent of the lifetime of the channel and the members of the fac-
tory. Moreover, our Lightning Factories are resilient to attacks. Driven by
the necessity to implement non-interactive aggregate signatures, we proposed
BNN as signature scheme. Note that advantages of BNNs lie in a reduced
signature size with respect to the Schnorr-based interactive AS schemes pro-
posed by Maxwell et al. [10] by a factor of 2. Moreover, it would be possible
to implement it in Bitcoin, requiring additional modifications from the per-
spective of validation semantics. The reason is that it is necessary to enforce
all and only the required transaction fragments at each step. This can be
implemented with a new Opcode, in a backward compatible way, such that
miners that do not want to upgrade will simply believe transactions involving
this Opcode in other miners’ blocks. Other than Bitcoin, we believe that this
design would be beneficial to other existing and upcoming blockchains.

Appendix A. Payment Channels

Poon et al. [14] proposed initially Lightning Channels for the Lightning
Network. Yet, there are currently several on-going projects to implement
the concept, most of which are open to other types of payment channels,
not only Lightning Channels. In this section, we take a look not only at
Lightning Channels, but rather at a variety of possible constructions that can

5https://bitcoin.org/en/glossary/sighash-single

34

empower an off-chain payment network. As such, Payment Channels are the
cornerstone of the Lightning Network. In this section, we show how to open,
update and close a payment channel. We explain Duplex Micropayment
Channels in section Appendix A.1, while we mention Lightning Channels in
section Appendix A.2.

Appendix A.1. Duplex Micropayment Channels

As already mentioned, all channels have three main phases: open, update
and close (sometimes referred to as setup, negotiation and settlement [6].
Duplex micropayment channels rely on timelocks to update and close their
channels. Potentially, every update of the channel is a new close of the
channel, with smaller timelock. We deepen into the details here below.

Appendix A.1.1. Opening a DMC

Figure A.15 shows the negotiation to create a payment channel in a
Bitcoin-like blockchain, with a particular example in figure A.16. To this
end, Alice and Bob create a funding and a first refund transaction. First,
Bob tells Alice which outputs o he wants to include in this channel (i.e. how
much money). Then, Alice creates a funding transaction F.. with hers and
Bob’s outputs as inputs (2-of-2 multisig), which she does not sign. Notice
the two dots in F.. indicate that none of them signed. Following the generic
example of figure 3, here is both transactions involving DMC channels:

F.. = T 0
..

T 0
AB.kind =funding,
T 0
AB.in = {T−1

A .out, T−1
B .out},

T 0
AB.out = oAB,
T 0
AB.conds = (skA, T

−1
A .out), (skB, T

−1
B .out) where skA and skB are the

secret keys owned by A and B to digitally sign transactions.
R1
AB = T 1

AB

T 1
AB.in = FAB.oAB,
T 1
AB.out = (o1

A, o
1
B) : o1

A = oA ∧ o1
B = oB,

T 1
AB.conds = (skA∧skB, FAB.oAB) where skA with skB allow for spending

FAB.oAB as long as blockheight > block(FAB) + tlock, where tlock is the
timelock (e.g. 14400 blocks ' 100 days).

The outputs of F.. are the inputs of R1
A.. Bob then sings both of them,

R1
AB, F.B, and shares them with Alice. At this point, since RAB has been

signed by both of them, R1
AB is ready to be published. However, the inputs

of R1
AB point to some outputs that are not in the blockchain, because F.B,

35

is not fully signed and published yet. Now Alice signs and publishes FAB.
Note that at this point Alice and Bob both stored locally R1

AB, ensuring they
both can redeem the funds if they want to.

Function DMCsetup();

Init:
(1) F, F.., R1, R1

.. ← ⊥
(2) deliverji (T−1

i .out)
———————————————————————

upon event deliverjj(T
−1
j .out) do

(3) F ← {in: {T−1
i .out, T−1

j .out},
out : {oij},
conds: {(ski, T−1

i .out),

(skj , T
−1
j .out)}}

(4) F.. ← createi(F)
(5) R1 ← {in: {Fij .oij}, out : {o1i , o1j}, conds: {(ski ∧ skj , Fij .oij),

tlock : t1}}
(6) R1

.. ← createi(R
1)

(7) R1
i. ← signi(R

1
..)

(8) deliverji(F.., R1
i.)

———————————————————————
upon event deliverij(F.., R1

.j) do

(9) R1
ij ← signi(R

1
.j)

(10)Fi. ← signi(F..)

(11)deliverji(R
1
ij , Fi.)

———————————————————————
upon event deliverij(F.j , R

1
ij) do

(12)Fij ← signi(F.j)
(13)publishi(Fij)

Figure A.15: Opening a DMC. the dots in F.. represent two missing signatures, while in
R1

i. only j’s signature is missing.

Appendix A.1.2. Updating a DMC

Updating a channel balance is equivalent to replacing Rk
AB by Rk+1

AB and
so on, that is, being Rk

AB = T kAB, then Rk+1
AB = T k+1

AB . A payment channel
protocol must do this in a way that Rk+1

AB invalidates Rk
AB, to prevent any

party from stealing funds by publishing a former state.
For DMCs, update transactions are actually timelocked for an amount of

time i, e.g. R1
AB(tlock : t1) where t1 is the locktime. This locktime can be

either absolute (i.e. absolute blockheight) or relative to the blocknumber in
which the funding transaction got included, or instead relative to a subse-

36

BobAlice

RABRAB

Blockchain

T
−1
B
.out

F.., R1
A.

F.B, R
1
AB

F
A
B

Figure A.16: Example of opening a DMC following protocol described in figure A.15 [7].

quent kick-off transaction [7, 5]6. Therefore, if the current state corresponds
to the refund transaction R1

AB(tlock : t1), then updating the state is simply
signing a new refund transaction with lower locktime R2

AB(tlock : t1 − δt).
This way, assuming no forced expiration spam nor colluding miner attacks,
the transaction R2

AB would enter the blockchain before R1
AB, since it has a

lower locktime, i.e. if δt = 1 day then it has one more day as advantage.

Function DMCupdate(Rk
ij);

Init:
(1) Rk+1, Rk+1

.. ← ⊥
(2) Rk+1 ← {in: {Fij .oij}, out : {ok+1

i , ok+1
j }, conds: {(ski ∧ skj , Fij .oij),

tlock : tk+1 = t1 − kδt}}
(3) Rk+1

.. ← createi(R
k+1)

(4) Rk+1
i. ← signi(R

k+1
..)

(5) deliverji(R
k+1
i.)

———————————————————————

upon event deliverij(R
k+1
.j) do

(6) Rk+1
ij ← signi(R

k+1
.j)

(7) deliverji(R
k+1
ij)

Figure A.17: Updating a DMC.

6https://en.bitcoin.it/wiki/Timelock

37

Appendix A.1.3. Closing a DMC

Given the DMC construction, unilaterally closing the channel requires
simply to publish the last refund transaction Rmax

AB before the second last
refund transaction becomes valid. Failing to do so may end up in an old
state Rj

AB, j < max being published before, and one of the parties stealing
money. Furthermore, if both parties cooperate and are online, they can sign
a last state that does not require any locktime, to redeem funds immediately.

Appendix A.1.4. Disadvantages of DMCs

One major disadvantage of DMCs is its trade-off between its lifetime
and its funds lock-in. If the first refund transaction R1

AB(tlock : t1) sets
too high a locktime t1 and one of the parties goes unresponsive, then the
counterparty has to wait the amount of time t1 before it can use the locked
amount of money. Instead, if t1 is too low, then the usability of the channel
decreases, since participants in the channel will have to close or reopen it more

frequently, as the amount of updates is
⌊
t1
δt

⌋
. A tree structure of nested refund

transactions that point to a new R′2AB with a reset timelock can alleviate the
trade-off [7], but still have a collateral cost in terms of worst-case blockchain
hits. Also, an off-chain kick-off transaction in between the FAB and Rk

AB

can delay the the clock triggering [7], but the number of updates is still
upper-bounded by the initial timelock.

Appendix A.2. Lightning Channels

In a Lightning channel, the refund transaction and the subsequent up-
dates do not have any timelock. State transaction invalidation is indeed
handled by creating additional transactions. If a state transaction is pub-
lished by a malicious party, then the honest one has the possibility to remedy
to the fraud publishing a Proof-of-Fraud, i.e. a specific transaction that gets
back all the funds to the honest party. The different types of transactions
and protocol details are presented in the following paragraphs.

In Lightning, as in DMCs, the channel is opened by creating a funding
transaction and a first update transaction for refunding. Nevertheless, in
Lightning, each update transaction T kAB is split into two transactions, called
commitment transactions: Ck,A

AB , which only Alice can publish, and Ck,B
AB ,

which only Bob can publish. Moreover, for each commitment transaction
Ck,A
AB , a Delivery transaction Dk,A, a Revocable Delivery transaction RDk,A

and a Breach Remedy transaction BRk,A are created.

38

Appendix A.2.1. Opening a Lightning Channel

We show the protocol to create the set of transactions corresponding to
T kAB, state k = 1 in figure A.19. Note that we show this procedure for
Alice’s transactions, being Bob’s analogously created, replacing the apex A
by B. This first commitment transaction C1,A

AB specifies two outputs, which
two other transactions spend as follows:

• the output for Bob C1,A
AB .oB is spent by a delivery transaction D1,A that

only Bob can spend. This is equivalent to giving to Bob its balance at
state 1, as committed by C1,A

AB .

• the output for Alice C1,A
AB .oA is spent by a Revocable Delivery transac-

tion RDA
AB, that Alice can spend after a timelock t ≥ ∆t, relative to

the blockheight (i.e. OP CSV) in which the commitment transaction
C1,A
AB is included in the blockchain.

∆t should be a time value high enough to give time to the counter-
party to see an invalid Ck,A

AB entering the blockchain, search for the corre-
sponding Proof-of-Fraud (see section Appendix A.2.2), and publish it on the
blockchain. One can notice that ∆t ≥ δt. The particular value of ∆t de-
pends on the connectivity of the nodes to the blockchain. let pA, pB the
maximum period of time between successive blockchain checks for Alice and
Bob (i.e. Alice checks the blockchain every pA time units), respectively, then
∆t ≥ max(pA, pB) + δt. We will simply refer to this value as ∆t.

39

Function LCsetup();

Init:
(1) {F, F.., C1,i, C1,i

.. , C
1,j , C1,j

.. , RD1,i, RD1,i
.. ,

RD1,j , RD1,j
.. , D1,i, D1,i

.. , D
1,j , D1,j

.. } ← ⊥
(2) deliveri (T−1

i .out)
———————————————————————

upon event deliverij(T
−1
j .out) do

(3) F ← {in: {T−1
i .out, T−1

j .out},
out : {oij},
conds: {(ski, T−1

i .out),

(skj , T
−1
j .out)}}

(4) F.. ← createi(F)
(5) C1,i ← {in: {Fij .oij}, out : {o1i , o1j}, conds: {(ski ∧ skj , Fij .oij)}
(6) RD1,i ← {in: {C1,i

ij .oi}, out : {o
1
i }, conds: {(ski ∧ skj , C1,i

ij .oi), tlock : ∆t)}
(7) D1,i ← {in: {C1,j

ij .oj}, out : {o1j}, conds: {(ski ∧ skj , C1,i
ij .oj))}

(8) C1,j ← {in: {Fij .oij}, out : {o1i , o1j}, conds: {(ski ∧ skj , Fij .oij)}
(9) RD1,j ← {in: {C1,j

ij .oi}, out : {o1j}, conds: {(ski ∧ skj , C1,j
ij .oj), tlock : ∆t)}

(10)D1,j ← {in: {C1,j
ij .oi}, out : {o1i }, conds: {(ski ∧ skj , C1,j

ij .oi))}
(11){C1,i

.. , RD
1,i
.. , D

1,i
.. , C

1,j
.. , RD1,j

.. , D1,j
.. } ← createi({C1,i, RD1,i, D1,i,

C1,j , RD1,j , D1,j})
(12){C1,j

i. , RD1,j
i. , D

1,i
i. } ← signi({C1,j

.. , RD1,j
.. , D1,i

.. })
(13)deliverji({F.., C1,i

.. , RD
1,i
.. , D

1,i
i. , C

1,j
i. , RD1,j

i. , D
1,j
.. })

———————————————————————

upon event deliverij({F.., C1,j
.. , RD1,j

.. , D1,i
.. , C

1,i
.j , RD

1,i
.j , D

1,j
.j }) do

(14){C1,i
ij , RD

1,i
ij , D

1,j
ij } ← signi({C1,i

.j , RD
1,i
.j , D

1,j
.j })

(15){C1,j
i. , RD1,j

i. , D
1,i
i. } ← signi({C1,j

.. , RD1,j
.. , D1,i

.. })
(16)Fi. ← signi(F..)

(17)deliverji({Fi., C
1,j
i. , RD1,j

i. , D
1,i
i. })

———————————————————————

upon event deliverij({F.j , C
1,i
.j , RD

1,i
.j , D

1,j
.j })do

(18){C1,i
ij , RD

1,i
ij , D

1,j
ij } ← signi({C1,i

.j , RD
1,i
.j , D

1,j
.j })

(19)Fij ← signi(F.j)
(20)publishi(Fij)

Figure A.18: Opening a Lightning Channel. the dots in F.. represent two missing signa-
tures, while in C1,i

i. only j’s signature is missing.

Appendix A.2.2. Updating a Lightning Channel

The timelock for the Revocable Delivery is to allow for Bob to prove Alice
is committing fraud, by publishing a Breach Remedy transaction BRA

AB. The
output C1,A.oA will end up belonging either only to Bob, if Bob proves fraud
before the timelock times out, or only to Alice, after the timelock. If BR1,A

AB

exists, and Bob publishes it, he proved that Alice committed fraud, receiving
all the funds, as C1,A.oB depends only of Bob’s signature. The transactions
are analogous for C1,B

AB .

40

BobAlice

{C1,B
AB , RD

1,B
AB , D

1,A
AB}{C1,A

AB , RD
1,A
AB , D

1,B
AB}

Blockchain

T
−1
B
.out

{F.., C 1,A
.. , RD1,A

.. , D1,B
.. ,

C 1,B
A. , RD1,B

A. , D1,A
A. }

{F.B, C
1,A
.B
, RD

1,A
.B
, D

1,B
.B
}

F
A
B

Figure A.19: Example of opening a Lightning channel following protocol described in
figure A.18.

The result is that, if Alice publishes C1,A
AB , being C1,A

AB an old state (i.e.
BR1,A

AB exists), then Bob can redeem all funds immediately. If instead state
1 is the last state (i.e. BR1,A

AB does not exist), Alice will receive her funds
after waiting an amount of time t ≥ ∆t. Proofs-of-Fraud (PoF) are created
by counterparties to invalidate the previous state, as we detail in section Ap-
pendix A.2.2. In this case, a PoF simply consists of publishing BR1,A

AB. If
BR1,A

AB is not published within time t from C1,A
AB , then the protocol assumes

Alice was not fraudulent and allows her to receive her funds using RD1,A
AB .

Updating a lightning channel goes as following:

1. create new C2,A
AB , C

2,B
AB , along with the new Delivery and Revocable

Delivery transactions. At this moment, the four C1,A
AB , C

1,B
AB , C

2,A
AB C

2,B
AB

are simultaneously valid.

2. create both Breach Remedy transactions. BR1,A
A. (created and signed

by A and given to B), and BR1,B
.B (created and signed by B and given

to A), that spend the same outputs as RD1,A
AB and RD1,B

AB , respectively,
but without a timelock. BR1,A

A. and BR1,B
.B give all balance to the coun-

terparty, B and A, respectively. Breach Remedy transactions represent

41

Function LCupdate(Ck,i
ij , C

k,j
ij , RDk,i

ij , RD
k,j
ij , Dk,i

ij , D
k,j
ij);

Init:
(1) {Ck+1,i, Ck+1,i

.. , Ck+1,j , Ck+1,j
.. } ← ⊥

(2) {RDk+1,i
.. , RDk+1,i

.. , RDk+1,j , RDk+1,j
.. } ← ⊥

(3) {Dk+1,i, Dk+1,i
.. , Dk+1,j , Dk+1,j

.. } ← ⊥
(4) {BRk,i, BRk,i

.. , BR
k,j , BRk,j

.. } ← ⊥
(5) finished← 0

(6) Ck+1,i ← {in: {Fij .oij}, out : {ok+1
i , ok+1

j }, conds: {(ski ∧ skj , Fij .oij)}
(7) RDk+1,i ← {in: {Ck+1,i

ij .oi}, out : {ok+1
i }, conds: {(ski ∧ skj , Ck+1,i

ij .oi), tlock : ∆t)}
(8) Dk+1,i ← {in: {Ck+1,j

ij .oj}, out : {ok+1
j }, conds: {(ski ∧ skj , Ck+1,i

ij .oj))}
(9) Ck+1,j ← {in: {Fij .oij}, out : {ok+1

i , ok+1
j }, conds: {(ski ∧ skj , Fij .oij)}

(10)RDk+1,j ← {in: {Ck+1,j
ij .oi}, out : {ok+1

j }, conds: {(ski ∧ skj , Ck+1,j
ij .oj), tlock : ∆t)}

(11)Dk+1,j ← {in: {Ck+1,j
ij .oi}, out : {ok+1

j }, conds: {(ski ∧ skj , Ck+1,j
ij .oi))}

(12){Ck+1,i
.. , RDk+1,i

.. , Dk+1,i
.. , Ck+1,j

.. , RDk+1,j
.. , Dk+1,j

.. } ←
createi({Ck+1,i, RDk+1,i, Dk+1,i, Ck+1,j , RDk+1,j , Dk+1,j})

(13){Ck+1,j
i. , RDk+1,j

i. , Dk+1,i
i. } ← signi({Ck+1,j

.. , RDk+1,j
.. , Dk+1,i

.. })
(14)deliverji({C

k+1,i
.. , RDk+1,i

.. , Dk+1,i
i. , Ck+1,j

i. , RDk+1,j
i. , Dk+1,j

.. })
———————————————————————

upon event deliverij({C
k+1,j
.. , RDk+1,j

.. , Dk+1,i
.. , Ck+1,i

.j , RDk+1,i
.j , Dk+1,j

.j }) do

(15){Ck+1,i
ij , RDk+1,i

ij , Dk+1,j
ij } ← signi({Ck+1,i

.j , RDk+1,i
.j , Dk+1,j

.j })
(16){Ck+1,j

i. , RDk+1,j
i. , Dk+1,i

i. } ← signi({Ck+1,j
.. , RDk+1,j

.. , Dk+1,i
.. })

(17)BRk,i ← {in: {Ck,j
ij .oi}, out : {okj }, conds: {(ski ∧ skj , Ck,j

ij .oi))}
(18)BRk,i

.. ← createi(BR
k,i)

(19)BRk,i
i. ← signi(BR

k,i
..)

(20)finished = −1

(21)deliverji({C
k+1,j
i. , RDk+1,j

i. , Dk+1,i
i. , BRk,i

i. })
———————————————————————

upon event deliverij({C
k+1,i
.j , RDk+1,i

.j , Dk+1,j
.j , BRk,j

.j })do
(22){Ck+1,i

ij , RDk+1,i
ij , Dk+1,j

ij } ← signi({Ck+1,i
.j , RDk+1,i

.j , Dk+1,j
.j })

(23)BRk,j
ij ← signi(BR

k,j
.j)

(24)BRk,i ← {in: {Ck,j
ij .oi}, out : {okj }, conds: {(ski ∧ skj , Ck,j

ij .oi))}
(25)BRk,i

.. ← createi(BR
k,i)

(26)BRk,i
i. ← signi(BR

k,i
..)

(27)finished← 1

(28)deliverji(BR
k,i
i.)

———————————————————————

upon event deliverij({BR
k,j
.j })do

(29) if finished == −1 then //only BR left
(30) finished← 1
———————————————————————
upon event timeout protocol do
(31) if finished == 0 then //publish lastly valid one

(32) publishi(C
k,i
ij)

(33) if finished == −1 then //publish lastly valid one (no breach remedy issued)

(34) publishi(C
k+1,i
ij)

Figure A.20: Updating a Lightning Channel.

42

thus a sign of honesty from the signer.

Appendix A.2.3. Closing a Lightning Channel

Being CAAB = {Ci,A
AB}

l−1
i=0 the set of commitment transactions that ascribe

blame to Alice in the channel between Alice and Bob (i.e. they updated the
channel l times), she can unilaterally close a lightning channel publishing
the last commitment transaction, C l−1,A

AB . Bob will immediately receive its
funds, while Alice will have to wait for the previously negotiated and signed
for amount of time ∆t, to allow for Bob to prove fraud, after which Alice can
redeem her funds. Again, if both parties cooperate and are online, they can
simply sign a last state C l

AB that directly refunds without any timelock.

Appendix A.3. eltoo Channels

Decker et al. recently proposed eltoo channels [6]. These channels have
two types of transactions for updating and closing, called update and set-
tlement transactions, apart from the funding transaction (common to all
channels). The update transactions are similar to the commitment trans-
actions in Lightning Channels, in that they commit to a particular state.
The settlement transactions are similar to the revocable delivery and deliv-
ery transactions, in that they return the balances. One major difference with
Lightning Channels is that eltoo channels do not penalize the fraudster. We
detail in this section the protocol to open, update and close eltoo channels.

Decker et al. firstly suggested the concept of floating transactions for
eltoo. A floating transaction is a transaction with the SIGHASH NOINPUT
flag, which instructs the signature creation and the signature verification code
to blank the previous output field of the input that is being signed. This way,
a the transaction can be rewritten to reference a different transaction output,
as long as the input scripts match the output scripts. The process of rewriting
the transaction to reference different outputs is called binding.

Appendix A.3.1. Opening an eltoo channel

The protocol to setup a channel is no different from that of DMCs, de-
tailed in section Appendix B.1, but changing R1

AB for S1
AB. S1

AB is the set-
tlement transaction. The settlement transaction has a constant timelock
S1
AB(tlock : t) such that t ≥ ∆t, similar to the commitment transactions of

Lightning Channels.

43

Appendix A.3.2. Updating an eltoo channel

Updating an eltoo channel, as for Lightning, consists of two steps:

1. Creating and signing a new settlement transaction S2
AB that spends the

outputs of a not yet signed update transaction U2
.. , after some locktime.

2. Signing the update transaction U2
.. , with no locktime.

Decker et al. propose the inclusion of a new concept, that of state
numbers, in order to enforce an ordering of different update transactions
U i with the usage of SIGHASH NOINPUT. That is, each U i is flagged with
SIGHASH NOINPUT, in order for each U i to match the outputs of each other
U j, and of the funding transaction F . However, it is necessary to enforce
that U i can spend the outputs of U j only if i > j. Therefore, state numbers
verify this. This way, the last state can be enforced, since there is no U l that
can be attached to U l−1.

Since the two steps process is similar to that of Lightning Channels, the
protocol shown in figure A.20 can be applied here too, replacing all BR by U
and the rest of the transactions C,RD,D by S. Also, the same conclusions
and properties are applicable here. The only difference is that there is no
penalization for fraudsters to prevent them from committing fraud.

Appendix A.3.3. Closing an eltoo channel

Closing a channel consists of publishing the last U l−1
AB , waiting for t ≥ ∆t,

and later publishing the last Sl−1
AB . Selfish nodes, however, will always try to

commit fraud by publishing the state U i that gives them the most amount of
funds. After, that, the honest node can publish U l−1, invalidating U i, but not
penalizing the selfish node. As above-mentioned, if both parties cooperate
they can sign a last U l that has no locktime, and even share the transaction
fee.

Appendix A.4. Comparison

Recall that eltoo channels would get the same results in this comparison
as Lightning, other than the message complexity, and the fact that they do
not penalize fraudsters.

Worst-case lock-in time DMCs’ worst-case lock-in time is t1, being the
amount of updates required b t1

δt
c, with R1

AB(tlock : t1). Lightning channels
have a constant worst-case lock-in time of ∆t. Notice that ∆t << t1.

Blockchain check time DMCs only have to care about the blockchain
at time t1 − (l − 1)δt, being Rl−1

AB the lastly signed state. Lightning channels

44

have to periodically check the status of the blockchain at least every ∆t time,
in order to have enough time to prove fraud.

Memory footprint DMCs simply need to store the lastly signed state
Rl−1
AB . Lightning channels need to store, for Alice’s case, C l−1,A

AB , RDl−1,A
AB and

Dl−1,A
AB along with all {BRi,B

AB}
l−2
i=1, to be able to prove fraud. However, with

the help of SIGHASH NOINPUT, it would be possible to only need to store
the last BRl−2,B

AB , similar to how Decker et al. propose to use it in eltoo [6].
Since eltoo channels do not penalize, they require two transaction less than
Lightning to be stored (no need for BRAB nor DAB).

Number of updates DMCs are upper-bounded in the number of up-
dates by b t1

δt
c, being R1

AB(tlock : t1). Lightning channels have an unlimited
amount of updates.

Message complexity The DMC protocol requires exchanging 3 mes-
sages for opening the channel,and 2 per update. In contrast, Lightning
Channels require exchanging 3 messages for opening a channel (although of
bigger size since the messages contain more transactions), and 3 per update,
analogous to eltoo channels.

Stale channel This is not critical in a DMC channel, since Bob can
actually only timelock funds to Alice, while he might still timelock his own
funds. Nonetheless, in a Lightning Channel, a situation like this would not
take place, since Alice will never provide to bob a Breach Remedy of the
previous state BR1,A

A if she does not receive the new update C2,A
AB signed by

Bob. Therefore, if Alice suspects Bob is trying to lock the funds, she can
simply publish C1,A

AB and close the channel.

Appendix B. DMC Factories

Suppose a set of users u0, ..., un−1 want to open an amount of channels
with each other (e.g. {{u0, u1}, {u0, u2}, {u2, un}, ...}.). If they want to open
m channels, n ≤ m ≤

(
n
2

)
, they would need to publish m transactions.

However, they can instead join together into a n-of-n multisig output, that
of the Hook transaction, H{uj}n−1

j=0
(notice the subindex still refers to which

users signed this transaction). The output of this transaction is the input
of another transaction, called the Allocation transaction A{uj}n−1

j=0
, similar to

how the outputs of FAB are the inputs of RAB in section Appendix B.1.
Finally, the outputs of A{uj}n−1

j=0
are the inputs of the respective Fua,ub

that setup each respective channel, whose outputs point to Rua,ub as in sec-
tion Appendix B.1. Figure 5 shows an instance of a DMC Factory.

45

Appendix B.1. Opening a DMC Factory

In Figure A.16, we outlined the communication protocol for opening a
two-party DMC. Since the DMC Factory involves n parties, the communica-
tion protocol to set up and update the channel, i.e. to properly sign H{uj}n−1

j=0

is not trivially derived from such figure. Figure B.21 shows the protocol to
setup the DMC Factory. First, each user is assigned one unique number,
creating an ordering {u0, . . . , ui, . . . , un−1}.

After creating each individual channel (as explained in section Appendix
A, and having shared the outputs that will serve as input for the Hook,
each user ui prepares and shares a signed Allocation transaction A1

ui
. From

this moment on, each user will only sign and share a transaction with r
signatures once it receives a new transaction with r signatures, of which
at least 1 signature it did not have before. Only the user 0 will sign and
release a transaction with r signatures when receiving a transaction with
r − 1 signatures.

This protocol ensures that dn
2
e of the users should be cooperatively ma-

licious in order to receive the required n signatures before the rest of the
non-malicious users. if the number of malicious users is less than dn

2
e,

the non-malicious users can cooperate to retrieve fully signed transactions
A1
{ui}, H{ui}, as well as the malicious ones. Notice that H{ui} is never signed

before receiving a fully a signed A{ui}, thus guaranteeing the no-lock prop-
erty. The no-steal property is also always met. The malicious users can,
however, generate a stale situation, if they are more at least half of the users.

Appendix B.2. Updating a DMC Factory

Updating the state of each independent channel within the channel fac-
tory is no different from what we detail in section Appendix A.1.2. In fact,
one can instead have a Lightning Channel construction at the two-party level,
instead of a DMC construction. Only the two parties of this channel in this
channel factory, ua, ub, need to sign to update the balance of the channel.

However, the channel factory is at the level of the Hook and Alloca-
tion transactions. Ak{ui}n−1

i=0

(tlock : tk) has a timelock tk, similar to that of

Rk
AB(tlock : tk) in DMCs. To update the channel factory (i.e. closing all

channels and leave factory, or closing and/or opening some channels within
the factory), all users u0, ..., un−1 need to agree and sign a new allocation
transaction Ak+1

{ui}n−1
i=0

(tlock : tk+1) such that tk+1 ≤ t − δt. As before, this

new transaction will hit the blockchain before the old one, given the lower

46

Function DMCFsetup();

//assign indices
...

//share outputs {T−1
j .o}

...
//set up channels {Fuj ,uk}
...
upon event channelsSetUp()
(1) {H,H∅, A1, A1

∅} ← ⊥
(2) r ← 1
(3) signedAllocation← 0

(4) A1 ← {in: {H{uj}.o}, out : {Fuj ,uk .in}, conds: {({skj}n−1
j=0 , H{uj}.o),

tlock : t1}}
(5) A1

∅ ← createi(A
1)

(6) A1
ui
← signi(A

1
∅)

(7) broadcasti (A1
i)

———————————————————————
upon event deliveri(A1

{uj}
i−1
j=i−r

) do

(8) if i == 0 then
(9) A1

{uj}nj=n−(r−1)
← signi(A

1

{uj}
n−1
j=n−(r−1)

)

(10) deliver10(A1
{uj}nj=n−(r−1)

)

(11)else then
(12) A1

{uj}ij=i−(r−1)

← signi(A
1

{uj}
i−1
j=i−(r−1)

)

(13) deliveri+1
i (A1

{uj}ij=i−(r−1)

)

(14) r ← r + 1
———————————————————————
upon event deliveri(A1

{uj}
i−1
j=i−(n−1)

) do

(15)A1

{uj}
n−1
j=0

← signi(A
1

{uj}
i−1
j=i−(n−1)

)

(16)broadcasti (A1

{uj}
n−1
j=0

)

(17)H ← {in: {T−1
j .o}, out : {Huj .o}, conds: {(skj , T−1

j .o)}n−1
j=0 }

(18)H∅ ← createi(H)
(19)Hui ← signi(H∅)
(20) r ← 1
(21)signedAllocation← 1
(22) if i == 0 then
(23) deliver10 (H0)
———————————————————————
upon event deliveri(A1

{uj}
n−1
j=0

) do

(24) r ← 1
(25)signedAllocation← 1
(26) if i == 0 then
(27) deliver10 (H0)
———————————————————————
upon event deliverii−1(H{uj}

i−1
j=i−r

) do

(28) if signedAllocation == 1 then
(29) if i == 0 then
(30) H{uj}nj=n−(r−1)

← signi(H{uj}
n−1
j=n−(r−1

)

(31) deliver10(H{uj}nj=n−(r−1)
)

(32) else then
(33) H{uj}ij=i−(r−1)

← signi(H{uj}
i−1
j=i−(r−1)

)

(34) deliveri+1
i (H{uj}ij=i−(r−1)

)

(35) r ← r + 1
———————————————————————
upon event deliverii−1(H{uj}

i−1
j=i−(n−1)

) do

(36)H{uj}
n−1
j=0
← signi(H{uj}

i−1
j=i−(n−1)

)

(37) if readi(H{uj}) == ⊥ then // not published

(38) publishi(H{uj})

Figure B.21: Opening a DMC Factory, after selecting an ordering, sharing the outputs
and setting up the channels of the factory (as detailed in section Appendix B.1). Notice
i ∈ Zn.

47

timelock. Figure B.22 shows the protocol for updating. It follows the same
approach illustrated when opening the DMC Factory, but without creating
a hook H and with an allocation Ak+1 instead of A1.

Function DMCFupdate(Ak
{uj}

);

//set up, update channels {Fuj ,uk}
...
upon event channelsUpdated()

(1) {Ak+1, Ak+1
∅ } ← ⊥

(2) r ← 1

(3) Ak+1 ← {in: {H{uj}.o}, out : {Fuj ,uk .in}, conds: {({skj}n−1
j=0 , H{uj}.o),

tlock : tk+1}}
(4) Ak+1

∅ ← createi(A
k+1)

(5) Ak+1
ui
← signi(A

k+1
∅)

(6) if i == 0 then

(7) deliver10 (Ak+1
0)

———————————————————————

upon event deliverii−1(A
k+1

{uj}
i−1
j=i−r

) do

(8) Ak+1

{uj}ij=i−(r−1)

← signi(A
k+1

{uj}
i−1
j=i−(r−1)

)

(9) deliveri+1
i (Ak+1

{uj}ij=i−(r−1)

)

(10) r ← r + 1
———————————————————————

upon event deliverii−1(A
k+1

{uj}
i−1
j=i−(n−1)

) do

(11)Ak+1

{uj}
n−1
j=0

← signi(A
k+1

{uj}
i−1
j=i−(n−1)

)

(12) r ← n

(13)broadcasti(A
k+1

{uj}
n−1
j=0

)

———————————————————————

upon event deliveri(Ak+1

{uj}
n−1
j=0

) do

(14) r ← n
———————————————————————
upon event timeout protocol do
(15) if r 6= n then //publish lastly valid one (protocol can start with k + 2 though)
(16) publishi(A

k

{uj}
n−1
j=0

)

Figure B.22: Updating a DMC Factory, after selecting an ordering, having set up/updated
the new/existing channels of the factory (as detailed in section Appendix B.1). Notice
i ∈ Zn.

Appendix B.3. Closing a DMC Factory

Again, closing a two-party independent channel in a channel factory is
equivalent to the procedure explained in section Appendix A.1.3. For the
DMC Factory, the procedure is also analogous. If all parties cooperate, they

48

sign a last state that has no relative timelock, referred to as Settlement
transaction, and publish it immediately after. Otherwise, they will publish
the last Allocation transaction, with the smallest relative timelock, and after
such timelock, they can redeem their funds.

Appendix B.4. On DMC Factories

The downsides of using DMCs increase when using a DMC Factory. The
trade-off between usability of the channel and the risk of temporary funds
lock-in increases drastically in this case. In a DMC Factory of n users,
it requires only one of them to completely timelock the funds inside the
factory. Getting funds out of channels within the factory before the last
signed timelock is impossible for as long as one user remains unresponsive.

Again, while this trade-off can be improved by using a kick-off transac-
tion and nested refund transactions, also the worst-case blockchain footprint
increases drastically, as only one user can enforce all the nested transactions
into the blockchain, increasing the blockchain fees.

Appendix C. Correctness of Lightning Factories

Appendix C.1. Lightning Factories: proofs

Lemma 1. Under the assumption that Bitcoin as a Clock is reliable, and that
the channels of the factory have been created following a correct protocol, the
protocol LFsetup() satisfies the no-lock property.

Proof. We can prove this by contradiction. Suppose the no-lock property
does not hold. This means that, given the group of n users {uj}n−1

i=0 that
want to setup the factory, a subgroup of them, of size a < n, {uj}a−1

i=0 , has
succeeded in locking up the funds of the rest {uj}n−a−1

i=0 . This is only possible
if the group of attackers owned and published a fully signed hook transaction,
before at least one of the malicious users signed and shared the allocation
commitment and the revocable allocation transaction with the honest users.
However, this means that all honest users should have executed line 8 in
figure 7 before at least one of the malicious users executed line 4. This is a
contradiction, because no user will execute line 8 unless line 6 is true, which
is only true if all users executed line 4. It follows that the protocol satisfies
the no-lock property.

49

Lemma 2. Under the assumption that Bitcoin as a Clock is reliable, and that
the channels of the factory have been created following a correct protocol, the
protocol LFsetup() satisfies the no-steal property.

Proof. This proof is analogous to that of no-lock property, since line 6 of
figure 7 also verifies that all users shared and signed fragments matching the
agreed-upon balance, otherwise it returns false.

Theorem 1. Under the assumption that Bitcoin as a Clock is reliable, and
that the channels of the factory have been created following a correct protocol,
the protocol LFsetup() is correct,

Proof. The protocol is correct if it satisfies the no-lock and no-steal proper-
ties. As proved in lemmas 1 and 2, it satisfies both.

Lemma 3. Under the assumption that Bitcoin as a Clock is reliable, and that
the channels of the factory have been created following a correct protocol, the
protocol LFupdate() satisfies the no-lock property.

Proof. Again, we can prove this by contradiction. Suppose the no-lock prop-
erty does not hold. This means that, given the group of n users {uj}n−1

i=0 in
the factory, a subgroup of them, of size a < n, {uj}a−1

i=0 , has succeeded in
locking up the funds of the rest {uj}n−a−1

i=0 . This is only possible if the group
of attackers owned the breach remedy fragment of state k of each honest
user, before at least one of the malicious users signed and shared the alloca-
tion commitment and the revocable allocation transaction of the new state
k with the honest users. However, this means that all honest users should
have executed line 11 in figure 10 before at least one of the malicious users
executed line 5. This is a contradiction, because no user will execute line 11
unless line 7 is true, which is only true if all users executed line 5. It follows
that the protocol satisfies the no-lock property.

Lemma 4. Under the assumption that Bitcoin as a Clock is reliable, and that
the channels of the factory have been created following a correct protocol, the
protocol LFupdate() satisfies the no-steal property.

Proof. This proof is analogous to that of lemma 3, since line 7 of figure 10 also
verifies that all users shared and signed fragments matching the agreed-upon
balance in state k + 1, otherwise it returns false.

50

Theorem 2. Under the assumption that Bitcoin as a Clock is reliable, and
that the channels of the factory have been created following a correct protocol,
the protocol LFupdate() is correct,

Proof. The protocol is correct if it satisfies the no-lock and no-steal proper-
ties. As proved in lemmas 3 and 4, it satisfies both.

51

[1] Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Unre-
stricted Aggregate Signatures. International Colloquium on Automata,
Languages and Programming - ICALP, (June), 2007.

[2] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham.
Aggregate and verifiably encrypted signatures from bilinear
maps. pages 416–432, 2003. URL: https://doi.org/10.1007/

3-540-39200-9_26, http://dx.doi.org/10.1007/3-540-39200-9 26
doi:10.1007/3-540-39200-9_26.

[3] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the
weil pairing. volume 17, pages 297–319, 2004. URL: https://doi.

org/10.1007/s00145-004-0314-9, http://dx.doi.org/10.1007/s00145-
004-0314-9 doi:10.1007/s00145-004-0314-9.

[4] Simina Brânzei, Erel Segal-Halevi, and Aviv Zohar. How to charge
lightning. CoRR, abs/1712.10222, 2017. URL: http://arxiv.org/abs/
1712.10222, http://arxiv.org/abs/1712.10222 arXiv:1712.10222.

[5] Conrad Burchert, Christian Decker, and Roger Wattenhofer. Scalable
funding of bitcoin micropayment channel networks. In International
Symposium on Stabilization, Safety, and Security of Distributed Systems,
pages 361–377. Springer, 2017.

[6] Christian Decker, Rusty Russell, and Olaoluwa Osuntokun. el-
too: A simple layer2 protocol for bitcoin. White paper:
https://blockstream.com/eltoo.pdf.

[7] Christian Decker and Roger Wattenhofer. A fast and scal-
able payment network with bitcoin duplex micropayment chan-
nels. pages 3–18, 2015. URL: https://doi.org/10.1007/

978-3-319-21741-3_1, http://dx.doi.org/10.1007/978-3-319-21741-
3 1 doi:10.1007/978-3-319-21741-3_1.

[8] Stefan Dziembowski, Sebastian Faust, and Kristina Hostakova. Foun-
dations of state channel networks. IACR Cryptology ePrint Archive,
2018:320, 2018. URL: https://eprint.iacr.org/2018/320.

[9] Rami Khalil and Arthur Gervais. Revive: Rebalancing off-
blockchain payment networks. In Proceedings of the 2017 ACM

52

SIGSAC Conference on Computer and Communications Security,
CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017,
pages 439–453, 2017. URL: http://doi.acm.org/10.1145/3133956.
3134033, http://dx.doi.org/10.1145/3133956.3134033 doi:10.1145/

3133956.3134033.

[10] Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille.
Simple schnorr multi-signatures with applications to bitcoin. IACR
Cryptology ePrint Archive, 2018.

[11] Andrew Miller, Iddo Bentov, Ranjit Kumaresan, Christopher Cordi, and
Patrick McCorry. Sprites and State Channels: Payment Networks that
Go Faster than Lightning. CoRR, 2017. URL: http://arxiv.org/abs/
1702.05812, http://arxiv.org/abs/1702.05812 arXiv:1702.05812.

[12] Joseph Poon and Vitalik Buterin. Plasma: Scalable Autonomous Smart
Contracts. White paper, pages 1–47, 2017. URL: http://plasma.io/
plasma.pdf.

[13] Pavel Prihodko, Slava Zhigulin, Mykola Sahno, and Aleksey
Ostrovskiy. Flare: An Approach to Routing in Lightning
Network. White Paper (bitfury. com/content/5-white-papers-
research/whitepaper flare an approach to routing in lightning n et-
work 7 7 2016. pdf), page 40, 2016.

[14] Draft Version, Joseph Poon, and Thaddeus Dryja. The Bitcoin Light-
ning Network. draft version 0.5, i:1–22, 2016.

53

