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REPRESENTATIONS OF INFINITE DIMENSION ORTHOGONAL GROUPS OF
QUADRATIC FORMS WITH FINITE INDEX

BRUNO DUCHESNE

ABSTRACT. We study representations G — H where G is either a simple Lie group with real
rank at least 2 or an infinite dimensional orthogonal group of some quadratic form of finite
index at least 2 and H is such an orthogonal group as well. The real, complex and quaternionic
cases are considered. Contrarily to the rank one case, we show that there is no exotic such
representations and we classify these representations.

On the way, we make a detour and prove that the projective orthogonal groups POk (p, o)
or their orthochronous component (where K denotes the real, complex or quaternionic num-
bers) are Polish groups that are topologically simple but not abstractly simple.

1. INTRODUCTION

The study of finite dimensional representations of Lie groups is a classical subject. Apart
from finite dimensional representations, there are also infinite dimensional unitary represen-
tations, which are classically studied. In this paper, we are interested in some other infinite
dimensional representations with a geometric taste. Namely, representations that preserve a
quadratic or Hermitian form with finite index.

The simplest example is given by representations into the real orthogonal group O(1, )
which is the group that preserves a quadratic form of signature (1,00) on some separable
real Hilbert space. In this case, the geometric taste is given by the induced action on the infi-
nite dimensional hyperbolic space. Such representations were put in this geometric context
in [DP12, MP14]. The Cremona group has also a natural representation in O(1, c0) see for
example [Can11].

In [MP14], representations PO(1,1n) — PO(1, o) are studied and classified by a param-
eter t € (0,1]. These representations correspond to a standard embedding if and only if
t = 1. In the other cases, these representations are called exotic. They come from the spher-
ical principal series of PO(1, 7). This spherical principal series also yields representations
PO(1,n) — PO(p, o) for infinitely many p > 1, where the possible values of p depend on n.

This result has been extended to the classification of self-representations of PO(1, ) —
PO(1, ) in [MP19] and there is still a one parameter family of exotic self-representations.

Here we are interested in the higher rank cases (for the source group) and in particular in
the existence of possible higher rank exotic representations. For uniform lattices in higher
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2 B. DUCHESNE

rank semisimple Lie groups, a theorem similar to the geometric interpretation of Margulis
superrigidity has been proved in [Duc15b, Theorem 1.2]. This gives hints that there should
be no exotic such representations for higher rank semisimple Lie groups.

Representations in PO(p, ), for p € N, are not the only ones to give actions on infi-
nite dimensional and finite rank symmetric spaces with non-positive curvature. One could
also consider the similar constructions over the complex numbers and the quaternions. This
gives rise to representations in POk(p, o) where K = R,C or H and the associated sym-
metric spaces are denoted Xk (p, c0) [Ducl3, Ducl5a] (see Sections 2 and 3 for precise def-
initions). We use the notations POk (p, o) to have a uniform notation independent of the
ground field (or division algebra) and PO(p, c0) merely means POg(p, 0). Self-representations
of PO¢(1, o) have been also classified in [Mon18] under an additional hypothesis.

The study of representations of these infinite dimensional classical groups is not com-
pletely new and unitary representations have been studied for example in [O1'78] and refer-
ences therein. Even earlier, these infinite dimensional groups were studied by Pontryagin,
Naimark and Ismagilov, see for example [Nai63, Ism66, Sas90].

Our first result is about finite dimensional Lie groups of higher rank. It shows that there is
no exotic continuous representations in this case. All those representations come from finite
dimensional representations and unitary representations.

Theorem 1.1. Let G be a connected simple non-compact Lie group with trivial center. Let G —
POk (p, 00) be a continuous representation without totally isotropic invariant subspace.

If the real rank of G is at least 2 then the underlying Hilbert space H splits orthogonally as Eq1 ©
-+ - @ Ex @ K where each E; is a finite dimensional, non-degenerate, G-invariant linear subspace and
the induced representation on E; is irreducible. The induced representation on K is unitary.

Let us observe that the existence of a decomposition as a sum of finitely many irreducible
representations and a unitary one is known for any group as soon as there is no totally
isotropic invariant space [Ism66, Sas90]. Moreover, this theorem extends the results of [Nai63]
where it is proved for SL(C). The strategy to prove Theorem 1.1 is to use the aforemen-
tioned mention [Ducl5b, Theorem 1.2] for lattices and extended it to the whole ambiant
group. This strategy may seem surprising since the ambiant Lie group has much more
structure than its lattices. In particular, it has a differentiable structure. The topology used
on POk (p, o) is the coarsest that makes the action on the symmetric space Xx(p, o) con-
tinuous. This is not the topology coming from the norm topology on POk (p, o) and thus
one cannot use the standard result in finite dimension that a continuous homomorphism be-
tween Lie groups is actually smooth. In fact, the exotic representations PO(1,1n) — PO(1, c0)
cited above are not continuous for the norm topology.

One can also imagine that one can directly adapt the proof for lattices to Lie groups but
the proof for lattices uses harmonic maps from a locally symmetric space. For the whole Lie
groups this would lead to harmonic maps from a point. Over a point, differential methods
could not work.

Theorem 1.1 leaves open the study of representations of rank one Lie groups in the groups
POk(p, o) (See [MP14, Problem 5.2]). Let us mention that continuous representations of
PSO(1,n) for n finite into O(2, o) have been considered in [PS18] and the authors show
there is no such irreducible representations.
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Theorem 1.2. Let p,q € Nwithp > 2and K,L € {R,C,H}, If p: POk(p,0) — POL(g, )
is a continuous geometrically dense representation then K = L, q = p and p is induced by an
isomorphism of quadratic spaces.

The assumption about geometric density implies that the representation is irreducible and
in finite dimension this is equivalent to Zariski density. See [DLP18, §3] for a discussion
thereon. As a corollary, we get an understanding of the continuous automorphism group.

Corollary 1.3. The group of continuous automorphisms Aut.(POk(p, o0)) is Isom ( Xk (p, c0)).

This latter group is described in Theorem 3.3 where it is shown that Isom (Xk(p, >)) is
POk (p, o0) except in the complex case where the only non-trivial outer automorphism cor-
respond to the complex conjugation.

Since the topology on POk(p, o) plays a role in the previous results, we take a quick
look at this topological group and prove that, although abstractly it is not simple (see Re-
mark 3.11), topologically it is.

Theorem 1.4. The Polish group PO¢(p, o), POu(p, c0) and POR(p, c0) are topologically simple.
Here O (p, o) denotes the orthochronous component of Ogr(p, o). See § 3.2.

Remark 1.5. All the results in this introduction are stated for the infinite countable cardinal
Ng, merely denoted by co here. But the proofs deal with any cardinal x except for the fact
that POk (p, x) is Polish, which holds only when « is countable. Theorems are restated in this
larger generality in the body of the text.

Remark 1.6. It is asked in [MP19, §1.3] if the group PO(1, o) has the automatic continuity.
A Polish group G has this property if any homomorphism to a separable topological group
is continuous. The same question can be asked for POk (p, o) and any finite value of p. If
this property holds for POk(p, o) then the continuity assumption in Theorem 1.2 and its
corollary can be removed. A general study of POk (p, o) as a Polish group should be the
subject of a future work.
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2. SYMMETRIC SPACES OF INFINITE DIMENSION

By a Riemannian manifold, we mean a (possibly infinite dimensional) smooth manifold
modeled on some real Hilbert space with a smooth Riemannian metric. For a background
on infinite dimensional Riemannian manifolds, we refer to [Lan99] or [Pet06].
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Let (M, g) be a Riemannian manifold, a symmetry at a point p € M is an involutive isome-
try 0,: M — M such that 0, (p) = p and the differential at p is — Id. A Riemannian symmetric
space (or simply a symmetric space) is a connected Riemannian manifold such that, at each
point, there exists a symmetry. See [Ducl5a, §3] for more details.

A natural infinite dimensional generalization of the symmetric space associated to SL,(R)
is obtained with the following construction. Let H be a real Hilbert space and L?(#) be the
space of Hilbert-Schmidt operators on H. Let S?() be the subset of L?(H) given by self-
adjoint operators and let P?(H) = exp (S*(H)), the set of Hilbert-Schmidt perturbations of
the identity that are positive definite. This space S?(H) is a symmetric space of non-positive
curvature.

As in finite dimension, the Riemann tensor and the curvature operator can be defined
for Riemannian manifolds of infinite dimension. Under the assumption of separability and
non-positivity of the curvature operator, a classification of such symmetric spaces has been
obtained in [Ducl5a, Theorem 1.8] and they are analogs of the classical ones.

The non-positivity of the curvature operator is a natural but stronger condition than non-
positivity of the sectional curvature. In particular, symmetric spaces with non-positive sec-
tional curvature and no local de Rham factor are automatically simply connected and thus
CAT(0) [Duclba, Proposition 4.1].

Definition 2.1. Let X be a Riemannian manifold. A submanifold ) is said to be totally
geodesic if for any geodesic y: I — X, where I is a real open interval containing 0, with initial
conditions ((0),9'(0)) in the tangent bundle of Y, y(I) is contained in ).

The rank of a symmetric space with non-positive sectional curvature is defined as the
supremum of the dimensions of totally geodesic embedded Euclidean spaces. The symmet-
ric space P?(#) has infinite rank and for example, one can find three points that are not
contained in any finite dimensional totally geodesic subspace [DLP18, Example 2.6].

One can also construct infinite dimensional symmetric spaces of non-positive curvature
and finite rank. Let us describe them. Let H denotes the division algebra of the quaternions,
and H be a Hilbert space over K = R, C or H with a Hilbert basis of cardinality «. In case
K = H, the scalar multiplication is understood to be on the right. Let p € N. We fix an
orthonormal basis (e;);cp« of the separable Hilbert space #, and we consider the quadratic

form
Q(x) =) Tixi— )_Tix;

i<p ick

where x = ) _e;x;. The space

Xk(p,x) ={V < H, dimk(V) = p, Qlv > 0}

has a structure of symmetric space of non-curvature (see [Duc13]). The rank of Xk (p, k)
is exactly p. Actually, separable symmetric spaces of non-positive curvature operator and
finite rank are classified [Ducl5a, Corollary 1.10]. They split as a finite product of finite
dimensional symmetric spaces of non-compact type and copies of Ak (p, o). These infinite
dimensional symmetric spaces have the particularity that any finite configurations of points,
flats subspaces or points at infinity are contained in a finite dimensional totally geodesic sub-
space [Duc13, Proposition 2.6].
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The following characterizations of totally geodesic subspaces of symmetric spaces are
well-known in finite dimension (it follows from the work of Mostow [Mos55]). In particular,
one can characterize them without referring to the differential structure. The knowledge of
geodesics or the symmetries is sufficient.

Proposition 2.2. Let X' be a separable symmetric space with non-positive operator curvature and
finite rank or X = Xx(p, ). Let Y be a non-empty closed subspace of X. Let oy be the symmetry at
x € X.The followings are equivalent:

(1) The subspace Y is a totally geodesic submanifold of X .

(2) For any distinct points x,y € ), the unique geodesic of X containing x and y is included in
V.

(3) The subspace ) is convex and satisfies 0 (Y) = Y forany x € Y.

(4) The subspace Y is a connected submanifold such that the Riemannian distance of ) (coming
from the Riemannian structure of Y induced by X) is equal to the restriction to Y of the
Riemannian distance of X .

(5) There exists x € Y such that ) = exp,(E) for some closed linear subspace E < T X
such that E is a Lie triple system when T, X is identified to p in the Cartan decomposition
g = t @ p relative to x.

(6) Forany x € Y, Y = exp,(E) for some closed linear subspace E < TxX such that E is a Lie
triple system when Ty X is identified to p in the Cartan decomposition g = t @ p relative to
X.

Proof. Since X is a symmetric space with non-positive curvature operator, we know that it
can be embedded as a totally geodesic manifold of S?>(H) [Ducl5a]. Thus, it suffices to con-
sider the case where X is S?(H). In that case, the correspondence between totally geodesic
submanifolds and Lie triple system has been observed in [dIH72, Proposition III.4]. So we
know that (1), (5) and (6) are equivalent.

Let us prove that (2) and (3) are equivalent. It is clear that if ) satisfies (2) then it is
convex. Moreover, for any x # y, 0x(y) lies on the geodesic line through x and y. Thus Y
satisfies (3). Conversely if ) satisfies (3) then for any x # y € ), the geodesic segments

[(ax oay)" (y), (oyo0)" (x)] is contained in Y for all n € Z. Since their union is the whole

geodesic through x and y, this geodesic is contained in ).

Assume that ) satisfies (6) then for any x # yin ), there is v € F such that y = exp,(v).
Since the geodesic through x and y is the image of t — exp, (tv) for t € R, this geodesic is
contained in ) and thus ) satisfies (2).

Now assume ) satisfies (2). For a finite subset F C ), F lies in some finite dimensional
totally geodesic subspace Zr. The intersection Vr = J N Zr is a totally geodesic subspace of
Zr and thus there is a finite dimensional subspace Er of T, X, that is a Lie triple system (by
the result in finite dimension) and such that exp, (Ep) = Y. Since exp, : Ty, & = Xisa
homeomorphism, it induces a homeomorphism from E, the closure of UrEr (where F is any
finite subset of ))) to ) and thus ) satisfies (5).

It is clear that (2) implies (4). Conversely, since the distance on ) coincides with the one in
X, Y is convex. Moreover since ) is a submanifold, any geodesic segment can be enlarged

a bit and since X is closed, any geodesic segment can be extended to a whole geodesic line.
Thus (2) is satisfied. ]

The following corollary is an immediate consequence of characterization (1).
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Corollary 2.3. Any non-empty intersection of totally geodesic subspaces of X is a totally geodesic
subspace. In particular, any subset of X is contained in a unique minimal totally geodesic subspace
of X.

3. ISOMETRY GROUPS OF INFINITE DIMENSIONAL RIEMANNIAN SYMMETRIC SPACES OF
FINITE RANK

3.1. Full isometry group. In the remaining of this paper, K denotes either the real, complex
or quaternionic numbers. Let H be a K-Hilbert space of with a strongly non-degenerate
quadratic form Q of signature (p, ) where p € Nand x > p is some finite or infinite cardinal.
This means that

o there is a Q-orthogonal decomposition H = H & H_,

e if ¢ is the Hermitian form obtained by polarization of Q and ¢ are the restrictions
of ¢ on H4 then (H4, ¢+ ) and (H_, —¢_) are Hilbert spaces with Hilbert bases of
cardinality respectively p and «,

e moreover, the Hermitian form ¢ — ¢_ is positive definite on H and equivalent to
the scalar product on H.

For more details about strongly non-degenerate quadratic forms, one may have a look at
[BIMO5, §2]. We are essentially interested in the case where « is infinite but at least we
assume that p + « > 4. If « is the infinite countable cardinal, we denote it by x = o as in the
introduction.

We denote the orthogonal group of Q by Ok(p, k) and its intersection with the set of finite
rank perturbations of the identity by O;E(p, k). Let us recall that a finite rank perturbation of
the identity is an operator of the form Id +A where A is a finite rank operator. The center
of Ok (p, x) is the set of homotheties A Id where A € K, |A| = 1and A € Z(K), the center of
K. The center of Ok(p, x) is thus & Id for K = R or H and isomorphic to S! for K = C. We
define POk (p, k) to be the quotient of Ok (p, k) by the its center Z (Ok(p, x)).

By construction POk(p, k) acts by isometries on Xk (p,«) and it is proved that when
K = R, PO(p,x) = Isom (Xk(p,«)). As explained in [Mon18] for p = 1, Isom (X¢(1,x))
is the union of the holomorphic isometries and the antiholomorphic isometries. This comes
from the complex conjugation which is the unique field automorphism of C that preserves
the absolute value. For the quaternionic numbers, one can follows the strategy as in finite
dimension to prove that Isom(Xy(1,«)) = POk(1, x), see [BH99, 11.10.17-21].

Projective geometry is lurking in these statements and the fundamental theorem of projec-
tive geometry tells us that field automorphisms have some role to play. As it is well known,
the field R has no non-trivial field automorphisms and for the quaternions H, all field auto-
morphisms are inner and preserve the quaternionic absolute value. Since the center of H is
R, one has Aut(H) ~ H*/R* ~ SO(3). The former isomorphism is obtained by considering
the two dimensional sphere of pure unit quaternions. Let us observe that the quaternionic
conjugation is not a field automorphism since Xy = ¥ x which is in general different from
Xy.

Let us denote by Aut,(K) the group of continuous field automorphisms of K . It coincides
with the group of automorphisms that preserve the absolute value (|o(x)|* = |x|* for x € K
and o € Aut(K)). Itis trivial when K = R, Aut,(C) ~ Z/2Z (the non-trivial automorphism
being given by the conjugation) and Aut.(H) = Aut(H) ~ H*/R* ~ SO(3) is given by
conjugations of elements of H*. One can realize each o € Aut.(K) as a R-linear isomorphism
of H that preserves the real part of the Hermitian form. It suffices to apply coordinate-wise
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the automorphism ¢ in the base (¢;). In particular, it maps K-linear subspaces to K-linear
subspaces of the same dimension and preserves positivity. Thus it induces a bijection of
Xk (p, x) and the metric is invariant. Observe that this construction identifies Aut.(c) with
a subgroup of the stabilizer of the span of (ey, ..., ep) in Xk (p, ).

Remark 3.1. A possibility to see that each ¢ € Aut.(K) induces an isometry is the follow-
ing. Let d = dimg(K) and let pg = R(¢) be the real part of the Hermitian form ¢ on
the underlying real Hilbert space structure on H. The real quadratic form Qg is a strongly
non-degenerate quadratic form of signature (dp, dx) (where dx denotes the multiplication of
cardinal numbers and thus dx = « as soon as « is infinite since d < 4). Considering any
totally isotropic K-linear space of dimension p as a totally isotropic R-linear space of dimen-
sion dp gives an embedding of Xk (p, ) as a totally geodesic submanifold of Xg(dp, dx) and
any element of Ok (p, k) or of Aut.(K) act on Xg(dp,dx) preserving both Xk (p,x) and ¢g.
Thus any such element induces an isometry of Ak (p, k).

Our goal in this subsection is to identify the full isometry group of Xk (p, k). So we need to
understand how elements of Ok (p, k) and Aut.(K) interact in Isom (Xk(p, x)) and see how
they generate it. Let us recall a few vocabulary from projective geometry. A collineation of the
projective space P H is a bijection that preserves projective lines (they are also called projec-
tive automorphisms). We denote by PT'L(# ) the group of collineations. Since the dimension
of H is at least 3, the fundamental theorem of projective geometry tells us that this group
is the image of the group of semilinear automorphisms GL(#) x Aut(K). Let us denote by
PI'Ok(p, x) the image of Ok (p, x) x Aut.(K) in PTL(). Since R has no automorphisms,
PI'Ogr(p, k) = PORr(p,«), for the complex numbers PI'O¢(p, k) = POc(p, k) x Z/2Z and
remarkably for the quaternions PTOy(p,x) = POn(p, k) since the conjugation by a € H*
induces the same collineation as the left multiplication by a.

In order to identify the isometry group Isom (Xk(p, x)), we introduce the context of Tits’
fundamental work on spherical buildings [Tit74]. Let us recall briefly that a spherical build-
ing of dimension 7 is a simplicial complex with some special subcomplexs called apparte-
ments and isomorphic to a tessellation of a real sphere of dimension n associated to some
spherical Coxeter group. It is proved in [Ducl3, Proposition 5.2] that the Tits boundary
dXk(p, «) is a spherical building of dimension p — 1 (in particular, this is a non-trivial struc-
ture as soon as p > 2). Actually the proof is done in the case where ¥ = oo but the proof
works for any cardinal as well.

One can describe explicitly what are the simplices. They are in correspondance with
isotropic flags, that are sequences F; < F, < --- < F where each F; is a totally isotropic
K-linear subspace (and thus k < p). This is proved in the real case in [Ducl3, Proposition
6.1]. This can be extended to the other cases via the embedding described in Remark 3.1
since an element of Ok (p, k) that stabilizes a flag of isotropic R-linear subspaces for Qg also
stabilizes a flag of K-linear subspaces and vice-versa.

In particular, vertices correspond to totally isotropic subspaces. The type of a vertex is
merely the dimension of the associated totally isotropic subspace. The polar space S associ-
ated to this building (see [Tit74, §7] for general definitions) is the space of isotropic lines, i.e.
vertices of type 1. Two points in § are collinear if they are contained in a common totally
isotropic plane, i.e. they are orthogonal. An automorphism of this polar space is a bijection
that preserves collinearity.

To any ¢ € Xk (p, ), one can associate its symmetric space at infinity Xz. In a general
CAT(0) context, this is defined as the quotient of the space of geodesics pointing to ¢ under
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the equivalence of being strongly asymptotic (see for example [Cap09, §4.2]). Two points
¢, n € 0Xk(p, ) are opposite if they are extremities of a common geodesic. If ¢ is a vertex
and 7 is opposite to ¢ then 7 is a vertex of the same type and the span of  and 7 is a linear
subspace of H of signature (d,d) where d is the type of ¢. This follows from the fact that any
geodesic line lies in some maximal flat subspace and from the description of these flats in
[Duc13, §3].

Let us fix a vertex { € Xx(p,«) of type d. Let us choose 1 opposite to . The union Y
of geodesics with extremities ¢, # is closed and invariant under symmetries o, for x € ),
thus it is a totally geodesic subspace of Xk(p, «). It splits as Y ~ R x Xz where the R-factor
correspond the direction of a geodesic from ¢ to 77. The isometry type of Az does not depend
on 7 since the stabilizer of ¢ in POk (p, ) acts transitively on points opposite to ¢. A point x €
Xk (p,x), i.e. a positive subspace of dimension p lies in Y if and only if x N Span {, 7} has
dimension d and x = x N Span {&,;} ® x N Span {&,7}". Since Span {&,7}" has signature
(p —d,x), X splits has Xz ~ X7 x Xk(p — d,x — d) where X7 is some finite dimensional
symmetric space of non-compact type.

For the next lemma, let us assume that x is an infinite cardinal, otherwise an identification
(which is not very hard) of X é is required.

Lemma 3.2. Let p > 2. The group Isom (Xk(p, x)) acts by type preserving automorphisms on the
spherical building d Xk (p, ).
Moreover, Isom ( Xk (p, x)) acts by automorphisms on the polar space S.

Proof. Isometries preserve maximal flats and thus their boundaries which are appartements
of the spherical building at infinity. Points in the interior of chambers (maximal simplices)
correspond to extremities of regular geodesics, those contained in a unique maximal flat.
Thus the set of these points is invariant by the isometries as well as chambers, which are con-
nected components of the set of regular points at infinity. The other simplices are obtained
as intersections of closure of chambers and thus invariant as well. In particular, vertices are
minimal non-empty intersections of closure of chambers and thus the isometry group acts
on the set of vertices.

We claim that any two vertices have the same type if and only if they are in the same
Isom (Xk(p, x))-orbit. Witt theorem implies that POk(p, k) acts transitively on the set of
vertices of a given type. For a vertex ¢ of type d, the infinite dimensional factor of A7 has
rank p — d and this rank is invariant by Isom (Xx(p, x)).

So, this proves that the action on the spherical building at infinity is by type-preserving
automorphisms. Looking at vertices of type 1, we get an action on the polar space S. For
two distinct vertices of type 1, there are only two possibilities: they are collinear, that is their
span is totally isotropic, that is they are orthogonal or their span has signature (1,1). This
can be recovered by geometric means, since in the first case, their Tits angle is 77/2 where as
they are opposite in the second case.

So the action of the isometry group on the polar space S preserves collinearity. O

Theorem 3.3. Let p € N. The isometry group of Xk(p, x) is PTOk(p, x).
More precisely,

e Isom(ARr(p,x)) = POr(p, x),
e Isom(Xc(p,x)) =POc(p, k) X Z/2Z,
o Isom(Xu(p,x)) = POu(p, ).
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Proof. As explained above, this statement is not new in case p = 1. So let us assume that
p > 2. Any isometry induces an automorphism of the associated polar space by Lemma 3.2.
By [Tit74, Theorem 8.6.11], since the dimension of H is at least 4, the group of all this auto-
morphisms is PTOxk(p, «). O

Remark 3.4. The definition of PTOk(p, x) in [Tit74, §8.2.8] is not exactly the same as the
one here but it is easy to see that they coincide. Let f be some semilinear map associ-
ated to 0 € Aut(C) such that f*Q = aQ for some & € R*. Tits defined PI'Oc(p, x) as
a quotient of such semilinear maps. We claim that for such f, necessarily ¢ € Aut.(C)
thus one recovers the definition here. Let x € # such that Q(x) > 0. For any A € C,

frQ(Ax) =7 (le(M)PQ(f(x)))- So,

e(MIPQ(f(x)) = o (aQ(x)) e (IA).
For A = 1, we get that Q(f(x)) = ¢ («Q(x)) and thus |¢(A)|*> = ¢(|A|?) which implies
that o preserves R and thus ¢ € Aut.(C).

3.2. Topological simplicity. Let us endow Isom(Xk(p, «)) with the topology of pointwise con-
vergence, that is the topology associated to the uniform structure given by the écarts (g, ) —
d(gx, hx) for any x € Xk (p,x). When x < oo, this topology on Isom(Xk(p,«)) is Polish
[Kec95, §9.B]. The group POk(p, o) is a closed subgroup and thus a non-locally compact
Polish group.

Lemma 3.5. The group POk (p, «) is a closed subgroup of Isom (Xk(p, x)).

Proof. In the real and quaternionic cases, there is nothing to prove since the two groups
coincide.

In the complex case, the symmetric space Xc(p, k) is Hermitian and there is a Kdhler form
w. For three points x,y, z, one can define

c(x,y,z) = / w.

Axya)
This is a continuous PO¢ (p, k)-invariant cocycle [DLP18, §5.2]. If g is an anti-holomorphic
isometry (i.e. a o-semilinear isometry where ¢ is the complex conjugation) then c(gx, gy, gz) =
—c(x,y,z). Fix x,y,z such that c(x,y,z) # 0. Since the map c: Xc(p,x)®> — R is continuous

c(gx,

then POc(p, k) is the preimage of {1} under the continuous map g — e yy;g)z) and thus

closed. O

In the remaining of this section we prove POk (p, k) is topologically simple for any cardi-
nal k. For a closed non-degenerate subspace E, H = E & E+ and the orthogonal group of the
restriction of Q on E can be embedded in Ok (p, ) by letting it act trivially on E-. We denote
by Ok (E) its image in Ok (p, k) and by POk (E) the corresponding subgroup of POk (p, k)

Proposition 3.6. Let g1,..., g, be a finite collection of elements in OE(}?,K) then there is a non-
degenerate finite dimensional subspace E < H of index p such that g; € Ok (E) forall i < n.

Proof. We first prove the result for one element ¢ € OE(p,K). By definition, there is an
operator A of finite rank such that ¢ = Id +-A. Let F be the image of A and choose E to be
any finite dimensional non-degenerate subspace of H of index p that contains F. Observe
that any subspace of H is g-invariant if and only if it is A-invariant. Since for any x € E,
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Ax € F C E, E is g-invariant. Since E is non-degenerate, H = E @ E* is a g-invariant
splitting. We claim that the restriction of A to E* is trivial. Actually, for x € E+, Ax € E*
(because E* is g-invariant) and Ax € F C E. Thus Ax = 0. So g € Ok(E).

Now, for each i, we find E; non-degenerate finite dimensional subspace of index p such
that g; € Ok(E;). The sum E = }; E; is non-degenerate finite dimensional subspace of index
p. Since Ok (E;) < Ok (E), the result follows. O

There is no determinant for infinite dimensional operators in general but if K = R or C
and g € OE(p, k), one can find E as in Lemma 3.6 and define det(g) = det(gg) which does
not depend on the choice of E. As in finite dimension, this defines a group homomorphism
O (p, k) — {#1} or S'. We define SO (p,«) to be the subgroup of elements with deter-
minant 1. In the quaternionic case, there is also a notion of determinant [Die43] but it takes
positive real values and thus it is constant to 1 on Ok(p, q) for p,q € N.

So, we use SO (p, k) = O} (p, x) to have a uniform notation. We denote by PSO (p, k) the
image of SO (p, k) in PO (p, k). Let us observe that this image is isomorphic to SO (p, )
since non-trivial homotheties are never finite rank perturbations of the identity.

The real case is bit particular since the Lie group SOg (E) has two connected components.
If P is a definite positive subspace of dimension p in E and let 7tp be the orthogonal projection
to P. The map
SOrR(E) — {1}

det((7rpog)|p)
& "7 Tdet((mpog)[r)]

is a group homomorphism and its kernel is exactly the connected component of the iden-

tity in SOR(E), which is called the orthochronous group' denoted SO%(E). This homomor-
phism does not depend on the choice of P and actually extends to the whole of Or(p, k).

Lemma 3.7. The orientation map

or: Or(p,x) — {1}
det((7pog)|p)
8 7 [det((mpog)lp)]

is a well-defined surjective homomorphism.

Proof. Let us denote by By = {x = (x1,...,xp) € HP, Span(x) € Ar(p,x)}. Let A* H the
p-th exterior power of H and for g € GL(# ), we denote by A”g the linear operator defined
by APg(x1 A+~ Axp = g(x1) A+ - Ag(xp). The symmetric form ¢ on H induces a symmetric
form on AP H denoted ¢ as well and defined by

P(x1 A Axp,y1 A+ Ayp) = det (go(xi,y]-)) )

There is an Og(p, k)-equivariant continuous map i: By — AP H defined by i(x) = x1 A
-+ A xp where x = (x1,...,Xp). Let us observe that i(x) and i(y) are proportional if and only
if Span(x) = Span(y) and they are moreover positively proportional if the bases x and y are
in the same orientation class.

The name comes from the Lorentz group in special relativity. The orthochronous subgroup is the subgroup
that preserves the direction of time.
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For x,y € By, ¢(i(x),i(y)) # 0 since there exist orthonormal bases x/, ' of Span(x) and
Span(y) such that ¢(x/,y;) = cosh(A;) where (A;) is the collection of hyperbolic princi-
pal angles between Span(x) and Span(y) and ¢(x, y;) = 0fori # j. So, ¢(i(x),i(y")) =
[Tcosh(A;) # 0. Moreover for x,y,z € By if ¢(i(x),i(y)) > 0 and ¢(i(x),i(z)) > 0 then
¢(i(y),i(z)) > 0. This follows from the fact that there is a continuous path t — x; from [0, 1]
to B4 such that xp = x and x; is a basis of Span(y) in the orientation class of y (using the
exponential matrix that appears in [Duc13, Proposition 3.5] which maps Span(y) to Span(x)
and multiplying the hyperbolic angles A; by (1 — t)). In particular, one can define an equiv-
alence relation ~ on B such that x ~ y <= ¢(i(x),i(z)) > 0. This relation is invariant
under the induced action of Og(p,«) (i.e. gx ~ gy <= x ~ y). In particular, an element
g € Ogr(p,x) preserves each of the two equivalent classes or permute them. It preserves
these two classes if and only if for any x € B, ¢(i(gx),x) > 0.

If x is a basis of P then ¢(i(gx), x) and det ((7tp o §)|p) have the same sign. This yields the
homomorphism Og(p, k) — Z/2Z. The surjectivity is obtained by choosing an element of
Ogr(P) \ SOg(P) and extending it trivially on P*. O

We denote the kernel of or by O (p, k) and called it the orthochronous group as well.

Remark 3.8. Let us observe that if p is odd then — Id ¢ Og(p, x) and in this case, POz (p, k) =
POg(p, ). On the contrary, if p is even then —Id € Of(p,«) and the orientation map or
defines a non-trivial homomorphism on the quotient group POg(p, ). Thus POR(p, «) is a
strict non-trivial normal subgroup of POg(p, ).

Lemma 3.9. For any finite collection {x;}icq1,. ») of points in Xx(p,«) and ¢ € POk (p, «), there
is go € PSOE (p, ) such that gx; = gox; forany i € {1,...,n}.

Proof. Let E be the minimal non-degenerate subspace of H such that x; C E for all i € [1,n]
[DLP18, Lemma 3.11]. Let us set F = E + g(E) which is a non-degenerate subspace and
thus H = F & F1. By Witt theorem, there is i € PO(F) such that h~1¢E = E. In particular
h e POE(p, k). The element h~!¢ preserves E and thus its orthogonal E*. Let us define f to
be the restriction h~'g on E and being trivial on E-. Let go = hf € PO (p,x). Since for all
i € [1,n] x; C E, goxi = h(h~'¢)x; = gx;. In case K = R or C, one can moreover choose a
(necessarily negative) line L in F- and modify go to act by det(go) ~! on this line and being
trivial on (F 4+ L)*. In this way, one has moreover gy € SO{E( p,x). O

Proposition 3.10. The group PSO (p, k) is simple and dense in PO (p, x) when K = C or H. In
the real case, PSOE( p,x) NPOR(p, x) is simple and dense in POg(p, x)

Proof. 1t is well known that when g is finite, the group PSOxk(p, q) or PSOx(p,q), is a con-
nected simple Lie group with trivial center and thus is abstractly simple. Let ¢ € PSOE(p, K)
(assumed to be moreover orthochronous in the real case), there is E such that ¢ € PSOk(E).
Ifh e PSOE(;?,K) is another element (also assumed to be orthochronous in the real case),
we may moreover enlarge E such that g, € PSOk(E). If g is not trivial then the normal
subgroup of PSOk(E) (respecticvely PSOg(E)) generated by g is PSOk(E) (respecticvely
PSOR (E)) itself and thus contains 4. So the simplicity statement follows.

Density of PSO (p, k) in POk (p, k) is a straightforward corollary of Lemma 3.9. In case
K = R and g is orthochronous then gy (from Lemma 3.9) is automatically orthochronous as
well. O
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Remark 3.11. For any ideal Z of the space of bounded operators (like the finite rank opera-
tors, the compact operators or the g-th Schatten class operators for 4 > 1) one can construct
a normal subgroup of elements of Ok (p, «) that are perturbations of the identity where the
perturbation lies in Z, i.e. elements of the form I + A where A € Z. So, Ok (p, «) has a lot of
normal subgroups and POk (p, k) is not simple.

For a subgroup G’ < G, we denote by Z5(G') its centralizer in G. A topological group is
said to be topologically simple if any non-trivial normal subgroup is dense. In order to show
that POk (p, x) is topologically simple, let us show two easy facts from group theory.

Lemma 3.12. Let G be a group and N a normal simple subgroup. If H < G is a normal subgroup,
either N < Hor H < Z5(N).

Proof. Letn € Nand h € H then [n,h] € NN H. Soif H £ Z5(N) then there are n and h such
that [n, h] # e thus N N H is non trivial normal subgroup of N and thus N = NNH < H. [

Proposition 3.13. Let G be a Hausdorff topological group with trivial center. If there is a dense
normal simple subgroup N then G is topologically simple.

Proof. Let H be a non trivial normal subgroup. Assume H < Z5(N). Let h € H, the map
g +— [g, h] from G to G, is continuous and constant on N. Since N is dense and G is Haus-
dorff, this map is constant on G and # is in the center of G. Since H is non-trivial and G has
trivial center, this is a contradiction. So by Lemma 3.12, N < H and H is dense. O

Theorem 3.14. Let x be some infinite cardinal. The topological groups POc(p, ), POu(p, k) and
PO (p, x) are topologically simple.

In case ¥ = o0, one recovers Theorem 1.4.

Proof. Since POk (p, x) or POR (p, «) has trivial center, the theorem follows from Propositions
3.10 and 3.13. O

4. ACTIONS ON INFINITE DIMENSIONAL SYMMETRIC SPACES

Definition 4.1. A subgroup G of Isom(Xx(p,«)) is geometrically dense if G has no fixed
point at infinity nor invariant strict totally geodesic subspace. A representation p: G —
Isom(Xk(p, «)) is geometrically dense if its image is so.

Remark 4.2. Our definition is different from the one in [CM09a]. There, totally geodesic
subspaces are replaced by convex subspaces because they consider CAT(0) spaces instead of
symmetric spaces. For symmetric spaces of non-compact type and rank 1, the two definitions
do not coincide but for finite dimensional irreducible higher rank symmetric spaces, both
definitions are equivalent to Zariski-density.

Our definition coincides with the one in [DLP18] and with geometric Zariski density in
[MP14, §5]

In [CMO09b, Lemma 4.2], it is proved that for any group G < Isom(X’) of a CAT(0) space X,
the boundary of the convex closure any G-orbit does not depend on the choice of the orbit.
Since the normalizer N'(G) of G permutes the G-orbits, this yields a subspace AG C 90X,
namely the convex closure of any orbit, which is A (G)-invariant.

In [K1e99] Leeb showed that the geometric dimension of a CAT(1) space X, a notion he
introduced, can be computed as the supremum of the topological dimension of compact
subsets of X'. A CAT(0) space X has telescopic dimension at most k € N if any asymptotic
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cone of X’ has geometric dimension at most k. If such a finite k exists then &’ is said to have
finite telescopic dimension and in this case its telescopic dimension is defined to be the minimal
such k.

A main feature of the spaces Xk (p, «) is their finite telescopic dimension, which is exactly
p. Thus it coincides with the rank of Xk (p, k) which is the dimension of maximal flat sub-
spaces. We refer to [CL10] for details about this dimension and [Duc13] for a computation
of this telescopic dimension for Xk (p, k).

A consequence of the finiteness of this telescopic dimension is the following fact.

Theorem 4.3 ([CL10, Theorem 1.1]). Let X be a complete CAT(0) space of finite telescopic di-
mension and (Xy),c 4 be a filtering family of closed convex subspaces. Then either the intersection
NacAXy is non-empty, or the intersection of the visual boundaries Nyc A0 X, is a non-empty subset
of X of intrinsic radius at most 7t/2.

Moreover the boundary of a CAT(0) space of telescopic dimension has finite geometric
dimension [CL10, Proposition 2.1] and this allows us to use the following fixed point state-
ment.

Proposition 4.4 ([BLO5, Proposition 1.4]). Let X be a CAT(1) space of finite dimension and of
intrinsic radius at most 7t/2. Then X has a circumcenter which is fixed by every isometry of X.

Lemma 4.5. Let G be a subgroup of Isom(Xk(p, k)) whose normalizer N'(G) in Isom(Xk (p, «))
has no fixed point at infinity. Then G has a unique minimal invariant closed convex subset and a
unique minimal invariant totally geodesic subspace.

Proof. Let C be the collection of either G-invariant closed convex subsets or G-invariant to-
tally geodesic subspsaces. This collection is non-empty because it contains Xk (p, k). More-
over, any intersection of elements of C is either empty or an element of C. If C has no min-
imal element (for inclusion) then one can find a sequence (x;) such that Conv(Gx;1) C
Conv(Gx;). So AG is non-empty set of intrinsic radius at most 71/2. Since AG is N (G)-
invariant, N'(G) has a fixed point. This is a contradiction and this implies that C has a
minimal element.

Let us prove first the uniqueness of a minimal closed convex G-invariant subspace. Let J
be the union of all minimal closed convex G-invariant subspaces. Let X be such a minimal
closed convex G-invariant subspace. By [Mon06, Remark 39.(1)], ) splits isometrically as
Y >~ X x T where the action of G on ) is diagonal, being trivial on 7. Assume that 7 is
not reduced to a point, that is there are two minimal subspaces X and X’. Let x € X and
x' its projection on X’. For any g € G, the convex hull of the segments [x, x| and [yx, yx']
is a flat strip. The four vertices and their convex hull lie in some totally geodesic subspace
of finite dimension. This flat strip is thus contained in some flat totally geodesic subspace
of Xk(p,«). So, if £ is the geodesic line through x and «’, then ¢ is parallel to ¢ and the
two points at infinity of ¢ are fixed by g. Thus we have a contradiction and there is a unique
minimal closed convex invariant subspace X'

If there were two minimal invariant totally geodesic subspaces, each one would have a
minimal closed convex invariant subspace by applying the argument at the beginning of the
proof to each of them. Thus, we know there is a unique minimal invariant totally geodesic
subspace. O
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In the fifties, Tits conjectured that convex subcomplexs of spherical buildings are either
buildings themselves or they have a center, i.e. a fixed point for all automorphisms preserv-
ing the subcomplex. The interest for this conjecture was renewed in relation to Serre’s com-
plete reducibility [Ser05, §2.4]. It was proved first in the classical cases [MT06] and extended
later in the exceptional cases. We recommend [Cue09] for details about this conjecture.

Theorem 4.6 (Solution of the Center Conjecture). Let A be some spherical building of type By. If
C is a convex subcomplex of A, either A has a center, or any simplex in A has an opposite simplex in
A.

Corollary 4.7. Let G be a subgroup of Isom ( Xk (p, k)) with a non-empty fixed point set at infinity
Y. Either Y is a sub-building of 0 Xk (p, k) or the normalizer of G in Isom (Xx(p,«)) has a fixed
point at infinity.

Proof. The group Isom (Xk(p, k)) acts by preserving type automorphisms on the spherical
building 0 Xk (p, x) (Lemma 3.2), which is of type B,. The set of fixed points in dXk(p, «)
of some isometry g € Isom (Xk(p, x)) is convex (because it induces an isometry for the Tits
metric on 0Xk (p, x)p) and it is a subcomplex because if some ¢ € 0 Xk (p, k) is fixed by g the
closure of the smallest facet that contains ¢ is pointwise fixed.

By Theorem 4.6, The fixed point set Y of G is either a sub-building or there is a point
¢ € Y which invariant under all typer preserving automorphisms that stabilize Y. Since the
normalizer of G stabilizes Y, we have the result. l

The following proposition is similar to [CMO09b, §4.C]

Proposition 4.8. Let G, N be subgroups of Isom( Xk (p, «)) such that N is a normal subgroup of G.
The subgroup G is geometrically dense if and only if N is so.

Proof. 1t is straightforward that if N is geometrically dense so is G. So, let us assume that G
is geometrically dense. By Lemma 4.5, since G has no fixed point at infinity, N has a unique
minimal invariant totally geodesic subspace ). Its uniqueness implies that it is G-invariant
as well. Since G is geometrically dense, ) = Xk (p, k).

Now, If N has fixed points at infinity then by Corollary 4.7 either N has two opposite fixed
points or the set of N-fixed points at infinity has a center and G has a fixed point at infinity.
The last case is a contradiction.

If N has opposite fixed points, there are two isotropic subspaces E_, E of the same di-
mension k < p such that E_ + E_ is non-degenerate. Let ) be the set of elements E of
Xk (p, x) such that EN (E;+ + E_) has dimension k. The subspace ) is a strict N-invariant
totally geodesic subspace and once again we have a contradiction.

So N has no fixed point at infinity and thus is geometrically dense. O

5. REPRESENTATIONS OF FINITE DIMENSIONAL SIMPLE LIE GROUPS OF RANK AT LEAST 2

Let G be a connected semisimple Lie group with trivial center and no compact factor. Then
G is the connected component to the isometry group of a symmetric space of non-compact
Xc which is of the form G/K where K is a maximal compact subgroup.

Proposition 5.1. Let G be a connected simple non-compact Lie group with trivial center. Let p: G —
Isom(Xk(p, k)) be a continuous representation without fixed point in Xk (p, x) nor in Xk (p, «).
If the real rank of G is at least 2 then there is a G-equivariant totally geodesic isometric embedding of
the symmetric subspace X in Xx(p, ).
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Proof. Let I be a cocompact lattice in G (which exists, see [Mor15] for example). Moreover,
up to consider a finite index subgroup, we may assume that I' is torsion free. Let us prove
first that there is a I'-invariant totally geodesic isometric embedding X¢c — Xk (p, «).

Since G has no fixed point at infinity then it has a unique minimal closed invariant sub-
space X' (Lemma 4.5). This space X" has finite telescopic dimension. It has a de Rham de-
composition [CL10, Proposition 6.1] and the Euclidean factor has to be trivial since G has
property (T) and thus a fixed point on this Euclidean factor.

We claim that there is a I'-equivariant harmonic map Xz — X in the sense of Korevaar
and Schoen for metric spaces. The existence of such harmonic map is provided by [Duc15b,
Theorem 3.1] if we know that I" has no fixed point in 0X'.

If I has a fixed point at infinity ¢ € 90X, one can define a map f: X — R given by the
formula

flx) = o Bz (x, x0)dp(8T)

where y is the G-invariant probability measure on G/I" and x — B, (x, xo) is the Busemann
function associated to the point € 0 Xk (p, x) that vanishes at some base point xp.

The function f is convex, 1-Lipschitz and G-almost invariant, that is x — f(x) — f(gx) is
constant for any ¢ € G. If f has no minimum then G has a fixed point at infinity (the center
at infinity associated to the invariant filteringfamily of sub-level sets of f [CL10, Theorem
1.1]), that is a contradiction and if f has a minimum then f is constant since X" is a minimal
G-invariant convex subspace. Thanks to [CL10, Proposition 4.8], A splits as X’ x R and we
have a contradiction with the vanishing of the Euclidean factor of X

So there is a I'-equivariant harmonic map h: Xz — X. Assume this map is constant.
Then the image is a I'-fixed point x € Ak (p, ) and by continuity of the orbit map gI" — gx,
the G-orbit of x is compact and thus bounded. In particular, G has a fixed point, that is a
contradiction.

Since the metric projection y: Xx(p, k) — X is 1-Lipschitz and I'-equivariant, the map
u — 1ty o u does not increase the energy of I'-equivariant maps. Thus & is harmonic as well
as map from X to Ak (p, x). We can now use [Duc15b, Proposition 4.1] to show that & is a
smooth map and conclude as in [Ducl5b, Theorem 1.2] to prove that / is actually a totally
geodesic embedding.

So we know that there exist totally geodesic embeddings Xz — Xk (p,«) that are I'-
equivariant. Let us denote by ) some image of a I'-equivariant totally geodesic embedding
of X in X and let us introduce the function ¢: X — R given by

p(x)= [ d(x,g)du(sT).

The function is well defined because y is G-invariant and ¢ — d(x,g)) is bounded by
cocompactness. The function ¢ is G-invariant, continuous and convex. If it has no minimum
then G has a fixed point at infinity (by the same argument about the filteringfamily of sub-
level sets) and otherwise the minimum is realized on the whole of X since this space is
minimal among closed convex G-invariant subspaces. Let x,y € X and m their midpoint.
Using the fact that ¢ is constant on X’ and x — d(x,g)) is convex, one has
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0= g(m) — 2 ;L oY)
d(x,8Y) +d(y,gV)\>  (d(x,gY)*+d(y,gr)?
= /c/r ( 2 > N < 2 ) 2 (e)

< —i/c/r (d(x,8Y) — d(y,gY))* du(gT)

and thus for all § € G, d(x,g)) = d(y,gY). By taking x € ) and g to be the identity,
one has that X = V. So, & is a G-invariant totally geodesic subspace isometric to ;. Let
h: Xg — X be aT-equivariant totally geodesic embedding. Let m: G — G be the continuous
group homomorphism defined by m(g) = h~! o p(g) o h. Since the restriction of m is the
identity on I', m is the identity. This means that  is G-equivariant. ]

Remark 5.2. The strategy of the first part of the proof of Proposition 5.1 is very close to the
one of [CM09b, Theorem 2.4] but this theorem does not apply directly because the space
Xk (p, x) is not proper. It could be deduce from [DGLL15, Theorem 1] but we prefer to give
a proof without the vocabulary of IRS, which is useless here. The IRS related to this proof is
the one supported on the conjugacy class of I'.

The following theorem is the extension of Theorem 1.1 to any cardinal x.

Theorem 5.3. Let G be a connected simple non-compact Lie group with trivial center. Let G —
POk (p, x) be a continuous representation without totally isotropic invariant subspace.

If the real rank of G is at least 2 then the underlying Hilbert space H splits orthogonally as E1 ®
-+ @ Ex ® K where each E; is finite dimensional, non-degenerate, G-invariant and the induced rep-
resentation on E; is irreducible. The induced representation on KC is unitary.

Proof. If there is a fixed point in Xk (p, ), then there is a definite positive subspace E of
dimension p which is G-invariant. Let K be the orthogonal of E. One has H = E & K and
K is negative definite. So the induced representation on K is unitary. This implies that the
representation on H is unitary for the scalar product (, )|t — (, )|k.

Assume there is no fixed point in Xk (p, «). Since a fixed point at infinity would yield an
invariant totally isotropic flag, we know there is no fixed points at infinity. So, by Proposition
5.1, there is a G-equivariant totally geodesic embedding of A in Xk (p, k) and we denote by
Xg its image as well. By [DLP18, Lemma 3.11], there is a unique minimal finite dimensional
non-degenerate subspace Ey < H such that for any x € X, x < Ey. By uniqueness, this lin-
ear subspace E is G-invariant. If E < E is G-invariant then its kernel would be G-invariant
and there would be a totally isotropic invariant space. So, any G-invariant subspace E < Ey
is non-degenerate and in particular, # splits orthogonally as E & E+. Let us choose such a
minimal E. In particular the induced representation on E is irreducible. The signature of the
restriction of the quadratic form on E Lis (s,x) for some s < r. While s > 0, one can repeat
the argument and an induction on the index of the quadratic form gives the result. ]

6. REPRESENTATIONS OF POk (p, x) FOR p > 2.

The goal of this section is to prove Theorem 1.2 that describes geometrically dense con-
tinuous representations POk (p, ) — POL (g, o) in the generality of infinite cardinals x and
A
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Theorem 6.1. Let p,q € Nwithp > 2and K,L € {R,C,H}, If p: POk (p,x) — POL(q,A) is
a continuous geometrically dense representation then K =L, g = p, x = A and p is induced by an
isomorphism of quadratic spaces.

Proof. Let p: POk(p,x) — POL(gq,A) be a geometrically dense representation. We denote
the respective underlying Hilbert spaces H and H’ with quadratic forms Q and Q’. Let £
be the collection of non-degenerate finite dimensional subspaces of H of index p. Let E € £
and let us denote Gr = PSOx(E) or PSOR(E) in the real case. First, we prove that for E of
dimension large enough, Gg has no fixed points in &1, (p, x). For the sake of a contradiction,
let us assume that for any E € &, Gg has a non-empty set of fixed points Vg C A1(q,A). For
E < E', Yp C Vg and thus this is a filtering family of totally geodesic subspaces. If Ngce e
is non-empty them PSO (p, x) has fixed points but since PSO) (p, x) is geometrically dense
by Proposition 4.8, we have a contradiction. If the intersection Ngcg VE is empty, then by
Theorem 4.3 and Proposition 4.4, there is a PSOE( p, «)-fixed point at infinity contradicting
its geometric density. As a conlusion, we know there is some E € £ such that Vg = @ and
the same holds for any E’ > E.

Now, let us show that Gg has no fixed points in dA1(q,A). Assume for the sake of a
contradiction that there are fixed points at infinity. Let us recall that one can associate a
flag of totally isotropic subspaces of H’ to any point at infinity. If Gg stabilizes some totally
isotropic subspace F then one get a continuous representation G — PGL(F). Since G is
simple and F has dimension at most g, we know that as soon dim(Gg) > dim(PGL(F)),
this representation is trivial (because a continuous representation of a (finite dimensional)
Lie group to another Lie group is automatically smooth) and thus Gg fixes all lines in F. In
particular, the fixed point set (PH’)t of Gg in the projective space PH’ is non-empty. If
Ly, Ly are two Gg-invariant lines in H’, by the same argument, Gr. fixes all lines of their span.
In particular, there is a closed linear subspace Hg of H’ such that (P #H')CE is the projective
space of Hg. Then, considering the restriction of Q' on Hg, one has two possibilities :

(i) Hr has a non-trivial kernel or
(i1) HE is non-degenerate.

In the first case, this means that there is some line which is orthogonal to all Gg-invariant
invariant totally isotropic subspaces. In particular, all Gg-fixed points in 0X1 (g, A) lie in the
ball of radius 7r/2 for the Tits metric around the vertex corresponding to such a line in the
kernel.

In the second case, one has H' = Hr ® H EL Observe that if E’ > E then Hpy < Hg and
thus Hi, > H.

Assume that the first possibility (i) holds for all E € £ then let us denote by Cg the set of
Ge-fixed points in 91 (g, A). This is a filtering family of closed convex subsets of intrinsic at
most 71/2 and by [CL10, Lemma 5.1], the intersection of all of them is not empty and thus
one get a PSOK (p, x)-fixed point in X (g,A) and together with Proposition 4.8, we get a
contradiction with geometric density of the representation.

So we know that there is E € &£ such that Hg has trivial kernel and thus for any E’ > E,
the same holds. The closure of the union Ugcg Hy is PSOE( p, k)-invariant. Since geometric
density implies irreducibility of the representation, this union is necessarily dense and thus
the index of the restriction of the quadratic form on this union is q. In particular, one can
find E such that H7 has index g (since the index can be checked using finitely many points
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at a time). This yields a contradiction with the fact that Hr has some isotropic line and thus
index at least 1, which implies that the one of Hz is at most g — 1.

In conclusion, we know that Gg has no fixed point in Ay, (g, A) nor in dA1(g,A) for some
E € £ and thus for all E' > E. For such E € &, there is a Gg-equivariant totally geodesic
embedding ¢r of the symmetric space A%t of G in POy (g, A) by Proposition 5.1 since p > 2.
The image Vg of the embedding ¢r is a Gg-invariant totally geodesic subspace. It is minimal
since the action on it is transitive. Since Gg has no fixed point at infinity, this totally geodesic
subspace )t is unique (Lemma 4.5). In particular, this uniqueness implies that if E < E/,
then Vg C Vg and more precisely ¢ is the restriction of ¢r on Xk.

The closure Y of the union of the subspaces Vg (which is isometric to the space Xk (p, k)) is

a PSOE(p, K )-invariant totally geodesic subspace of A1.(g, A). By Lemma 4.8 and the fact that
p (POk(p, x)) is geometrically dense, ) is necessarily A1(g, A). In particular, the two spaces
Xk (p,x) and AL(g, A) have the same ranks, i.e. p = g. The induced isometry between the
Tits buildings at infinity yields an isomorphism of polar spaces as in the proof of Theorem 3.3
and once again, relying on [Tit74, Theorem 8.6.1I], this isomorphism is given by some iso-
morphism of quadratic spaces, this corresponds to a semilinear map and in particular K = L
and x = A. O
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