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Abstract

We introduce a new approach for nonparametric spectral density estimation based
on the subsampling technique, which we apply to the important class of nonstation-
ary time series. These are almost periodically correlated sequences. In contrary to
existing methods our technique does not require demeaning of the data. On the sim-
ulated data examples we compare our estimator of spectral density function with the
classical one. Additionally, we propose a modified estimator, which allows to reduce
the leakage effect. Moreover, we provide two real data economic applications.
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1 Introduction

Spectral theory for stationary time series is well developed (see Priestley (1981), Žurbenko

(1986), Stoica and Moses (2005), and many others). However, in the real data applications

one deals often with nonstationary phenomena. In such a case statistical tools designed for

stationary processes should be appropriately modified or generalized. If this is not possible

a new approach needs to be proposed.

In this paper we focus on the spectral density estimation problem in the nonstationary

setting. Classical approach for spectral density estimation requires removing the mean

function from the data. However, as we discuss below, this may be very challenging in the

nonstationary case. Thus, it is crucial to propose a new method that provides consistent

estimates and does not assume the nullity of the mean function.

In the sequel we introduce and develop a novel methodology for spectral densities estima-

tion for nonstationary mixing sequences with nonzero mean function. Our main results

cover the class of almost periodically correlated (APC) time series, which is an important

class of nonstationary time series containing among others periodically correlated (PC)

and covariance stationary sequences. APC and PC processes are broadly used to model

data with cyclic features. Many interesting examples concerning e.g., telecommunication,

vibroacoustics, mechanics, economics and climatology can be found in Antoni (2009), Gard-

ner et al. (2006), Hurd and Miamee (2007), Napolitano (2012, 2016). To be precise, a time

series {Xt, t ∈ Z} with finite second moments is called PC if it has periodic mean and

covariance functions, while in APC case the mean and covariance functions are almost

periodic functions of time argument. A function f(t) : Z −→ R is called almost periodic if

for any ε > 0 there exists an integer Lε > 0 such that among any Lε consecutive integers

there is an integer pε such that supt∈Z |f(t+ pε)− f(t)| < ε (see Corduneanu (1989)).
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Problem of spectral density estimation for PC and APC sequences is not new (see Nema-

tollahi and Rao (2005), Lii and Rosenblatt (2006), Hurd and Miamee (2007), Napolitano

(2012, 2016)), but as we mentioned before all methods assume that EXt ≡ 0. In the case

of stationary and PC time series this is not a restrictive condition, because the data can

be demeaned (see e.g., Brillinger (2001) and Hurd and Miamee (2007)). However, for APC

time series this problem is much more difficult. In general case it is not easy to estimate an

almost periodic mean function. Moreover, in the presence of an almost periodic mean, the

spectral densities and cyclic spectra contain Dirac impulses as a consequence of the pres-

ence of an almost periodic component in the cyclic autocovariance (see Napolitano (2016)).

Estimation of the spectral densities or the cyclic spectrum without removing the mean,

results in spikes in correspondence of the ideal Dirac deltas. In such a case, Napolitano

and Spooner (2000) proposed a median filtering technique to remove the spikes. However,

for now the theoretical properties of this approach were not studied in the literature.

Our idea for spectral densities estimation is based on the subsampling method, which al-

lows to approximate the asymptotic variance of the rescaled statistics of interest. Let us

indicate that the general consistency result concerning subsampling estimator of the asymp-

totic variance that we present does not require periodicity or almost periodicity of the data.

However, we apply it to an APC process to provide at the same time an application that

is interesting and important from practical point of view. For that purpose we use results

from Lenart (2013). Lenart considered estimation problem for the Fourier coefficients of

the mean function of an APC time series. He showed that their rescaled estimators are

asymptotically normal and that elements of the asymptotic covariance matrix are liner

functions of the spectral densities of the considered process. Applying subsampling to es-

timate elements of this matrix we get consistent estimators of the spectral densities.
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Paper is organized as follows. In Section 2 the known methods for spectral density es-

timation in stationary and almost periodic case are summarized. The main results are

provided in Section 3. In particular the subsampling estimator of the spectral density

functions of an APC time series with the nonzero mean function is constructed and its con-

sistency is shown. Moreover, to reduce the leakage effect the modification of this estimator

is discussed. In Section 4 real data example is provided. Finally, all proofs are presented

in the supplementary materials.

2 Spectral density estimation for APC time series

Let {Xt, t ∈ Z} be an APC time series. Its mean function µ(t) = E(Xt) and the auto-

covariance function B(t, τ) = cov(Xt, Xt+τ ) (for any fixed τ ∈ Z) can be represented as

Fourier series

µ(t) ∼
∑
ψ∈Ψ

m(ψ) exp(iψt), B(t, τ) ∼
∑
λ∈Λτ

a(λ, τ) exp(iλt), (1)

where the sets Ψ = {ψ ∈ [0, 2π) : m(ψ) 6= 0},Λτ = {λ ∈ [0, 2π) : a(λ, τ) 6= 0} are

countable, and

m(ψ) = lim
n→∞

1

n

n∑
j=1

µ(j) exp(−iψj), a(λ, τ) = lim
n→∞

1

n

n∑
j=1

B(j, τ) exp(−iλj).

Symbol ∼ indicates some association between the Fourier series and the almost periodic

function. The sup-norm used in the definition of an almost periodic function (see Section 1)

results in the uniform convergence of the Fourier series (1) to µ(t) and B(t, τ), respectively.

For more details we refer the reader to Napolitano (2012).
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If the sets of frequencies Ψ and Λ =
⋃
τ∈Z

Λτ are finite, then in the expressions (1) we have

equalities. This condition is always fulfilled for PC time series, with Ψ,Λ ⊂ {2kπ/d, k =

0, 1, . . . , d− 1} (see e.g., Hurd and Miamee (2007)).

Under some regularity conditions (see e.g., Lenart (2011)) the spectral density function

P (·, ·) of an APC time series is defined on the bifrequency square [0, 2π)2 and has the form

P (ν, ω) =
1

2π

∞∑
τ=−∞

a(ν − ω, τ) exp(−iντ), (ν, ω) ∈ [0, 2π)2. (2)

Below we shortly summarize the known results concerning estimation of P (ν, ω).

In the stationary case i.e., when Λ = {0}, the consistent estimator of the spectral density

function is obtained by tapering the covariance estimator or equivalently by smoothing

the periodogram (see e.g., Priestley (1981), Brillinger (2001)). Let us recall that when a

PC process with known period d is considered, then the spectral density function P (ν, ω)

can be nonzero only on the 2d − 1 diagonal lines {(ν, ω) ∈ [0, 2π)2 : ω = ν − 2kπ/d, k =

−d + 1, . . . , d − 1} (see Hurd (1991), Dehay and Hurd (1994)). As a result the consistent

estimator of the spectral density functions can be obtained by smoothing the shifted peri-

odogram along the support lines or equivalently by weighting the estimators of the Fourier

coefficients of the autocovariance function (ch. 10.2 in Hurd and Miamee (2007)). On the

other hand, in Nematollahi and Rao (2005) to construct an estimator of the spectral density

matrix, the relation between the PC time series and the multivariate stationary time series

is used. Nematollahi and Rao proposed to estimate the spectral matrix of the stationary

vector time series and then to use it to construct the estimator of the spectral density ma-

trix of the considered PC time series. Finally, in Lii and Rosenblatt (2006) the estimation

of the frequencies in almost periodic autocovariance structure of a zero mean Gaussian

harmonizable APC time series is considered. In Napolitano (2016) the review of known
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results for the APC processes is provided. Two estimators of the spectral density functions

are discussed: the frequency-smoothed cyclic periodogram and the time-smoothed cyclic

periodogram (see Section 2 in Napolitano (2016)).

Independently on the type of the process (stationary, PC, APC) to construct the afore-

mentioned estimators of the spectral density function, the nullity of the mean function is

assumed. If the considered process is not zero mean, before one estimates the spectral den-

sity, the data should be demeaned. This can be easily achieved when the mean function is

constant or periodic with the known period length. It is also possible when one deals with

an APC time series and the set Ψ is finite and known. Then, having sample (X1, . . . , Xn),

one can apply the estimator of the mean function µ̂n(t) =
∑

ψ∈Ψ m̂n(ψ) exp(iψt), where

m̂n(ψ) = 1
n

∑n
j=1 Xj exp(−iψj) is the estimator of the Fourier coefficient m(ψ), ψ ∈ [0, 2π).

Finally, the estimator of the spectral density P (ν, ω) can be obtained by replacing µ(t) by

its estimate µ̂n(t) (see Lenart (2011, 2016)). According to our knowledge such estimator

was not considered in the literature in APC case when the set Ψ is unknown and needs to

be estimated. It is worth to note that in the general APC case, when µ(t) is an almost

periodic function with the unknown set Ψ, it is very difficult to remove entirely the mean

function from the data. Moreover, even in purely periodic case one may deal with so called

hidden periodicities (Yavorskyj et al. (2012)) and in consequence estimation of the mean

function can be challenging. In Napolitano (2016) (see (2.9)) it was shown that if the

almost periodic mean is not removed from the data, the classical estimates of the spectral

densities for zero mean case contain Dirac impulses, which can be observed as additional

spikes. The shape of the spikes is related to the length of the frequency-smoothing window

if one uses the frequency-smoothing cyclic periodogram method for the estimation. In such

a case the estimator of spectral density function is not consistent. To solve this problem
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in Napolitano and Spooner (2000) a median filtering technique is proposed, but so far the

theoretical properties of this approach were not studied in the literature.

In the next section we introduce a new method for the spectral density function P (ν, ω)

(see (2)) estimation on the bifrequency square (ν, ω) ∈ [0, 2π)2 in a case when the almost

periodic mean function is unknown, i.e., when set Ψ is unknown. Our approach does not

require estimation of the mean function and can be applied directly to the raw data.

3 Main results

In the first part of this section we propose the subsampling covariance matrix estimator for

general weakly dependent time series and show its mean square consistency. In the next

step we use this general result in the construction of the spectral density function estimator

for an APC time series in the case when the set Ψ is unknown.

From now on by Re(z) and Im(z) we denote the real and the imaginary part of a complex

number z. Symbol (·)′ denotes transpose of a vector. By Nr(a,Σ) we denote the r-variate

Gaussian distribution with mean a and covariance matrix Σ. Finally, for any random

variable Z and real number p > 0, ‖Z‖p = (E|Z|p)1/p.

3.1 General subsampling consistency result

The idea of subsampling (see Politis et al. (1999)) is to approximate the sampling distri-

bution of the statistics using subsamples of the data. Let {Xt, t ∈ Z} be a considered

time series and (X1, . . . , Xn) be an observed sample. Moreover, let r be any positive in-

teger. By θ =
(
θ(1), θ(2), . . . , θ(r)

)′ ∈ Rr and θ̂n =
(
θ̂

(1)
n , θ̂

(2)
n , . . . , θ̂

(r)
n

)′
we denote an

unknown parameter and its estimator based on the sample (X1, X2, . . . , Xn). We assume
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that there exists a non-degenerate limiting distribution of τn(θ̂n − θ), where τn is a nor-

malizing sequence. Finally, θ̂n,b,t is a subsampling version of θ̂n based on the subsample

(Xt, . . . , Xt+b−1), where b = b(n)→∞, 1 ≤ t ≤ n− b+ 1 and

Ln,b(A) =
1

n− b+ 1

n−b+1∑
t=1

1
{
τb

(
θ̂n,b,t − θ̂n

)
∈ A

}
(3)

is an r-variate empirical distribution which approximates the distribution of τn

(
θ̂n − θ

)
,

A is any Borel set in Rr and 1{C} is an indicator function of the event C.

The important feature of subsampling (and its recent generalizations) is that it provides

valid quantiles for confidence intervals and hypothesis tests in stationary and nonstation-

ary models under very mild regularity conditions (see e.g., Politis et al. (1999), Dehay

et al. (2014), Dudek and Lenart (2017), Lenart (2011, 2013, 2018), Tewes et al. (2019)).

Moreover, to obtain subsampling consistency one does not need to know the exact form

of the limiting distribution of τn(θ̂n − θ). However, in this paper we are only interested

in subsampling approximation of the elements of the covariance matrix of this limiting

distribution. By Σ = [σij]r×r we denote this limiting covariance matrix.

Recall that for fixed 1 ≤ i, j ≤ r and any sequence b̃ such that b̃ → ∞, b̃/n → 0 the

estimator

σ̂
(i,j)

n,b̃
=

τ 2
b̃

n− b̃+ 1

n−b̃+1∑
t=1

(
θ̂

(i)

n,b̃,t
− θ̂(i)

n,b̃,·

)(
θ̂

(j)

n,b̃,t
− θ̂(j)

n,b̃,·

)
(4)

is a classical subsampling estimator of σij based on block length b̃, where θ̂
(i)

n,b̃,· = 1/(n −

b̃ + 1)
∑n−b̃+1

t=1 θ̂
(i)

n,b̃,t
and θ̂

(i)

n,b̃,t
is a subsampling estimator of θ(i) (see Section 3.8.1 and 4.6

in Politis et al. (1999)). However, in this paper we define some more general subsampling

estimator of σij. For this purpose let us define two sequences of positive integers b1, b2

8



such that b1, b2 → ∞ as n → ∞, b1 ≤ b2 and b2/n → 0 as n → ∞. Next, denote

w = w(b1, b2) = b2 − b1 + 1 and q = q(n, b) = n− b+ 1 for b1 ≤ b ≤ b2. Finally, by

σ̂
(i,j)
n,b1,b2

=
1

w

b2∑
b=b1

τ 2
b

q

q∑
t=1

(
θ̂

(i)
n,b,t − θ̂

(i)
n,b,·

)(
θ̂

(j)
n,b,t − θ̂

(j)
n,b,·

)
, (5)

we define the generalized subsampling estimator of the σij, which is based on block lengths

belonging to the set {b1, b1 + 1, . . . , b2}.

The idea behind the construction of the estimator (5) is as follows. Take any sequence b̃

of integers such that b1 ≤ b̃ ≤ b2. Let t∗ be a random variable with uniform distribution

on the set {1, 2, . . . , n − b̃ + 1}. Note that the elements of the covariance matrix of the

distribution τb̃(θ̂n,b̃,t∗−θ̂n) (in the resampling world) are of the form (4) i.e., cov∗(τb̃(θ̂n,b̃,t∗−

θ̂n)) = Σ̂n,b̃ = [σ̂
(i,j)

n,b̃
]i,j=1,2,...,r. Thus, σ

(i,j)
n,b1,b2

= 1
w

∑b2
b=b1

σ̂
(i,j)
n,b is a mean of the subsampling

estimators (4) based on different block lengths (similar idea of generalized subsampling

procedure can be found in Lenart (2018)).

Finally, let A = [aij]r×r be a known real valued matrix and let

σ =
r∑
i=1

r∑
j=1

aijσij (6)

be a parameter of interests, which is a linear combination of elements of the matrix Σ.

Based on (5) we propose the following subsampling estimator of σ

σ̂n =
r∑
i=1

r∑
j=1

aij

[
1

w

b2∑
b=b1

τ 2
b

q

q∑
t=1

(
θ̂

(i)
n,b,t − θ̂

(i)
n,b,·

)(
θ̂

(j)
n,b,t − θ̂

(j)
n,b,·

)]
. (7)

Below we formulate conditions under which the subsampling estimator σ̂n is mean square

consistent.

Theorem 3.1. Assume that {Xt, t ∈ Z} is an α-mixing time series and
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(i) there exists σ̃ such that for any sequence of integers b̃ = b̃(n) such that 0 < b1 ≤ b̃ ≤

b2 < n, b1, b2 −→ ∞ as n −→ ∞, but b2/n −→ 0 as n −→ ∞ and any sequence of

integers tn such that 1 ≤ tn ≤ n− b̃+ 1 we have that

E

[
r∑
i=1

r∑
j=1

aijτ
2
b̃

(
θ̂

(i)

n,b̃,tn
− E

(
θ̂

(i)

n,b̃,·

))(
θ̂

(j)

n,b̃,tn
− E

(
θ̂

(j)

n,b̃,·

))]
−→ σ̃;

(i’) OR there exists σ̃ such that for any sequence of integers b̃ such that 0 < b1 ≤ b̃ ≤

b2 < n, b1, b2 −→∞ as n −→∞, but b2/n −→ 0 as n −→∞ we have that

1

n− b̃+ 1

n−b̃+1∑
t=1

E

[
r∑
i=1

r∑
j=1

aijτ
2
b̃

(
θ̂

(i)

n,b̃,t
− E

(
θ̂

(i)

n,b̃,·

))(
θ̂

(j)

n,b̃,t
− E

(
θ̂

(j)

n,b̃,·

))]
−→ σ̃;

(ii) there exist ξ > 0 and ∆ > 0 such that

sup
1≤i≤r, b1≤b≤b2, 1≤t≤n−b+1, n∈Z

τb

∥∥∥θ̂(i)
n,b,t − E

(
θ̂

(i)
n,b,·

)∥∥∥
4+2ξ

< ∆ and
∞∑
k=1

α
ξ

2+ξ (k) <∞;

(iii) for any 1 ≤ i ≤ r and any sequence b̃ such that b1 ≤ b̃ ≤ b2 we have convergence∥∥∥∥∥∥ τb̃
n− b̃+ 1

∑
1≤t≤n−b̃+1

(
θ̂

(i)

n,b̃,t
− E

(
θ̂

(i)

n,b̃,·

))∥∥∥∥∥∥
2

−→ 0 as n −→∞.

Then the estimator σ̂n (given by (7)) is mean square consistent i.e.,

σ̂n
L2−→ σ̃ as n −→∞.

3.2 Spectral density estimation for general APC time series

In this section we show how to apply results from the previous section in the problem of

spectral density estimation of an APC time series with an almost periodic mean function,
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under general assumption that the set Ψ is unknown and finite. At first we formulate the

assumptions and introduce some additional notation. Next, we provide an auxiliary central

limit theorem for the Fourier coefficients of the mean function (Section 3.2.1). Finally, we

present the main results concerning consistency of our subsampling estimators (Sections

3.2.2 and 3.2.3).

Let (Xcn , . . . , Xcn+dn−1) be a sample of the size dn from an APC time series {Xt, t ∈ Z}

with the mean function µ(t), where {cn}n∈Z and {dn}n∈Z are arbitrary sequences of positive

integers such that dn → ∞ as n → ∞. Let us recall that when the set Ψ is finite, the

mean function µ(t) can be expressed as follows µ(t) =
∑
ψ∈Ψ

m(ψ) exp(iψt). Moreover, its

estimator based on the sample (Xcn , . . . , Xcn+dn−1) (see also Lenart (2011)) is of the form

µ̂d,c(t) =
∑

ψ∈Ψ m̂d,c(ψ) exp(iψt), where

m̂d,c(ψ) =
1

dn

cn+dn−1∑
j=cn

Xj exp(−iψj). (8)

In the sequel we assume the following conditions

A1 {Xt, t ∈ Z} is an APC time series such that the sets Ψ and Λ are finite;

A2 {Xt, t ∈ Z} is α-mixing (for definition see e.g., Doukhan (1994));

A3 the complex measure r0, where a(0, τ) =
2π∫
0

eiξτr0(dξ) is absolutely continuous with

respect to the Lebesgue measure.

Under the condition A1 the considered APC time series is of the form Xt = µ(t) + Yt,

where Yt is a zero mean harmonizable sequence (in the sense of Loève (1963); see Definition

5.4 in Hurd and Miamee (2007)). Harmonizability of Yt can be obtained using the same

arguments as presented in Hurd and Miamee (2007) for PC sequences (see also Gladyshev
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(1961)). The condition A3 ensures that for any λ ∈ Λ there exists the spectral density

function gλ(ν), ν ∈ [0, 2π). The set of spectral densities can be simply extended to the

bifrequency square [0, 2π)2 (see (2)) taking P (ν, ω) = gλ(ν) for |ν−ω| = λ, (ν, ω) ∈ [0, 2π)2

and P (ν, ω) = 0 otherwise (see Hurd (1991), Dehay and Hurd (1994), Hurd and Miamee

(2007), Napolitano (2012), Lenart (2016)). Finally, the existence of complex measure r0

follows from Lemma 7.3 in Lenart (2016).

3.2.1 Central limit theorem for the Fourier coefficients

Take ν, ω ∈ [0, 2π). Below we state the asymptotic distribution of

m̂d,c (ν, ω) = (Re(m̂d,c(ν)), Im(m̂d,c(ν)), Re(m̂d,c(ω)), Im(m̂d,c(ω)))′ , (9)

i.e., the estimator of the parameter

m (ν, ω) = (Re(m(ν)), Im(m(ν)), Re(m(ω)), Im(m(ω)))′ . (10)

However, our main goal is to provide the exact form of the asymptotic covariance matrix.

It turns out that its elements are linear combinations of the spectral density function. In

a consecutive subsection we use this feature to construct the estimator of P (ν, ω).

Theorem 3.2. Assume that conditions A1 − A3 hold and that supt ‖Xt‖2+δ < ∞ and∑∞
k=0 α

δ
2+δ (k) <∞, for some δ > 0. Then

√
dn (m̂d,c (ν, ω)−m (ν, ω))

d−→ N4(0,Γ(ν, ω)),

where Γ(ν, ω) = [γij(ν, ω)]4×4 is of the form

π


g0(ν) + PR(ν,−ν) PI(ν,−ν) PR(ν, ω) + PR(ν,−ω) −PI(ν, ω) + PI(ν,−ω)

PI(ν,−ν) g0(ν)− PR(ν,−ν) −PI(ω, ν) + PI(ω,−ν) PR(ν, ω)− PR(ν,−ω)

PR(ν, ω) + PR(ν,−ω) −PI(ω, ν) + PI(ω,−ν) g0(ω) + PR(ω,−ω) PI(ω,−ω)

−PI(ν, ω) + PI(ν,−ω) PR(ν, ω)− PR(ν,−ω) PI(ω,−ω) g0(ω)− PR(ω,−ω)


and PR(·, ·) = Re[P (·, ·)], PI(·, ·) = Im[P (·, ·)].
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Note that the elements of the matrix Γ(ν, ω) are functions of P (·, ·) i.e., they are func-

tions of the extension of the spectral density matrix function to the bifrequency square

[0, 2π)2. Moreover, taking linear combinations of elements of Γ(ν, ω), one can get P (ν, ω).

In particular, we have that

γ13(ν, ω) + γ24(ν, ω) = 2πPR(ν, ω), γ23(ν, ω)− γ14(ν, ω) = 2πPI(ν, ω), (11)

because PI(ω, ν) = −PI(ν, ω) and PI(ω,−ν) = PI(ν,−ω).

Our idea to obtain an estimate of P (ν, ω) is to apply the subsampling method in order to

approximate the covariance matrix of the distribution N4(0,Γ(ν, ω)). Then, having esti-

mates of elements of the matrix Γ(ν, ω) and using the formulas (11), we can easily get the

estimate of P (ν, ω). In this way, in our approach we do not need to know the form of the

set Ψ i.e., we do not need to know the Fourier frequencies of the mean function.

It is worth to indicate that in the literature dedicated to PC and APC processes, asymp-

totic normality results corresponding to Theorem 3.2, are treated as the preliminary step

for construction of confidence intervals for parameters of interest. Since the asymptotic

covariance matrix usually is of complicated form and depends on unknown parameters, in

practice it is very difficult to estimate. Thus, in such situations to approximate quantiles

of the asymptotic distribution, resampling methods are often applied (see e.g., Dudek et al.

(2014); Lenart (2016); Dudek (2018) and references therein). Although, in our problem

we need to estimate the asymptotic covariance matrix Γ(ν, ω) and not m(·, ·), we also use

a resampling method. More precisely, we adopt the idea of the subsampling estimator of

the limiting variance examined in the stationary case in Carlstein (1986) and generalized

to the nonstationary cases in Fukuchi (1999) and Politis et al. (1999). It is necessary

to indicate that the consistency of subsampling is not a sufficient condition to show that

the subsampling estimator of the limiting variance (or covariance matrix) converges to the
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asymptotic variance (or the covariance matrix) and hence the mentioned consistency results

are not sufficient for our purpose. Thus, in the next subsection we introduce the consistent

subsampling estimators of the linear combinations of the elements of the matrix Γ(ν, ω)

(see Theorem 3.2). To show their consistency we adopt ideas presented in Fukuchi (1999),

Carlstein (1986) and Politis et al. (1999).

3.2.2 Subsampling consistency results

Let (ν, ω) ∈ [0, 2π)2, r = 4 and (X1, . . . , Xn) be an observed sample. Following the notation

introduced in Section 3.1 we set θ = θ (ν, ω) = m (ν, ω) , θ̂n = θ̂n (ν, ω) = m̂n,1 (ν, ω) and

θ̂n,b,t = θ̂n,b,t (ν, ω) = m̂b,t (ν, ω) . In such a case the estimator (7) is of the form

σ̂n(ν, ω)=
4∑

i,j=1

aij

[
1

w

b2∑
b=b1

τ 2
b

q

q∑
t=1

(
θ̂

(i)
n,b,t(ν, ω)− θ̂(i)

n,b,·(ν, ω)
)(

θ̂
(j)
n,b,t(ν, ω)− θ̂(j)

n,b,·(ν, ω)
)]
. (12)

Theorem below states the mean square consistency of σ̂n(ν, ω).

Theorem 3.3. Assume that the conditions of Theorem 3.2 hold. Additionally, assume

that there exists ξ > 0 such that supt ‖Xt‖4+3ξ < ∞ and
∑∞

k=1(k + 1)c−2α
ξ
c+ξ (k) < ∞,

where c is the smallest even integer such that c ≥ 4 + 2ξ. Then the conclusion of Theorem

3.1 holds for any real valued matrix A = [aij]i,j=1...,4 and σ̃ = σ(ν, ω) given by (6) with

σij(ν, ω) = γij(ν, ω), i.e.,

σ̂n(ν, ω)
L2−→ σ(ν, ω) =

4∑
i=1

4∑
j=1

aijγij(ν, ω).

Setting a13 = 1, a24 = 1 and aij = 0 otherwise, we get the estimate of 2πPR(ν, ω), while

for a14 = −1, a23 = 1 and aij = 0 otherwise the estimate of 2πPI(ν, ω) (see 11). Example

below illustrates performance of our estimator σ̂n(ν, ω) and at the same time problem of

leakage, which inspired us to propose in the next subsection a modification of σ̂n(ν, ω).
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Example 3.1. We consider a PC series Xt = 5 sin (2πt/30) + 2 (sin (2πt/12) + 21/20) εt,

where εt is a normalized Gaussian white noise. Thus, Xt is composition of the PC white

noise 2
(
sin
(

2πt
12

)
+ 21

20

)
εt and the periodic deterministic component 5 sin (2πt/30)), with

Λ ⊂ {λk = 2kπ/12 : k = 0, . . . , 11}. It is easy to show that the spectral densities (denoted

here by gk(·)) are constant on the interval [0, 2π) and g0 = 6.41, g1 = g11 = −4.2i, g2 =

g10 = −1, g3 = · · · = g9 = 0 (see p. 170 in Hurd and Miamee (2007)). To construct

our estimator of spectral density function we generated two samples of sizes n = 1000

and n = 10000, respectively. We considered the subsample length b1 = b2 = b, with

b ∈ {b
√
nc, b2

√
nc, b3

√
nc}. The simulation results are presented in Figures 1-2. Since

the main conclusions do not depend of the chosen values of parameters, we decided to

restrict the number of figures only to those that are necessary to illustrate performance of

our estimator.

In Figure 1 one may observe the estimated rescaled spectral density 2πg0 for different values

of b. Let us recall that the main advantage of our approach is the ability to estimate the

spectral densities without need of removing the mean function from the data. In this example

the mean function is periodic and its true significant frequency ψ0 is equal to 2π/30. First of

all, one may notice that independently of the subsample length b our estimator provides an

accurate estimate of the rescaled spectral density value at ψ0. However, in the neighborhood

of ψ0 there are always two side-lobes representing the spectral leakage in the frequency

domain. The size of lobes depends on the value of b i.e., on the subsample length. In Figure

2 we present the estimate of the spectral density functions on the bifrequency square. One

may note that the real part of the estimate is concentrated on the main diagonal, while the

imaginary part on two lines that are parallel to diagonal. Moreover, for the real and the

imaginary parts, we observe leakage effect around vertical lines ν = ψ0, ν = 2π − ψ0 and
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horizontal lines ω = ψ0, ω = 2π − ψ0.
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Figure 1: Estimated spectral density 2πg0 on interval [0, π). Sample size n = 1000. From left results for

subsample length b equal to b
√
nc, b2

√
nc, b3

√
nc, respectively.

Figure 2: Estimates of 2πRe(P (ν, ω)) (left-hand side) and 2πIm(P (ν, ω)) (right-hand side) for (ν, ω) ∈

[0, 2π)2 together with their projections on the xy-plane. Sample size n = 1000, b = b3
√
nc.

As we mentioned above the observed leakage is a consequence of applying the rectangular

window of the length b to the data. In the result we do not calculate just the Discrete Fourier

Transform (DFT) of Xt but of the product of our signal Xt and the rectangular window

function. The Fourier transform of the product is equal to the convolution of the Fourier

transforms. Moreover, the Fourier transform of the rectangular window function is a sinc

function. Finally, the convolution of the DFT of the signal with a sinc produces the observed

side-lobes.

The leakage phenomenon is a typical problem in signal processing. Taking sample of the
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finite size for Fourier transform is equivalent to application of a rectangular window on a

data stream. In the literature one may find many methods designed to reduce the leakage

effect. The most popular are based on non-rectangular windows. However, reducing the

spectral leakage results in decreasing the spectral resolution. More details on that topic can

be found for instance in the book Proakis and Manolakis (2009).

Example 3.2. This example shows some advantages of our estimator over the classical

estimators of the spectral density function. In contrary to Example 3.1 we considered time

series with nonconstant spectral density functions. These are two AR(2) signals of the

following form:

M1 Xt = 0.85Xt−1 − 0.7Xt−2 + εt,

M2 Xt − µ(t) = 0.85(Xt−1 − µ(t− 1))− 0.7(Xt−2 − µ(t− 2)) + εt,

where εt is normalized Gaussian white noise and µ(t) = 1.6 sin(πt/3). Model M1 is the

example of an AR(2) type stationary time series. Model M2 is having periodic mean func-

tion. Both models have the same spectral density function which concentrates the spectral

mass around frequency π/3. We chose those two simple series to illustrate problems of

classical estimator of spectral density function when the mean function is nonzero and to

show that our method provides comparable results to the classical approach in the standard

stationary series.

We estimated the spectral density function using our estimator σ̂n(ν, ω) (see Section 3.2.2)

and the classical estimator based on smoothing the covariance function using the Bartlett

window. We considered two sample sizes n = 500 and n = 1000 and block lengths

b1 = b5 3
√
nc, b2 = b3

√
nc. The length of smoothing window c was set c = b(b1 + b2)/2c.

Since the conclusions do not depend of the sample size we decided to present results only
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for n = 1000 (see Figure 3). In panels on the left hand-side one may observe the generated

realizations for models M1 and M2. Panels on the right-hand side contain the theoret-

ical spectral density function (dashed line) together with its estimates obtained using our

non-modified subsampling estimator (solid line) and the classical estimator with Bartlett

window of length c (shadowed area).
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Figure 3: From top results for models M1-M2, respectively. Left panels: generated realizations; right

panels: classical spectral density estimates obtained using Bartlett window of length c (shadowed area),

subsampling estimates (solid line), theoretical spectral density functions (dashed line).

In the case of M1 the mean function is equal to zero and hence assumption of the

classical approach is fulfilled. As a result performances of the classical estimator and the

subsampling estimator are comparable and obtained estimates are close to the true values.

Model M2 is having periodic mean function with the true significant frequency equal to π/3.

Note that the subsampling estimator provides estimate close to the true value of the spectral

density function at the frequency π/3. At the same time the classical estimator fails at this

frequency. Moreover, for M2 we observe the spectral leakage around π/3.

Examples above show that our estimator performs correctly and sometimes outperforms
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the classical one. In contrary to the classical approach we do not need to remove the mean

function from the data to be able to estimate the spectral density functions. That is very

important in the real data applications since the period length of the mean function may

not be known prior to the performed analysis on the data or the mean function may be

almost periodic. In such cases removing the first-order component from the data may be

very challenging.

It should be emphasized that the leakage phenomenon that we observed appears naturally

when DFT is applied to the data. We are aware that there exist variety of approaches

trying to deal with the leakage problem. The aim of this paper is not to provide the new

solution for the leakage problem, however in the next section we propose the modified

subsampling estimator that allows for significant reduction of the leakage effect.

3.2.3 Modified subsampling estimator

Below we introduce the modified subsampling estimator that significantly reduces the leak-

age problem. Instead of using σ̂n(ν, ω) we apply σ̂n(ν+vn, ω+vn), where vn is a deterministic

sequence of real numbers such that vn → 0 as n→∞. In other words, we consider the small

neighborhood of (ν, ω). At first we show mean square convergence of σ̂n(ν + vn, ω + vn) to

σ̂n(ν, ω). In the second step to reduce leakage effect we use a finite number of estimators

σ̂n(ν+vn, ω+vn) (with different sequences vn) to define the new estimator as their median.

Theorem 3.4. Assume that the conditions of Theorem 3.3 hold. Additionally, assume that

vn = Db−ρ1 , where ρ < 1/4 and D ∈ R. Then, as n −→∞ we have

a) σ̂n(ν + vn, ω + vn)
L2−→ σ(ν, ω) = 2πPR(ν, ω) for A = [aij]4×4 with a13 = 1, a24 = 1

and aij = 0 otherwise;
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b) σ̂n(ν + vn, ω + vn)
L2−→ σ(ν, ω) = 2πPI(ν, ω) for A = [aij]4×4 with a14 = −1, a23 = 1

and aij = 0 otherwise.

Let k > 0 be a fixed odd integer and ν, ω ∈ [0, 2π) be fixed frequencies. Moreover, let

sequences vn,1, . . . , vn,k be of the form vn,i = Dib
−ρi
1 , where 0 < ρi < 1/4 and Di ∈ R, for

i = 1, 2, . . . , k. To reduce the leakage effect we will use the following estimator

σ̂medn (ν, ω) = med {σ̂n(ν + vn,1, ω + vn,1), . . . , σ̂n(ν + vn,k, ω + vn,k)} , (13)

where the symbol ’med’ denotes the median. Below we state consistency of σ̂medn (ν, ω) and

we discuss the possible choice of the sequences vn,i, i = 1, 2, . . . , k.

Theorem 3.5. Under assumptions of Theorem 3.4 the conclusions of Theorem 3.4 hold

for σ̂medn (ν, ω) with any vn,i = Dib
−ρi
1 , where 0 < ρi < 1/4 and Di ∈ R, i = 1, 2, . . . , k.

Remark 3.1. Let vn = Db−ρ1 , where 0 < ρ < 1/4 and D ∈ R and take any k̃ ∈ N. Then

each sequence of the form vn,i = (i− k̃− 1)vn/k̃, where i = 1, . . . , 2k̃+1 can be equivalently

expressed as vn,i = Dib
−ρ
1 with Di = D(i− k̃−1)/k̃, i = 1, 2, . . . , 2k̃+ 1 and hence Theorem

3.5 holds for the estimator

σ̂med
n,k̃

(ν, ω)=med
{
σ̂n(ν + (i− k̃ − 1)vn/k̃, ω + (i− k̃ − 1)vn/k̃) : i = 1, . . . , 2k̃+1

}
.

Example 3.3. (continuation of Example 3.1) We calculated the value of the estimator

σ̂medn using the same model and the same values of the parameters as were set in Section

3.2.2. To get σ̂medn we took sequences vn,1 = b−0.19, vn,i = b−0.19+0.01(i−1), i = 2, . . . , 6 and

vn,i = −vn,i−5, i = 7, . . . , 11. Results are presented in Figures 4-5. As before the obtained

conclusions are independent of the values of the parameters and hence we do not provide

all figures.

In Figure 4 one may observe the estimated rescaled spectral density 2πg0 for different values
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of b. Definitely, using the estimator σ̂medn allowed for significant reduction of the leakage

effect. The side-lobes are no longer present around λ0 = 2π/30. The same conclusion can

be drawn looking on the estimates on the bifrequency square (see Figure 5).
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Figure 4: Estimated spectral density 2πg0 on interval [0, 2π). Sample size n = 1000. From left results

for subsample length b equal to b
√
nc, b2

√
nc, b3

√
nc, respectively.

Figure 5: Estimates of 2πRe(P (ν, ω)) (left-hand side) and 2πIm(P (ν, ω)) (right-hand side) for (ν, ω) ∈

[0, 2π)2 together with their projections on the xy-plane. Sample size n = 1000, b = b3
√
nc.

4 Real data applications

In this section we present two motivating examples. We focus on economic datasets, how-

ever we would like to indicate that our methodology can be applied to any data containing
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periodic or almost periodic structure. Thus, it can be also particularly useful for instance

in telecommunication, mechanics, vibroacoustics, climatology and many others.

Below we show two very different applications of our results. At first, we consider an im-

portant problem of distinction between types of cyclical fluctuations, i.e., we discuss the

type of cyclical fluctuations (deterministic or stochastic). For that purpose we consider

data characterized by different types of cyclical fluctuations, i.e., business fluctuations and

fluctuations related to trading-day effect. In the second part we show how to detect the

second-order periodic structure in the considered data without need of estimation the al-

most periodic mean function.

4.1 Cyclicality of industrial production

In this subsection we consider the growth cycle for monthly industrial production (per-

centage change compared to same period in previous year) for three very well developed

European economies: Germany, France and Italy. We use unadjusted data (i.e. neither

seasonally adjusted nor calendar adjusted data) available on Eurostat webpage. The an-

alyzed sequences cover period of 18 years in the case of France and Italy (January 1991

- December 2018, number of observations n = 336) and 17 years in the case of Germany

(January 1992 - December 2018, n = 324). For Germany the year 1991 is not available on

Eurostat.

Usually growth cycles for industrial production are considered to be covariance stationary

and hence we assume that the spectral density is 0 beyond the main diagonal line on the

bifrequency square, i.e., Λ = {0}. Moreover, we assume that their mean functions are al-

most periodic and the corresponding sets Ψ are unknown. Our main aim in this subsection

is to recognize which of the observed cyclical fluctuations can be classified as deterministic
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i.e., related to some frequency in the set Ψ and which can be classified rather as stochastic.

Let us recall that the set Ψ contains all frequencies for which the corresponding Fourier

coefficients of the mean function are nonzero. In the considered real data example these

frequencies can be related to well known business cycle or so called calendar effects, which

are caused by time-varying numbers of working days in consecutive months. Note that

the typical (examined in the literature) business fluctuations are having length from 1.5

to 12 years and are related (in the case of monthly data) to frequencies from interval

[ 2π
12×12

, 2π
1.5×12

] ≈ [0.044, 0.349]. On the other hand, the calendar effects are related to

trading-day frequencies. The first ten predominant theoretical trading-day frequencies are

2.18733, 2.71093, 2.52506, 1.66374, 1.47786, 3.04865, 2.31823, 1.90852, 1.38492, 2.18603 (see Ta-

ble 11.3 in Ladiray (2012)). Note that the tenth predominant frequency is almost the same

as the first one and hence they are indistinguishable. Therefore in our analysis we consider

only the first nine frequencies.

In Figure 6 the periodogram for each of considered sequences is presented. In all cases on

the upper part of the frame the first nine theoretical trading-day frequencies are marked.

Independently of the chosen country one may observe periodogram peaks at some of those

theoretical trading-day frequencies and some peaks in the interval [0.044, 0.349], which con-

tains frequencies related to the business fluctuations. To investigate which of those peaks

may correspond to frequencies in the set Ψ or equivalently which fluctuations we recognize

as deterministic, in Figure 6 we present spectral density estimates obtained using our sub-

sampling estimator (12) and the classical spectral density estimator with Bartlett window.

The subsampling estimate is less smooth than the classical one. Moreover, it has local

minima with recognizable leakage effect in their neighbourhood at the trading-day frequen-

cies for which we observed before the periodogram peaks. This suggests that fluctuations
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related to those frequencies can be considered as deterministic. Moreover, as we discussed

in Section 3, the classical estimator fails in that case, i.e., it provides incorrect estimates at

deterministic frequencies (see Figure 6). Note also that in the interval [0.044, 0.349] (cor-

responding to business fluctuations) we do not observe leakage effect. For each considered

country both estimates of the spectral density function (classical and subsampling one)

have similar shapes in that frequency interval, which suggests that the business fluctua-

tions should be rather considered as stochastic. This fact confirms the classical paradigm

that time-varying amplitude and phase of business cycle fluctuations cannot be described

just by an almost periodic mean function and that their presence is reflected in the higher

order moments.
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Figure 6: Left-hand side: periodograms. Right-hand side: subsampling estimator of spectral density (12)

with b1 = b5 3
√
nc and b2 = b3

√
nc(solid line) together with classical estimator with Bartlett window and

c = b(b1 + b2)/2c (shadowed area).

4.2 Seasonal volatility of electricity spot prices

Energy market data are recognized to have periodic first and second moments (Broszkiewicz-

Suwaj et al. (2004), Dudek et al. (2015)). However, so far detection of periodicity in the
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second moments was possible only when the mean function was removed from the data.

In this subsection we study a typical energy market dataset. These are hourly observa-

tions from electricity spot prices in EUR/MWh of energy for Lithuania traded on the Nord

Pool Spot exchange from 2013 to 2018 (52 584 observations). Considered data are having

two types of periodicity in the mean function: daily and weakly (see e.g., Weron (2006),

Nowotarski and Weron (2015)). Thus, for the mean function it is natural to set the period

length 24×7 = 168 (hours). In consequence to estimate the periodic mean function we need

to deal with 168 unknown parameters (Fourier coefficients). However, for our subsampling

approach demeaning data is no longer necessary. We apply it to show that we are able to

detect periodicity of the autocovariance function (with period length equal to 24 hours).

0 π/6 π/3 π/2 2π/3 5π/6 π

Lithuania

Figure 7: Left-hand side: periodogram for electricity spot prices. Right-hand side: subsampling estimator

of spectral density in the log scale with b1 = b2 = b20 3
√
nc.

In Figure 7 we present the periodogram and the subsampling spectral density estimator

(12) with b1 = b2 = b20 3
√
nc. To improve the clarity in the latter case we decided to use

the log scale. However, due to the large number of peaks (on the bifrequency square) it is

still difficult to decide where the spectral density is nonzero. Thus, we use the smoothed
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estimator i.e., our modified subsampling estimator σ̂med
n,k̃

(see Remark 3.1 in Section 3.2.3).

We consider two cases (see Figure 8) by setting vn = 0.4/ 15
√
n, k̃ = 30 and vn = 0.3/ 15

√
n,

k̃ = 20. One may notice that independently of the chosen value of parameters, the spectral

density is nonzero on lines that are parallel to the main diagonal. Moreover, the distance

between those lines allows us to state that the autocovariance function is periodic with

period length equal to 24 hours.
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Figure 8: Modified subsampling estimators defined in Remark 3.1 with k̃ = 30, vn = 0.4/ 15
√
n (left-hand

side) and with k̃ = 20, vn = 0.3/ 15
√
n (right-hand side) and their projections on the xy-plane.

5 Conclusions

In this paper we proposed a new nonparametric approach for spectral density estimation,

which does not require demeaning of the data and is based on the subsampling method.

Our estimator was constructed for almost periodically correlated sequences, which are an

important subclass of nonstationary time series. Additionally, we introduced the modified

estimator, which allows to reduce the leakage effect. We showed the ability of our approach

to analyze the cyclical fluctuations and to determine the period length on the examples of

typical economic datasets. Our method may be used to construct testing tools to recognize
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the type of cyclical fluctuations i.e., to decide if they are described by the periodic mean

function or by the the higher-order moments.

Presented results are providing new open problems concerning subsampling estimation

for the higher-order moments. Since the classical approach for the higher-order spectral

estimation also requires removing the mean function from the data, we believe that ideas

presented in this paper can be adapted in higher-order spectral estimation problem under

nonzero mean assumption. This and other related issues are the subject of the current

research of the authors.

SUPPLEMENTARY MATERIAL

Companion Document: contains all proofs of the paper. (pdf file)
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