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1 Proofs

At first we introduce a few auxiliary lemmas.

Lemma 1.1. Assume that A1-A3 holds. Then for any A € [0,27), any sequences of

integers {c,}, {d,}, where d,, > 0 we have

1 cntdnp—1
E (d— Z Xte_i’\t) =m(\) + R, /d,,

t=cn

where |R,| < C and C is a constant dependent on ¥, X\ and m(-).

Proof of the Lemma 1.1. For ¥ = () the proof is obvious with C' = 0. Assume that
U £ () and note that

1 cntdn—1 ‘ 1 cn+dn—1 ' ' 1 Cntdn—l ‘
E (d— Z Xte_l)\t> - d_ Z Z m(l/})embte—z)\t - Z m<w)d_ < Z ezth_ZAt>

t=cn t=cn Yev PYewr t=cn
1 cn+dn—1
=m(\) + . Z m(v) ( Z ewte_i’\t>
PeW\{A\} t=cn
=m(\) + R,/d,,
where ( ) ( )( )
ez)\ (61' cn(p—A) ei =) (cn+dn )
o = Z m() oih _ ot
PEP\{A}
and

2lm(v)|
B <C= > S
peinpy €7 €

0

Lemma 1.2. Assume that A1-A3 holds. Take \ € [0,27) and any sequences of integers

{cn}, dy = [C1n"] and N, = Cy/nP, where kK > 0, p > 0 and Cy,Cy are nonzero constants.
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Then, for n sufficiently large for |\,| < C3 = min{|\ — | : ¢ € U\ {A\}} if ¥ # O and for
any n if ¥ =0, we have that
en+dn—1
( Z X 671 (AAn) ) _ Wnnfli+2p’
t=cn

where |W,,| < C and C is a constant dependent on W, \, Cy,Cy, k, p and m(-).

Proof of the Lemma 1.2. Note that For ¥ = () the proof is obvious with C' = 0. As-
sume that ¥ # () and note that

entdn—1 cnt+dn—1
( Z Xe—z(/\-i-/\n ) _ Z Zm upt I(A+An)t

t=cn t=cn ’lpellf
en+dn—1
_Z ( Z eiwtei()\+/\n)t>
PYeW t=cn
1 cn+dp—1 1 cn+dn—1
_ - —iAnt | T it —i(A+An)t
ST SRS ML (D SRR
t=cn PeW\{\} t=cn,
1 eirn (e—icnkn_e—ikn(cn—&-dn)) 1 entdn—1 '
_ - el wpt  —i(A+An)t
_m()\)dn eidn — 1 +dn Z m(y) Z ¢
~ ~ - PeW\{A} t=cy,
Qn ~ —~ _
Ry

— 1 _ m()\>Qn Rn —H+2p
=)@+ o = (T + g )

W,
Note that for sufficiently large n such that |A\,| < C5 = min{|A — 9| : ¥ € ¥\ {A\}}, R,

can be bounded from above as follows

i0A) (gien(@=(NEAn)) il OkAn) enchn) 2im(¢)|
e e e m
|Rn| S Z m(ﬁ)) ei(/\+/\n) _ eiw S Z ’ei(x\+/\n) — e“wb‘ '
peW\{A} peW\{A}
Moreover
0l € || = s < G
A, (14 e | da(1— cosAy) 7
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where Cy = Cy(p, K, C1, Cy) is some positive constant. Its existence is a consequence of the

= 2. This fact ends the proof. O]

) . A2
following convergence lim T—oosOn)

n—oo

The following lemma is a generalization of Lemma A.5 from Lenart (2011).

Lemma 1.3. Assume that the conditions A1-A3 hold and that there exists a positive

constant C' such that for any A € R we have

e}

> Irllah 7| < C. (1)

Then for any pair of frequencies (v,w) € [0,2m)%, for any real valued sequence {v,}nen

convergent to zero and for any sequence of integers {c,} and any sequence of positive

integers {d,} tending to infinity with n — oo we have

lim E(Bye(v 4 vn,w + v,) — P(r,w)) =0,

n—oo

where for any (z,y) € R?

centdn—1cn+dn—1

Pyo(z,y) Z o o(x $)(X; — p(t))e e,

S=cn, t=cn

Proof of the Lemma 1.3. The proof is similar to the proof of Lemma A.5 from Lenart
(2011). Therefore we show only main steps. Take any (v,w) € [0,27)2. Note that

cnt+dn—1cp+dp—1

2 d Z Z cov XSaXt _Z(V w)t —i(v+uvn)(s— t)
T

s=cnp, t=cn

E(Pdc(y + Upyw + Uy))



Setting j =t and 7 = s — t we get

cntdn—1cntdn—1—j

. —i(v—w)j ,—i(v+uvp)T
E(Pyo(v + vy, w +vy)) 27rd Z Z B(j,7)e e

j Cn Tan

cn+dn—1cn+dn—1—j

Z Z Z )\ 7_ i(A—(v—w) efi(u+vn)7'

Jj=cn T=cn—J AEA;
cn+dn—1cntdpn—1—j

Z Z a(v — w, )e Wt

an Tan

cn+dn—1cn+dn—1—j

27Td Z Z Z a(\, 7)efO(=e)igmilvton)T

Jj=cn T=cn—J AEA, \{I/ w}

1 ,

Ir|<dn "

cn+dn—1cn+dn—1—j

27rd Z Z Z a(, T)ei(k—(v—w))je—i(uﬂn)f

Jj=cn T=cn—J AeA\{v—w}

—T

=5 a(v —w,T)e

1 —i(v+op)T —ivT 1 |T| —i(v+uvn)T
—i-% Z a(v—w,7)(e ton)r _ ¢ )—% Z Ea(u—wﬁ)e (vton)

|T|<dn |T|<dn
cntdn—1cn+dn—1—j

27Td Z Z Z ()\ 7') iA=(r=w))j 71(1/“1”011)’7'

j=cn T=cn—j AeA\{v—w}
We denote the summands on the right-hand side by €, €2,, €3, and €4,, respectively.
Note that €;,, - P(v,w) as n — oo. Thus, it is sufficient to show that terms e, €3, and

€s,, tend to 0 as n — oo.

Using inequality |e™ — e™| < |z — y| (which holds for any z,y € R) and (1) we get

1 ‘ . 1
- . —i(v+op)T _ —ivT o .
2] < 5 ) a(v —w,7)|e e T < o > Joall7lla(v = w,7)| — 0,

|T|<dn |T|<dn



as n — 0o. Moreover,

1 7|

€3nl < — —la(v —w,7)| — 0 asn — oo.

ol € 5 D ol — 7))
|7|<dn

After changing the order of summation in term ey, calculating the sum over j and using

the equality 1/|1 — €| = |cosec(z/2)| we get that

1 0 cnt+dn—1  dn—1cp+dn—1—7
‘64,n| = ord ( Z Z + Z Z > Z a()\7T)ei()\*(V*w))jefi(ern)T

T=—dn+1 j=cn—T T=1 Jj=cn AeAN\{v—w}

dn—1
1

ord, Z Z la(\, T)cosec((A — (v —w))/2)]

T=—dn+1 AeA\{v—w}

3

IN

dn—1

§21 Y leosee((A—(w=w)/2)l Y la(A7)l.

md,, B
AeA\{v—w} a1

By the assumption that the set A is finite and by (1) we have that e;, — 0 as n — oo,

which ends the proof. O

The following lemma is a generalization of Theorem 1(a) from Fukuchi (1999).

Lemma 1.4. Let (X, Xo,...,X,) be sample from an a-mizing time series {X;,t € Z}
and let f, : R" — R be a measurable function. Take two sequences of integers by = by(n),
by = ba(n) — 00 as n —» oo such that by/n — 0 as n —> oo, by < by. Define the
subsampling estimator

fn,bl,bg =w Z 3 Z Jots (2)

b1<b<by * 1<t<q

based on whole sample (X1, Xo, ..., Xy), where frp = fuo(Xe, ..., Xevp—1) is based on sub-
sample (Xy, ..., Xiso-1), b1 = bi(n), by = ba(n), w = w(by,by) = 1/(bs — by + 1), ¢ =
q(n,b) =n—>b+1, by <b<by. Assume that
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(1) E(fapip,) — T as n — oo, where Y is some constant;

(i) there exist constants € >0 and A > 0 such that

~ e
sup [ foilloye <A and Za2+é(k;) < o0;

b1 <b<bs, 1<t<q,n€Z pa

Then

_ L2
Jnpipy — T.

Proof of Lemma 1.4. By (i) it is sufficient to show that var(f,,4,) — 0. We have

var(fupp) =w® Y Y nb’ > > cov(fors fow)

b1 <b<by by <b/<b2 1<t<q n,b) 1<t/ <q(n,b’)
2
<w E E a(n, b’ E E lcov(fo.e, forwr)|
b1 <b<bs by <b’<b2 1<t<q n,b) 1<t/ <q(n,b’)

<w’ Y ) n,b’) > leov(foss fou)l (3)

by <b<bo bi<b<by 1 [t—t/|<ba

) 1
+w Z Z Z W Z lcov(fot, fore)l

b1 <b<bz b1 <b'<by s=ba+1 [t—t'|=s

:Al +A2

Note that for any b and ' (by < b,b' < by ) we get that

Bt =t <by: 1<t <q(nb) A1 <t <q(nb)} <2(n—by+1)by,

Hit—t=5s:1<t<qn,b)A1<t <qnb)} <2[(n—>b;+1)—s],

for s = by + 1,by +2,...,n — by + 1. Hence, by inequality |cov(fy, firy)| < 8A? uniformly



at b,t,b0',t' (which follows from Theorem 3 from Doukhan (1994)) (pp. 9) we have

A < Wt ) Z nb/) 2(n — by 4 1)b8A2

b1 <b<bz b1 <b'<b2

(b2 — by +1)?
(n — by +1)2(by — by +1)2
(n — by + 1)b8A2

= kg O

SA?

S (n—b1 + 1)b2

and hence A; — 0 as n — oo. Using now Theorem 3 from Doukhan (1994) (pp. 9) for A,

we have
n—b1+1
2
A < W Z Z nb (n, ) Z Z8Aa2+£ (It =] = bs)
by <b<b by <b/<bs s=bo+1 |t—t/|=s
n—bi1+1 ~ ‘
< w? Z Z T Z 2[(n — by + 1) — s|8A%a2+E (s — by)
b1 <b<by by <b/<b2 n ) s=ba+1
n—by1+1—bo R ‘
= w > > ; > 2(n—by+ 1) = (h+ by)|8A%a 2+ (h)
b <b<bs bi<b/<by 1 q(n, ) h=1
n—bi1+1—by X _
8A2(b2 — b1 + 1)2 _&
< 2ln—b1+1)—(h+b 2+ (h
— ; [(n 1+ ) ( + 2)](n_b2+1)2<b2_b1+1)2a ( )
N
< 0(1/n) ) a*E(h)
h=1
and hence Ay — 0 as n — o0o. This completes the proof of this lemma. n

Proof of Theorem 3.1. We prove Theorem 3.1 using the same arguments as Carlstein
(1986). In the first step we use the well known property: cov(X,Y) = cov(X —z,Y —y) =
E(X —2)(Y —y) — E(X —2)E(Y — y) which is true for any second order random variables



X,Y and any x,y € R. Hence,

On = Z Z @i j Z E—;’u;)) Z <§7(1i,)b,t - ‘/9\7(:,)1),.> (@Z?y,t - %{Z,)

i=1 j=1 b1<b<b2 4

r r [ 2 . . . .
Y| Y S (- sd) (mw@zz,))]
ot

i=1 j=1 b1<b<b2 4

- Z Z Qj 4 Z q(:l;?z;])g Z (é\fj,)lj,t - E(@?b,)) (é:(zj,?),t - E( 73,2),))

i=1 j=1 | b1 <b<bs 1<t<q(n,b) 1<t<q
w T T ; : ) )
- X s X3S i @) (35 - 202)
bi<beby 10 1 cicqnpy Limt =1
S Ty W 3 pE ) pEw)
aj j (TL b)2 Z n,b,t (nb) Z n,b,t (nb)
i=1 j=1 by <b<bo an, 1<t<q(n,b) 1<t<q(n,b)
— I, + 11,

Below at first we show that I, =2 o (Step 1) and then that 17, =2 0 (Step 2).
Step 1. To obtain the desired convergence we use Lemma 1.4. Note that under the
assumption (i) of Theorem 3.1, the condition (i) of Lemma 1.4 holds with
=33t (80, - BGE,)) (30, — B@9)))
i=1 j=1
Moreover, notice that under the assumption (ii) of Theorem 3.1 and Hélder inequality we

have that
T T
swp I foillare < A*D D ai ] < oo,

b1<b<bs, 1<t<q,ne P

which means that the assumption (i7) of Lemma 1.4 is fulfilled with ¢ = £ and A =
A2Y ST fag gl Thus, I, =2 o.



Step 2. It is sufficient to show that E|I1l,| — 0 as n — oco. By Hélder inequality we have

U 2 ) ) ) )
Bl < 33 lasl | 30 otpeB| X (G- BEL)) X (- BEL)

i=1 j=1 b1<b<bs 1<t<q(n,b) 1<t<q(n,b)

IN

S el Y el Y (@, e@)| [ S (39, - @)
q , q

i=1 j=1 b1 <b<by 1<t<q(n.b)
Hence under the assumption (7ii) of Theorem 3.1 and using the Toeplitz lemma we get

that IT, -2 0. This fact ends proof of theorem. O

Proof of Theorem 3.2. Theorem 3.2 is a simple generalization of Theorem 2.1 form

Lenart (2013). Therefore we omit the proof. O

Proof of Theorem 3.3. It is sufficient to show that the assumptions (i) — (iii) of Theo-
rem 3.1 hold. We split the proof into three steps.

Step 1. To show (i) note that for any 4,5 € {1,2,3,4} we have

B, — £ (005.)) (O, £ (0

b, b
w2 (00, -6 (09,)) (B(09,)-£(59))
vz (B (@,) -5 (09)) (@0, -5 (@9,))
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Hence,

2 (i) (@)
E |:Tl~7 <0n,5,tn - E (071,5,)
2 (@)
+375 (E <9n757tn)

= III,+ 1V, (4)

Note that by Lemma 1.1 we have that IV,, — 0 as n — oco. Moreover, from Theorem 3.2

we get that 11, = TBQCOV (5:)1” ,gfj%t ) — 7ij as n — 00, where v;; is element of matrix

I'(v,w) (see Theorem 3.2). Hence, the condition (i) of Theorem 3.1 holds.

Step 2. To get (u7) it is sufficient to show that there exists A > 0 such that

sup Th é\ff)bt - F ((9};%}) H <A,
b1 <b<bg,1<t<n—b+1,n€Z o 7/ 42¢
for 1 < ¢ < 4. Without loss of generality we take ¢ = 1. In such a case gfllzt =
% Zii_l Xy, cos(vk). For any b such that b; < b < by and any ¢ such that 1 <t <n—0b+1
we have
) /g\r(:,)b,t —FE <§7(1Z)b> a2 S T ér(j,)b,t —FE (@?bt) a2t +7 ’E (enz,b,t> - F (Aff)b ))
= Vn + VIna
where
1t
Vi =" élll),t - F (@Lll))t) ‘ = Vb~ Z (Xk — u(k)) cos(vk)
o ) layae b p e

Note that {X; : t € Z} and {(X; — p(t)) cos(vt) : t € Z} have the same mixing coeffi-
cients. Under moment and mixing assumptions of Theorem 3.3 and using Theorem 2 from

Doukhan (1994) (see p. 26) with 7 = 4+ 2¢, we get that V,, is uniformly bounded in ¢, b, n.
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Moreover, from Lemma 1.1 we have that VI, = O(7,/b). Hence VI, is also uniformly

bounded, since b; < b and by — 00 as n — .

Step 3. Without loss of generality we take i = 1. Let sequence b be such that b; < b < bs.
To get (ii7) it is sufficient to show that

1<t<q(n.b)

where nlbt = 1Zt+b L X, cos(vk), 0" l)) = q(i@ i, @Tnll))s Note that from inequality

|21 + 22|% < 2|21]? + 2|22|* (which is true for any 21, 2o € C) we have

=VIIl,+VIII,.

Additionally, using inequality max{|Re(z)|?, |Im(z)|?} < |z|* (which is true for any z € C)
and Lemma 1.1 we get that VIII, — 0 as n — oco. Moreover,

2
t+b 1 2

Z Z Xy — p(k)) cos(vk)| =2 nT%

1<t<q(n, b)

VI, =2

CI(>

12



where Y,,; = s, ¢(X; — pu(t)) cos(vt) and

j/b for j=1,2,...,b—1
Snj =19 1 for j=bb+1,....n—b
(n—j+1/b forj=n—b+1,...,n
Note that |s, ;| < 1. Moreover, Y, ;, is the zero mean triangular array with the a-mixing

coefficients of the nth row «, (k) = ax(k), k = 1,2,...,n. Thus, using Lemma 7.5 from

Lenart (2016) we get that

2
E S C(17

1 n
=2 Yo
where C) is some positive constants. Additionally, since n7?/q(n, b)? < nby/(n—by+1)%> = 0

as n — 0o, we get that E(VII,) — 0 as n — oc. O

Proof of the Theorem 3.4. The proof of Theorem 3.4 follows the same reasoning as
was used in the proof of Theorem 3.3. Therefore, below we only discuss shortly the main
steps. To prove theorem it is sufficient to show that the conditions (i) — (i77) of Theorem

3.1 hold.

To get (i) we use decomposition (4). Thus, we have two summands /I, and IV,. Us-
ing Lemma 1.2 we get that I'V,, — 0 as n — oco. Now we consider the term [71,. Following

the same reasoning as was used in the proof of Theorem 2.1 from Lenart (2013), we get

p1 = dpcov(Re[mac(v + vy)], Re[Mmac(w + vy,)])

= 7F (Re[ﬁdﬁc(u + v, w + vy)] F Re[ﬁdﬁc(u + Uy, —(w + vn))]> ,

p2 = dpcov(Im[mg.(v + v,)], Im[mg (w + v,)])

= 7F <Re[ﬁd,c(y + Vp,w + vy)] — Re[ﬁd,c(u + Uy, —(w + Un))]) )
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¢ = dycov(Re[mac(v + v,)], Im[mg.(w + v,)])

= 7F (Im[ﬁdﬁc(l/ + U, —(w+vy))] — Im[ﬁdjc(y + U, w + Un>]> ,

@ = dycov(Im[mgc(v + v,)], Re[Mac(w + v,)])

= 7F (Im[ﬁd,c(u + Up,w + vy)] F Im[ﬁd,c<y + U, —(w + Un))]) .
Notice that for any (z,y) € R?
ﬁd,c(x7 y) + ﬁd,c(_xa _y> - 2Re[ﬁd,c(«r7 y)], (5>

Puo(2,y) — Pao(—2,—y) = 2i Im[Py(x,y)]. (6)

Thus, using Lemma 1.3 we obtain that p; +p; — 27Re[(v,w)] and g2 — ¢1 — 27Im|[P(v,w)]
as n — 0o. Note that the condition (1) follows from the inequality |a(X, 7)| < 0404%(\7])
(which is true for any 7 € Z and follows from Theorem 3, pp. 9 Doukhan (1994)), where

C is some positive constant. This completes the proof of (7).

To show (ii) and (éi7) it is sufficient to use the same steps as in the proof of Theorem

3.3. The only difference is that we consider v + v,, and w + v,, instead of v and w. O

Proof of the Theorem 3.5. Proof of Theorem 3.5 is a direct consequence of the follow-

ing lemma.

Lemma 1.5. Let k > 0 be a fixed integer and x be an unknown real valued parameter. Let
2
Xnds-- - Xnk e estimators of x such that X, RN X,t=1,...,k as n — oo. Moreover,

let Zn be such that

min{Xn1, - Xnk} < G <max{Xn1;--- Xnk}-

14



Then

-~ L2
Cn —> X as n —> oo.
Proof: Note that
R k
E(G—?<Y E(Rui—X)?—0  asn— oo,
=1
This completes the proof. O
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