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1 Proofs

At first we introduce a few auxiliary lemmas.

Lemma 1.1. Assume that A1-A3 holds. Then for any λ ∈ [0, 2π), any sequences of

integers {cn}, {dn}, where dn > 0 we have

E

(
1

dn

cn+dn−1∑
t=cn

Xte
−iλt

)
= m(λ) +Rn/dn,

where |Rn| ≤ C and C is a constant dependent on Ψ, λ and m(·).

Proof of the Lemma 1.1. For Ψ = ∅ the proof is obvious with C = 0. Assume that

Ψ 6= ∅ and note that

E

(
1

dn

cn+dn−1∑
t=cn

Xte
−iλt

)
=

1

dn

cn+dn−1∑
t=cn

∑
ψ∈Ψ

m(ψ)eiψte−iλt =
∑
ψ∈Ψ

m(ψ)
1

dn

(
cn+dn−1∑
t=cn

eiψte−iλt

)

= m(λ) +
1

dn

∑
ψ∈Ψ\{λ}

m(ψ)

(
cn+dn−1∑
t=cn

eiψte−iλt

)

= m(λ) +Rn/dn,

where

Rn =
∑

ψ∈Ψ\{λ}

m(ψ)
eiλ
(
ei cn(ψ−λ) − ei(ψ−λ)(cn+dn)

)
eiλ − eiψ

and

|Rn| ≤ C =
∑

ψ∈Ψ\{λ}

2|m(ψ)|
|eiλ − eiψ|

.

Lemma 1.2. Assume that A1-A3 holds. Take λ ∈ [0, 2π) and any sequences of integers

{cn}, dn = [C1n
κ] and λn = C2/n

ρ, where κ > 0, ρ > 0 and C1, C2 are nonzero constants.
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Then, for n sufficiently large for |λn| < C3 = min{|λ− ψ| : ψ ∈ Ψ \ {λ}} if Ψ 6= ∅ and for

any n if Ψ = ∅, we have that

E

(
1

dn

cn+dn−1∑
t=cn

Xte
−i(λ+λn)t

)
= Wnn

−κ+2ρ,

where |Wn| ≤ C and C is a constant dependent on Ψ, λ, C1, C2, κ, ρ and m(·).

Proof of the Lemma 1.2. Note that For Ψ = ∅ the proof is obvious with C = 0. As-

sume that Ψ 6= ∅ and note that

E

(
1

dn

cn+dn−1∑
t=cn

Xte
−i(λ+λn)t

)
=

1

dn

cn+dn−1∑
t=cn

∑
ψ∈Ψ

m(ψ)eiψte−i(λ+λn)t

=
∑
ψ∈Ψ

m(ψ)
1

dn

(
cn+dn−1∑
t=cn

eiψte−i(λ+λn)t

)

= m(λ)
1

dn

cn+dn−1∑
t=cn

e−iλnt +
1

dn

∑
ψ∈Ψ\{λ}

m(ψ)

(
cn+dn−1∑
t=cn

eiψte−i(λ+λn)t

)

= m(λ)
1

dn

eiλn
(
e−icnλn − e−iλn(cn+dn)

)
eiλn − 1︸ ︷︷ ︸

Qn

+
1

dn

∑
ψ∈Ψ\{λ}

m(ψ)

(
cn+dn−1∑
t=cn

eiψte−i(λ+λn)t

)
︸ ︷︷ ︸

Rn

= m(λ)Qn +
1

C1nκ
Rn =

(
m(λ)Qn

n−κ+2ρ
+

Rn

C1n2ρ

)
︸ ︷︷ ︸

Wn

n−κ+2ρ.

Note that for sufficiently large n such that |λn| < C3 = min{|λ − ψ| : ψ ∈ Ψ \ {λ}}, Rn

can be bounded from above as follows

|Rn| ≤

∣∣∣∣∣∣
∑

ψ∈Ψ\{λ}

m(ψ)
ei(λ+λn)

(
eicn(ψ−(λ+λn)) − ei(ψ−(λ+λn))(cn+dn)

)
ei(λ+λn) − eiψ

∣∣∣∣∣∣ ≤
∑

ψ∈Ψ\{λ}

2|m(ψ)|
|ei(λ+λn) − eiψ|

.

Moreover

|Qn| ≤
∣∣∣∣ 2

dn (−1 + eiλn)

∣∣∣∣ =
1

dn(1− cosλn)
≤ C4n

−κ+2ρ,

3



where C4 = C4(ρ, κ, C1, C2) is some positive constant. Its existence is a consequence of the

following convergence lim
n→∞

λ2n
1−cos(λn)

= 2. This fact ends the proof.

The following lemma is a generalization of Lemma A.5 from Lenart (2011).

Lemma 1.3. Assume that the conditions A1-A3 hold and that there exists a positive

constant C such that for any λ ∈ R we have

∞∑
τ=−∞

|τ ||a(λ, τ)| < C. (1)

Then for any pair of frequencies (ν, ω) ∈ [0, 2π)2, for any real valued sequence {vn}n∈N
convergent to zero and for any sequence of integers {cn} and any sequence of positive

integers {dn} tending to infinity with n→∞ we have

lim
n→∞

E
(
P̂d,c(ν + vn, ω + vn)− P (ν, ω)

)
= 0,

where for any (x, y) ∈ R2

P̂d,c(x, y) =
1

2πdn

cn+dn−1∑
s=cn

cn+dn−1∑
t=cn

(Xs − µ(s))(Xt − µ(t))e−ixseiyt.

Proof of the Lemma 1.3. The proof is similar to the proof of Lemma A.5 from Lenart

(2011). Therefore we show only main steps. Take any (ν, ω) ∈ [0, 2π)2. Note that

E(P̂d,c(ν + vn, ω + vn)) =
1

2πdn

cn+dn−1∑
s=cn

cn+dn−1∑
t=cn

cov(Xs, Xt)e
−i(ν−ω)te−i(ν+vn)(s−t).
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Setting j = t and τ = s− t we get

E(P̂d,c(ν + vn, ω + vn)) =
1

2πdn

cn+dn−1∑
j=cn

cn+dn−1−j∑
τ=cn−j

B(j, τ)e−i(ν−ω)je−i(ν+vn)τ

=
1

2πdn

cn+dn−1∑
j=cn

cn+dn−1−j∑
τ=cn−j

∑
λ∈Λτ

a(λ, τ)ei(λ−(ν−ω))je−i(ν+vn)τ

=
1

2πdn

cn+dn−1∑
j=cn

cn+dn−1−j∑
τ=cn−j

a(ν − ω, τ)e−i(ν+vn)τ

+
1

2πdn

cn+dn−1∑
j=cn

cn+dn−1−j∑
τ=cn−j

∑
λ∈Λτ\{ν−ω}

a(λ, τ)ei(λ−(ν−ω))je−i(ν+vn)τ

=
1

2π

∑
|τ |<dn

(
1− |τ |

dn

)
a(ν − ω, τ)e−i(ν+vn)τ

+
1

2πdn

cn+dn−1∑
j=cn

cn+dn−1−j∑
τ=cn−j

∑
λ∈Λτ\{ν−ω}

a(λ, τ)ei(λ−(ν−ω))je−i(ν+vn)τ

=
1

2π

∑
|τ |<dn

a(ν − ω, τ)e−iντ

+
1

2π

∑
|τ |<dn

a(ν − ω, τ)
(
e−i(ν+vn)τ − e−iντ

)
− 1

2π

∑
|τ |<dn

|τ |
dn
a(ν − ω, τ)e−i(ν+vn)τ

+
1

2πdn

cn+dn−1∑
j=cn

cn+dn−1−j∑
τ=cn−j

∑
λ∈Λτ\{ν−ω}

a(λ, τ)ei(λ−(ν−ω))je−i(ν+vn)τ .

We denote the summands on the right-hand side by ε1,n, ε2,n, ε3,n and ε4,n, respectively.

Note that ε1,n → P (ν, ω) as n→∞. Thus, it is sufficient to show that terms ε2,n, ε3,n and

ε4,n tend to 0 as n→∞.

Using inequality |eix − eiy| ≤ |x− y| (which holds for any x, y ∈ R) and (1) we get

|ε2,n| ≤
1

2π

∑
|τ |<dn

|a(ν − ω, τ)|
∣∣e−i(ν+vn)τ − e−iντ

∣∣ ≤ 1

2π

∑
|τ |<dn

|vn||τ ||a(ν − ω, τ)| −→ 0,
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as n −→∞. Moreover,

|ε3,n| ≤
1

2π

∑
|τ |<dn

|τ |
dn
|a(ν − ω, τ)| −→ 0 as n −→∞.

After changing the order of summation in term ε4,n, calculating the sum over j and using

the equality 1/|1− eix| = |cosec(x/2)| we get that

|ε4,n| =
1

2πdn

∣∣∣∣∣∣
(

0∑
τ=−dn+1

cn+dn−1∑
j=cn−τ

+
dn−1∑
τ=1

cn+dn−1−τ∑
j=cn

) ∑
λ∈Λτ\{ν−ω}

a(λ, τ)ei(λ−(ν−ω))je−i(ν+vn)τ

∣∣∣∣∣∣
≤ 1

2πdn

dn−1∑
τ=−dn+1

∑
λ∈Λτ\{ν−ω}

|a(λ, τ)cosec((λ− (ν − ω))/2)|

≤ 1

2πdn

∑
λ∈Λ\{ν−ω}

|cosec((λ− (ν − ω))/2)|
dn−1∑

τ=−dn+1

|a(λ, τ)|.

By the assumption that the set Λ is finite and by (1) we have that ε4,n → 0 as n → ∞,

which ends the proof.

The following lemma is a generalization of Theorem 1(a) from Fukuchi (1999).

Lemma 1.4. Let (X1, X2, . . . , Xn) be sample from an α-mixing time series {Xt, t ∈ Z}

and let fn : Rn −→ R be a measurable function. Take two sequences of integers b1 = b1(n),

b2 = b2(n) −→ ∞ as n −→ ∞ such that b2/n −→ 0 as n −→ ∞, b1 ≤ b2. Define the

subsampling estimator

f̄n,b1,b2 = w
∑

b1≤b≤b2

1

q

∑
1≤t≤q

fb,t, (2)

based on whole sample (X1, X2, . . . , Xn), where fb,t = fb(Xt, . . . , Xt+b−1) is based on sub-

sample (Xt, . . . , Xt+b−1), b1 = b1(n), b2 = b2(n), w = w(b1, b2) = 1/(b2 − b1 + 1), q =

q(n, b) = n− b+ 1, b1 ≤ b ≤ b2. Assume that
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(i) E(f̄n,b1,b2) −→ Υ as n −→∞, where Υ is some constant;

(ii) there exist constants ξ̃ > 0 and ∆̃ > 0 such that

sup
b1≤b≤b2, 1≤t≤q, n∈Z

‖fb,t‖2+ξ̃ < ∆̃ and
∞∑
k=1

α
ξ̃

2+ξ̃ (k) <∞;

Then

f̄n,b1,b2
L2−→ Υ.

Proof of Lemma 1.4. By (i) it is sufficient to show that var(f̄n,b1,b2)→ 0. We have

var(f̄n,b1,b2) = w2
∑

b1≤b≤b2

∑
b1≤b′≤b2

1

q(n, b)q(n, b′)

∑
1≤t≤q(n,b)

∑
1≤t′≤q(n,b′)

cov(fb,t, fb′,t′)

≤ w2
∑

b1≤b≤b2

∑
b1≤b′≤b2

1

q(n, b)q(n, b′)

∑
1≤t≤q(n,b)

∑
1≤t′≤q(n,b′)

|cov(fb,t, fb′,t′)|

≤ w2
∑

b1≤b≤b2

∑
b1≤b′≤b2

1

q(n, b)q(n, b′)

∑
|t−t′|≤b2

|cov(fb,t, fb′,t′)|

+ w2
∑

b1≤b≤b2

∑
b1≤b′≤b2

n−b1+1∑
s=b2+1

1

q(n, b)q(n, b′)

∑
|t−t′|=s

|cov(fb,t, fb′,t′)|

= A1 + A2.

(3)

Note that for any b and b′ (b1 ≤ b, b′ ≤ b2 ) we get that

]{|t− t′| ≤ b2 : 1 ≤ t ≤ q(n, b) ∧ 1 ≤ t′ ≤ q(n, b′)} ≤ 2(n− b1 + 1)b2,

]{|t− t′| = s : 1 ≤ t ≤ q(n, b) ∧ 1 ≤ t′ ≤ q(n, b′)} ≤ 2[(n− b1 + 1)− s],

for s = b2 + 1, b2 + 2, . . . , n− b1 + 1. Hence, by inequality |cov(fb,t, fb′,t′)| ≤ 8∆̃2 uniformly
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at b, t, b′, t′ (which follows from Theorem 3 from Doukhan (1994)) (pp. 9) we have

A1 ≤ w2
∑

b1≤b≤b2

∑
b1≤b′≤b2

1

q(n, b)q(n, b′)
2(n− b1 + 1)b28∆̃2

≤ (n− b1 + 1)b2
(b2 − b1 + 1)2

(n− b2 + 1)2(b2 − b1 + 1)2
8∆̃2

=
(n− b1 + 1)b28∆̃2

(n− b2 + 1)2
= O(b2/n)

and hence A1 → 0 as n→∞. Using now Theorem 3 from Doukhan (1994) (pp. 9) for A2

we have

A2 ≤ w2
∑

b1≤b≤b2

∑
b1≤b′≤b2

1

q(n, b)q(n, b′)

n−b1+1∑
s=b2+1

∑
|t−t′|=s

8∆̃2α
ξ̃

2+ξ̃ (|t− t′| − b2)

≤ w2
∑

b1≤b≤b2

∑
b1≤b′≤b2

1

q(n, b)q(n, b′)

n−b1+1∑
s=b2+1

2[(n− b1 + 1)− s]8∆̃2α
ξ̃

2+ξ̃ (s− b2)

= w2
∑

b1≤b≤b2

∑
b1≤b′≤b2

1

q(n, b)q(n, b′)

n−b1+1−b2∑
h=1

2[(n− b1 + 1)− (h+ b2)]8∆̃2α
ξ̃

2+ξ̃ (h)

≤
n−b1+1−b2∑

h=1

2[(n− b1 + 1)− (h+ b2)]
8∆̃2(b2 − b1 + 1)2

(n− b2 + 1)2(b2 − b1 + 1)2
α

ξ̃

2+ξ̃ (h)

≤ O(1/n)
n∑
h=1

α
ξ̃

2+ξ̃ (h)

and hence A2 → 0 as n→∞. This completes the proof of this lemma.

Proof of Theorem 3.1. We prove Theorem 3.1 using the same arguments as Carlstein

(1986). In the first step we use the well known property: cov(X, Y ) = cov(X −x, Y − y) =

E(X − x)(Y − y)−E(X − x)E(Y − y) which is true for any second order random variables
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X, Y and any x, y ∈ R. Hence,

σ̂n =
r∑
i=1

r∑
j=1

ai j

 ∑
b1≤b≤b2

τ 2
bw

q(n, b)

∑
1≤t≤q(n,b)

(
θ̂

(i)
n,b,t − θ̂

(i)
n,b,·

)(
θ̂

(j)
n,b,t − θ̂

(j)
n,b,·

)
=

r∑
i=1

r∑
j=1

ai j

 ∑
b1≤b≤b2

τ 2
bw

q(n, b)

∑
1≤t≤q(n,b)

(
θ̂

(i)
n,b,t − E(θ̂

(i)
n,b,·)

)(
θ̂

(j)
n,b,t − E(θ̂

(j)
n,b,·)

)
−

r∑
i=1

r∑
j=1

ai j

 ∑
b1≤b≤b2

τ 2
bw

q(n, b)2

∑
1≤t≤q(n,b)

(
θ̂

(i)
n,b,t − E(θ̂

(i)
n,b,·)

) ∑
1≤t≤q

(
θ̂

(j)
n,b,t − E(θ̂

(j)
n,b,·)

)
=

∑
b1≤b≤b2

w

q(n, b)

∑
1≤t≤q(n,b)

[
r∑
i=1

r∑
j=1

ai jτ
2
b

(
θ̂

(i)
n,b,t − E(θ̂

(i)
n,b,·)

)(
θ̂

(j)
n,b,t − E(θ̂

(j)
n,b,·)

)]

−
r∑
i=1

r∑
j=1

ai j

 ∑
b1≤b≤b2

τ 2
bw

q(n, b)2

∑
1≤t≤q(n,b)

(
θ̂

(i)
n,b,t − E(θ̂

(i)
n,b,·)

) ∑
1≤t≤q(n,b)

(
θ̂

(j)
n,b,t − E(θ̂

(j)
n,b,·)

)
= In + IIn.

Below at first we show that In
L2−→ σ (Step 1) and then that IIn

L2−→ 0 (Step 2).

Step 1. To obtain the desired convergence we use Lemma 1.4. Note that under the

assumption (i) of Theorem 3.1, the condition (i) of Lemma 1.4 holds with

fb,t =
r∑
i=1

r∑
j=1

ai jτ
2
b

(
θ̂

(i)
n,b,t − E(θ̂

(i)
n,b,·)

)(
θ̂

(j)
n,b,t − E(θ̂

(j)
n,b,·)

)
.

Moreover, notice that under the assumption (ii) of Theorem 3.1 and Hölder inequality we

have that

sup
b1≤b≤b2, 1≤t≤q, n∈Z

‖fb,t‖2+ξ ≤ ∆2

r∑
i=1

r∑
j=1

|ai j| <∞,

which means that the assumption (ii) of Lemma 1.4 is fulfilled with ξ̃ = ξ and ∆̃ =

∆2
∑r

i=1

∑r
j=1 |ai j|. Thus, In

L2−→ σ.
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Step 2. It is sufficient to show that E|IIn| → 0 as n→∞. By Hölder inequality we have

E|IIn| ≤
r∑
i=1

r∑
j=1

|ai j|

 ∑
b1≤b≤b2

τ 2
bw

q(n, b)2
E

∣∣∣∣∣∣
∑

1≤t≤q(n,b)

(
θ̂

(i)
n,b,t − E(θ̂

(i)
n,b,·)

) ∑
1≤t≤q(n,b)

(
θ̂

(j)
n,b,t − E(θ̂

(j)
n,b,·)

)∣∣∣∣∣∣


≤
r∑
i=1

r∑
j=1

|ai j|
∑

b1≤b≤b2

w

∥∥∥∥∥∥τbq
∑

1≤t≤q(n,b)

(
θ̂

(i)
n,b,t − E(θ̂

(i)
n,b,·)

)∥∥∥∥∥∥
2

∥∥∥∥∥∥τbq
∑

1≤t≤q(n,b)

(
θ̂

(j)
n,b,t − E(θ̂

(j)
n,b,·)

)∥∥∥∥∥∥
2

.

Hence under the assumption (iii) of Theorem 3.1 and using the Toeplitz lemma we get

that IIn
L2−→ 0. This fact ends proof of theorem.

Proof of Theorem 3.2. Theorem 3.2 is a simple generalization of Theorem 2.1 form

Lenart (2013). Therefore we omit the proof.

Proof of Theorem 3.3. It is sufficient to show that the assumptions (i)− (iii) of Theo-

rem 3.1 hold. We split the proof into three steps.

Step 1. To show (i) note that for any i, j ∈ {1, 2, 3, 4} we have

τ̃ 2
b

(
θ̂

(i)

n,b̃,tn
− E

(
θ̂

(i)

n,b̃,·

))(
θ̂

(j)

n,b̃,tn
− E

(
θ̂

(j)

n,b̃,·

))
= τ 2

b̃

(
θ̂

(i)

n,b̃,tn
− E

(
θ̂

(i)

n,b̃,tn

))(
θ̂

(j)

n,b̃,tn
− E

(
θ̂

(j)

n,b̃,tn

))
+ τ 2

b̃

(
θ̂

(i)

n,b̃,tn
− E

(
θ̂

(i)

n,b̃,tn

))(
E
(
θ̂

(j)

n,b̃,tn

)
− E

(
θ̂

(j)

n,b̃,·

))
+ τ 2

b̃

(
E
(
θ̂

(i)

n,b̃,tn

)
− E

(
θ̂

(i)

n,b̃,·

))(
θ̂

(j)

n,b̃,tn
− E

(
θ̂

(j)

n,b̃,tn

))
+ τ 2

b̃

(
E
(
θ̂

(i)

n,b̃,tn

)
− E

(
θ̂

(i)

n,b̃,·

))(
E
(
θ̂

(j)

n,b̃,tn

)
− E

(
θ̂

(j)

n,b̃,·

))
.
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Hence,

E
[
τ 2
b̃

(
θ̂

(i)

n,b̃,tn
− E

(
θ̂

(i)

n,b̃,·

))(
θ̂

(j)

n,b̃,tn
− E

(
θ̂

(j)

n,b̃,·

))]
= τ 2

b̃
cov
(
θ̂

(i)

n,b̃,tn
, θ̂

(j)

n,b̃,tn

)
+3τ 2

b̃

(
E
(
θ̂

(i)

n,b̃,tn

)
− E

(
θ̂

(i)

n,b̃,·

))(
E
(
θ̂

(j)

n,b̃,tn

)
− E

(
θ̂

(j)

n,b̃,·

))
= IIIn + IVn (4)

Note that by Lemma 1.1 we have that IVn → 0 as n → ∞. Moreover, from Theorem 3.2

we get that IIIn = τ 2
b̃
cov
(
θ̂

(i)

n,b̃,tn
, θ̂

(j)

n,b̃,tn

)
→ γij as n → ∞, where γij is element of matrix

Γ(ν, ω) (see Theorem 3.2). Hence, the condition (i) of Theorem 3.1 holds.

Step 2. To get (ii) it is sufficient to show that there exists ∆ > 0 such that

sup
b1≤b≤b2, 1≤t≤n−b+1, n∈Z

τb

∥∥∥θ̂(i)
n,b,t − E

(
θ̂

(i)
n,b,·

)∥∥∥
4+2ξ

< ∆,

for 1 ≤ i ≤ 4. Without loss of generality we take i = 1. In such a case θ̂
(1)
n,b,t =

1
b

∑t+b−1
k=t Xk cos(νk). For any b such that b1 ≤ b ≤ b2 and any t such that 1 ≤ t ≤ n− b+ 1

we have

τb

∥∥∥θ̂(i)
n,b,t − E

(
θ̂

(i)
n,b,·

)∥∥∥
4+2ξ

≤ τb

∥∥∥θ̂(i)
n,b,t − E

(
θ̂

(i)
n,b,t

)∥∥∥
4+2ξ

+ τb

∣∣∣E (θ̂(i)
n,b,t

)
− E

(
θ̂

(i)
n,b,·

)∣∣∣
= Vn + V In,

where

Vn = τb

∥∥∥θ̂(1)
n,b,t − E

(
θ̂

(1)
n,b,t

)∥∥∥
4+2ξ

=
√
b

∥∥∥∥∥1

b

t+b−1∑
k=t

(Xk − µ(k)) cos(νk)

∥∥∥∥∥
4+2ξ

.

Note that {Xt : t ∈ Z} and {(Xt − µ(t)) cos(νt) : t ∈ Z} have the same mixing coeffi-

cients. Under moment and mixing assumptions of Theorem 3.3 and using Theorem 2 from

Doukhan (1994) (see p. 26) with τ = 4 + 2ξ, we get that Vn is uniformly bounded in t, b, n.

11



Moreover, from Lemma 1.1 we have that V In = O(τb/b). Hence V In is also uniformly

bounded, since b1 < b and b1 →∞ as n→∞.

Step 3. Without loss of generality we take i = 1. Let sequence b̃ be such that b1 ≤ b̃ ≤ b2.

To get (iii) it is sufficient to show that

E

∣∣∣∣∣∣ τb̃
q(n, b̃)

∑
1≤t≤q(n,b̃)

(
θ̂

(1)

n,b̃,t
− E

(
θ̂

(1)

n,b̃,·

))∣∣∣∣∣∣
2

−→ 0 as n −→∞,

where θ̂
(1)
n,b,t = 1

b̃

∑t+b̃−1
k=t Xk cos(νk), θ̂

(1)

n,b̃,· = 1
q(n,b̃)

∑q
s=1 θ̂

(1)

n,b̃,s
. Note that from inequality

|z1 + z2|2 ≤ 2|z1|2 + 2|z2|2 (which is true for any z1, z2 ∈ C) we have∣∣∣∣∣∣ τb̃
q(n, b̃)

∑
1≤t≤q(n,b̃)

(
θ̂

(1)

n,b̃,t
− E

(
θ̂

(1)

n,b̃,·

))∣∣∣∣∣∣
2

=

∣∣∣∣∣∣ τb̃
q(n, b̃)

∑
1≤t≤q(n,b̃)

(
θ̂

(1)

n,b̃,t
− E

(
θ̂

(1)

n,b̃,t

))
+

τb̃
q(n, b̃)

∑
1≤t≤q(n,b̃)

(
E(θ̂

(1)

n,b̃,t
)− E

(
θ̂

(1)

n,b̃,·

))∣∣∣∣∣∣
2

≤ 2

∣∣∣∣∣∣ τb̃
q(n, b̃)

∑
1≤t≤q(n,b̃)

(
θ̂

(1)

n,b̃,t
− E

(
θ̂

(1)

n,b̃,t

))∣∣∣∣∣∣
2

+ 2

∣∣∣∣∣∣ τb̃
q(n, b̃)

∑
1≤t≤q(n,b̃)

(
E(θ̂

(1)

n,b̃,t
)− E

(
θ̂

(1)

n,b̃,·

))∣∣∣∣∣∣
2

= V IIn + V IIIn.

Additionally, using inequality max{|Re(z)|2, |Im(z)|2} ≤ |z|2 (which is true for any z ∈ C)

and Lemma 1.1 we get that V IIIn → 0 as n→∞. Moreover,

V IIn = 2

∣∣∣∣∣∣ τb̃
q(n, b̃)

∑
1≤t≤q(n,b̃)

1

b̃

t+b̃−1∑
k=t

(Xk − µ(k)) cos(νk)

∣∣∣∣∣∣
2

= 2
nτ 2

b̃

q(n, b̃)2

∣∣∣∣∣ 1√
n

n∑
j=1

Yn,j

∣∣∣∣∣
2

,
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where Yn,t = sn,t(Xt − µ(t)) cos(νt) and

sn,j =


j/b̃ for j = 1, 2, . . . , b̃− 1

1 for j = b̃, b̃+ 1, . . . , n− b̃

(n− j + 1)/b̃ for j = n− b̃+ 1, . . . , n

Note that |sn,j| ≤ 1. Moreover, Yn,j, is the zero mean triangular array with the α-mixing

coefficients of the nth row αn(k) = αX(k), k = 1, 2, . . . , n. Thus, using Lemma 7.5 from

Lenart (2016) we get that

E

∣∣∣∣∣ 1√
n

n∑
j=1

Yn,j

∣∣∣∣∣
2

≤ C1,

where C1 is some positive constants. Additionally, since nτ 2
b̃
/q(n, b̃)2 ≤ nb2/(n−b2+1)2 → 0

as n→∞, we get that E(V IIn)→ 0 as n→∞.

Proof of the Theorem 3.4. The proof of Theorem 3.4 follows the same reasoning as

was used in the proof of Theorem 3.3. Therefore, below we only discuss shortly the main

steps. To prove theorem it is sufficient to show that the conditions (i)− (iii) of Theorem

3.1 hold.

To get (i) we use decomposition (4). Thus, we have two summands IIIn and IVn. Us-

ing Lemma 1.2 we get that IVn → 0 as n→∞. Now we consider the term IIIn. Following

the same reasoning as was used in the proof of Theorem 2.1 from Lenart (2013), we get

p1 = dncov(Re[m̂d,c(ν + vn)],Re[m̂d,c(ω + vn)])

= πE
(

Re[P̂d,c(ν + vn, ω + vn)] + Re[P̂d,c(ν + vn,−(ω + vn))]
)
,

p2 = dncov(Im[m̂d,c(ν + vn)], Im[m̂d,c(ω + vn)])

= πE
(

Re[P̂d,c(ν + vn, ω + vn)]− Re[P̂d,c(ν + vn,−(ω + vn))]
)
,

13



q1 = dncov(Re[m̂d,c(ν + vn)], Im[m̂d,c(ω + vn)])

= πE
(

Im[P̂d,c(ν + vn,−(ω + vn))]− Im[P̂d,c(ν + vn, ω + vn)]
)
,

q2 = dncov(Im[m̂d,c(ν + vn)],Re[m̂d,c(ω + vn)])

= πE
(

Im[P̂d,c(ν + vn, ω + vn)] + Im[P̂d,c(ν + vn,−(ω + vn))]
)
.

Notice that for any (x, y) ∈ R2

P̂d,c(x, y) + P̂d,c(−x,−y) = 2Re[P̂d,c(x, y)], (5)

P̂d,c(x, y)− P̂d,c(−x,−y) = 2i Im[P̂d,c(x, y)]. (6)

Thus, using Lemma 1.3 we obtain that p1 +p2 → 2πRe[(ν, ω)] and q2− q1 → 2πIm[P (ν, ω)]

as n→∞. Note that the condition (1) follows from the inequality |a(λ, τ)| ≤ C4α
δ

2+δ (|τ |)

(which is true for any τ ∈ Z and follows from Theorem 3, pp. 9 Doukhan (1994)), where

C4 is some positive constant. This completes the proof of (i).

To show (ii) and (iii) it is sufficient to use the same steps as in the proof of Theorem

3.3. The only difference is that we consider ν + vn and ω + vn instead of ν and ω.

Proof of the Theorem 3.5. Proof of Theorem 3.5 is a direct consequence of the follow-

ing lemma.

Lemma 1.5. Let k > 0 be a fixed integer and χ be an unknown real valued parameter. Let

χ̂n,1, . . . , χ̂n,k be estimators of χ such that χ̂n,i
L2

−→ χ, i = 1, . . . , k as n → ∞. Moreover,

let ζ̂n be such that

min{χ̂n,1, . . . , χ̂n,k} ≤ ζ̂n ≤ max{χ̂n,1, . . . , χ̂n,k}.

14



Then

ζ̂n
L2

−→ χ as n −→∞.

Proof: Note that

E(ζ̂n − χ)2 ≤
k∑
i=1

E(χ̂n,i − χ)2 −→ 0 as n −→∞.

This completes the proof.
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