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We investigate the role of excitons in second-harmonic generation through the long-range cor-

rected exchange-correlation kernels : empirical LRC, Bootstrap, and jellium-with-a-gap model. We

calculate the macroscopic second-order frequency-dependent susceptibility χ(2). We also present

the frequency-dependent macroscopic dielectric function εM which is a fundamental quantity in the

theoretical derivation of χ(2). We assess the role of the long-range kernels in describing excitons

in materials with different symmetry types : cubic zincblende, hexagonal wurtzite and tetragonal

symmetry. Our studies indicate that excitons play an important role in χ(2) bringing a strong en-

hancement of the SHG signal. Moreover, we found that the SHG enhancement follows a simple

trend determined by the magnitude of the long-range corrected α-parameter. This trend is material

dependent.
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I. INTRODUCTION

Second-harmonic generation (SHG) spectroscopy is a powerful and versatile technique used to probe the properties

of matter [1–4]. In particular, in the recent years, SHG has been efficiently used to investigate the role of excitons in

different types of materials [4–11]. In fact, excitons lead to sharp resonances in SHG spectra, which are systematically

influenced by magnetic and electric fields, strain and temperature [12–17]. Therefore, understanding the role that

excitons play in SHG is of great interest for fundamental research and for technological applications.

Excitons are usually described as bound electron-hole pairs, i.e., as an effective two-particle system. They can be

classified as Frenkel excitons (bound) which are localised excitations at the atomic sites and Mott-Wannier excitons

(continuum), which, instead, are delocalised excitations over the atomic unit cells. These types of excitons have been

clearly probed by SHG in C60 molecular crystals and in CuCl films [5]. Exciton resonances have also been studied

with SHG in bulk GaAs semiconductors [18], bulk hexagonal wide-band-gap semiconductor ZnO [6], as well as in

two-dimensional SiC, ZnO and GaN hexagonal crystals [19]. Other materials which have been largely investigated in

the recent years for their important excitonic properties are two-dimensional (2D) layered materials such as WSe2,

WS2 [7–9, 20], MoS2 [11] and h-BN [10].

The quantity that describes the many-electron interactions in the SHG process is the macroscopic second-order

susceptibility χ(2) [1, 21, 22]. χ(2) takes into account the variation of the screening fields on the microscopic scale, i.e.,

crystal local-field effects and electron-hole interactions [22–24]. Chang et al. [25] and Leitsman et al. [26] presented an

ab initio many-body formalism for computing the frequency-dependent second-harmonic generation of semiconductor

materials including crystal local-field and excitons. In their method the electron-hole interaction is described through

the solution of an effective two-particle Hamiltonian, derived from the Bethe-Salpeter equation (BSE) which is very

successful in describing excitonic effects in the linear optical response [27–29]. Riefer and Schmidt [30] extended the

theory of Leitsmann et al. [26] to the limit ω → 0. They used this formalism to calculate SHG spectrum of ZnS, ZnSe,

and ZnTe. Attaccalite and Grüning [31] presented another derivation of χ(2) based on the Berry phase formulation

of the dynamical polarisation [32]. They derived the equations of motion describing electron dynamics in an external

electric field. Their formalism takes into account the quasi-particle effects, the crystal local fields and the excitons.

Luppi et al. [22, 33] developed an approach which permits to calculate the macroscopic second-order susceptibility

χ(2) in the framework of Time-Dependent Density-Functional Theory (TDDFT) [34–36]. This approach allows the

inclusion of crystal local-fields and excitonic effects through the exchange-correlation kernels fxc and gxc [22]. The

kernel fxc is the same kernel as for the linear response TDDFT, while the kernel gxc is specific to the second-order

TDDFT [22, 36]. An estimation of the importance of gxc has been given in [37] for the static χ(2). It was shown that

the effect of gxc can be of the same order of magnitude as the crystal local-fields. However, the importance of the

many-body effects strongly varies with respect to the energy range where χ(2) is calculated. Despite this investigation,

to our knowledge, no other theoretical development exists for gxc which is then neglected in the calculations of the

frequency-dependent χ(2).

In their work, Luppi et al [22, 33] investigated the role of excitons in bulk semiconductors demonstrating the im-

portance of long-range interactions to describe excitons in SHG. They used the long range-corrected (LRC) exchange-
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correlation kernel fxc = −αLRC/q2, which is an empirical kernel that requires a material dependent parameter αLRC

[38]. The LRC kernel was first used in the framework of the linear response theory where the αLRC was obtained by

comparison with the results of the Bethe-Salpeter equation [38]. In this context, the LRC kernel was shown to be

able to describe continuum excitons [39]. Note that a different ansatz was also proposed in [37] for the derivation of

the long-range kernel, based on the polarization-dependent density-functional theory, giving values close to the one

obtained in [38].

Since then, a number of nonempirical exchange-correlation kernels, that have been corrected for the long-range

interactions, have been proposed in the literature. The performance of these kernels have been assessed in the linear

response, focusing on optical spectra and exciton binding energies [40–43]. Sharma et al. [40] proposed a self-consistent

Bootstrap (BO) kernel for the description of excitons in insulators and semiconductors. Later, Rigamonti et al. [41]

derived a scalar Bootstrap kernel in RPA (RPA-BOh), which was also applied to bound and continuum excitons for

semiconductors. Moreover, they also presented an alternative way to calculate the head of the kernel of Sharma et al.

(BOh) [40], which does not require any self-consistency [41]. Trevisanutto et al. [42] proposed an exchange-correlation

kernel corrected for the long-range interactions based on the jellium-with-gap model (JGM). However, it was shown

that it is not possible to get an accurate exciton binding energy and an optical spectrum in good agreement with

experiments at the same time. In the following, we focus only on the optical properties of semiconductors.

In this work, we considered these long-range corrected exchange-correlation kernels and assessed their behaviour,

focusing on excitons in SHG spectra. The paper is organized as follows: in Sec. II, we present the general theory for

SHG in TDDFT and the long-range kernels which we will use to describe excitons, and in Sec. III we present and

discuss the results of the kernels on materials with cubic zincblende, hexagonal wurtzite and tetragonal symmetry.

Together with χ(2), we also investigated the real and the imaginary part of the frequency dependent macroscopic

dielectric function εM , which is a fundamental element in the derivation of χ(2).

II. THEORY

A. SHG and symmetries

The macroscopic second-order susceptibility in TDDFT is [22, 33]

χ
(2)
αβγ(ω, 2ω) = N εLLM (q̂3, 2ω)εLLM (q̂2, ω)×

εLLM (q̂1, ω)χ(2)
ρρρ(q̂3, q̂2, q̂1, ω, 2ω), (1)

where α, β and γ indicate a specific component of the susceptibility tensor and the normalised wave-vectors q̂1 and

q̂2 are defined through a linear combination of the cartesian vectors x = (1, 0, 0), y = (0, 1, 0) and z = (0, 0, 1). This

linear combination depends on the symmetries of the system as will be shown later. The normalised wave-vector

q̂3 is simply calculated from the sum of q̂1 and q̂2. The longitudinal macroscopic dielectric function is defined as
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εLLM (q̂, ω) = q̂ ·εM(ω) · q̂ and finally, N is a constant which also depends on the symmetry of the system studied [22, 33].

1. Cubic zinc blende symmetry

For this crystalline system, the only non-zero component is χ
(2)
xyz, where α = x, β = y and γ = z. The normalised

wave-vectors are defined as q̂1 = q̂2 =
(
1/
√

3, 1/
√

3, 1/
√

3
)
. The symmetry dependent constant is N = −i

√
3/4

[22, 33].

2. Hexagonal symmetry

A non-zero component of this crystalline system is, χ
(2)
xzx where α = x, β = z and γ = x. The normalised wave-

vectors are defined as q̂1 = (1, 0, 0) and q̂2 = (0, 0, 1). The symmetry dependent constant is N = −i/
√

2. Another

non-zero component is χ
(2)
zzz, where α = z, β = z and γ = z. The symmetry dependent constant is N = −i/2 [44].

3. Tetragonal symmetry

In this case, a non-zero component is χ
(2)
xyz, where α = x, β = y and γ = z. The normalised wave-vectors are defined

as q̂1 =
(
1/
√

2, 1/
√

2, 0
)

and q̂2 = (0, 0, 1). The symmetry dependent constant is N = -i/
√

2 [22].

B. Calculation of SHG

1. Macroscopic dielectric tensor εM(ω)

The macroscopic dielectric tensor εM(ω) is defined as

εM(ω) = lim
q→0

1

ε−1G1=0,G2=0,(q, ω)
(2)

where ε−1G1,G2
(q, ω) is the inverse microscopic dielectric matrix written in terms of the reciprocal-space lattice vectors

G1 and G2 for a given wave-vector q and frequency ω. The case G1 = G2 = 0 indicates the head element of the

inverse microscopic dielectric matrix.

The definition of the inverse microscopic dielectric matrix is

ε−1G1G2
(q, ω) = δG1G2 +

∑
G3

vG1δG1G3χ
(1)
ρρ,G3G2

(q, ω) (3)



5

where v is the Coulomb potential and χ
(1)
ρρ is the linear response matrix which can be obtained by solving the TDDFT

equation :

χ
(1)
ρρ,G1G2

(q, ω) = χ
(1)
0,G1G2

(q, ω) +∑
G3G4

χ
(1)
0,G1G3

(q, ω)fHxc,G3G4
(q, ω)χ

(1)
ρρ,G4G2

(q, ω), (4)

where χ
(1)
0 is the independent-particle response matrix and fHxc = v + fxc is the sum of the Coulomb potential v

and of the exchange-correlation kernel fxc.

C. Second-order response function χ
(2)
ρρρ

The second-order response function χ
(2)
ρρρ in TDDFT is

∑
G5

[
δG1,G5

−
∑
G4

χ
(1)
0,G1G4

(q3, 2ω)fHxc,G4G5
(q3, 2ω)

]
χ
(2)

ρρρ,G5G2G3
(q3,q2,q1, ω)=

∑
G4G6

χ
(2)
0,G1G4G6

(q3,q2,q1, 2ω)×[
δG6G3 +

∑
G7

fHxc,G6G7(q2, ω)χ
(1)
ρρ,G7G3

(q2, ω)

][
δG2G4 +

∑
G8

fHxc,G2G8(q1, ω)χ
(1)
ρρ,G8G4

(q1, ω)

]
+

∑
G4G5G6

χ
(1)
0,G1G4

(q3, 2ω)gxc,G4G5G6
(q3,q2,q1, ω)χ

(1)
ρρ,G5G2

(q1, ω)χ
(1)
ρρ,G6G3

(q2, ω) (5)

which depends on fHxc, on the second-order kernel gxc, on the linear response matrices χ
(1)
0 , χ

(1)
ρρ and on the

independent-particle second-order response matrix χ
(2)
0 [22, 33].

D. Exchange-correlation kernels

In our study we considered the LRC kernel [38, 39], the BO kernel, i.e., the BOh [40, 41], the RPA-BOh kernel

[41] and the JGM kernel [42] . Despite the different derivations of these kernels, their role is to screen the Coulomb

potential by simulating the Coulomb repulsion between the electron-hole pair. No exchange contribution is included

in these kernels. Moreover, in all of our calculations, we included a scissor shift to simulate the quasiparticle effects

and we considered only the head contribution of the long-range corrected kernels.

1. LRC

The empirical LRC kernel is defined as [38, 39]

fLRC
xc,GG′(q) = − αLRC

|q + G′|2
δ(G′ −G) (6)
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and the head-only term of the LRC kernel is fLRC
xc (q) = −αLRC/|q|2. The parameter αLRC = C1/ε∞−C2 is expressed

in terms of the constants C1 = 4.615, C2 = 0.213 and of the experimental high-frequency dielectric constant ε∞. The

values of C1 and C2 have been obtained through a fit, which uses the theoretical lattice constants of the materials.

This parametrisation can also be used with the experimental lattice constants [22, 43].

This kernel has demonstrated to be able to simulate continuum excitons in the absorption spectrum of materials

when quasiparticle energies or a scissor shift are used [38, 39]. Luppi et al. [22, 33] also used this kernel for the

calculation of SHG in bulk semiconductors. In particular, they obtained a remarkable agreement in the experimental

intensity of the highest peak of the second-order susceptibility for GaAs [33]. This result showed the importance of

long-range interactions in SHG spectra. However, there are still some discrepancies between the experimental and

the theoretical SHG spectra. These can be due to the crude approximation of the parameter αLRC which is a mean

value of the dynamical dependence of fxc in a given range of frequency.

2. JGM

Constantin et al. [45] proposed a dynamic exchange-correlation kernel of the uniform electron gas. In order to

describe the short-range interactions, they defined their kernel by introducing an effective interaction in the form of a

frequency-dependent error-function, which reduces the effects of the electron Coulomb interaction. Then, they imposed

the fulfillments of the compressibility and the third-frequency-moment sum rule as well as the correct asymptotic

behaviour at large wave vectors. Finally, they found an accurate exchange-correlation kernel that reproduces the

wave-vector analysis and the imaginary frequency analysis of the correlation energy of the uniform electron gas.

Trevisanutto et al. [42] extended this kernel, in the static case, to the jellium with gap model (JGM) which permits

to treat weak excitonic effects in semiconductors and bound excitons in insulators.

This matrix form of the JGM kernel in reciprocal space can be decomposed as a sum of three independent terms

as follows :

fJGM
xc,GG′(q) = fJGM1

xc,GG′(q) + fJGM2
xc,GG′(q) + fJGM3

xc,GG′(q). (7)

The first term is

fJGM1
xc,GG′(q) = −4πB′(G−G′)

|q + G′|2
(8)

where

B′(G−G′) =

∫
dre−i(G−G

′)rB′(n(r), Eg) (9)
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and

B′(n(r), Eg) =
B(n(r)) + Eg

1 + Eg
. (10)

The quantity Eg is the minimum electronic energy gap of the material while the quantity B(n) is parametrised as

B(n) =
1 + a1r

1/2
s + a2r

3/2
s

3 + b1r
1/2
s + b2r

3/2
s

, (11)

where rs = [3/(4πn)]1/3, a1 = 2.15, a2 = 0.435, b1 = 1.57 and b2 = 0.409. [45]

The second term is

fJGM2
xc,GG′(q) =

4πH(G−G′,G′)

|q + G′|2
(12)

where

H(G−G′,G′)=
∫

dre−i(G−G
′)rB′(n(r), Eg)e

−k′n,Eg |q+G′|2
(13)

and

k′n,Eg = kn,Eg +
1

4π|q + G|2
E2
g

nB′(n,Eg)
(14)

with

kn,Eg = − αnβ

B′(n,Eg)
(15)

where α = −0.025 and β = −0.691. [45]

Finally, the third term is

fJGM3
xc,GG′(q) = −D′(G−G′)

1

1 + 1/|q + G′|2
(16)

where
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D′(G−G′) =

∫
dre−i(G−G

′)r 4πC ′(n(r), Eg)

k2F
(17)

and

C ′(n(r), Eg) =
C(n(r))

1 + Eg
. (18)

The quantity C(n) is parametrised as [45]

C(n) = − π

2kF

d(rsεc)

drs
, (19)

where kF = (3π2n)1/3 represents the Fermi momentum of the uniform electron gas and εc is the correlation energy in

the Perdew-Wang parametrization.

Considering only the head of this kernel, it is possible to define a LRC α-parameter for the JGM kernel as

αJGM = αJGM1 + αJGM2 + αJGM3 (20)

where αJGM1 = 4πB′(0), αJGM2 = 4πH(0, 0) and αJGM3 = 0. Clearly fJGM3
xc gives no contribution.

3. Bootstrap

Sharma et al.[40] proposed a bootstrap kernel for optical spectra of semiconductors and insulators, which reads as

fBO
xc,GG′(q) =

v
1/2
G (q)ε−1GG′(q, 0)v

1/2
G′

1− εRPA,00(q, 0)
(21)

and which is iterated numerically to self-consistency. In this case, it is also possible to define a LRC α-parameter

αBO(q) = − 4πε−100 (q, 0)

1− εRPA,00(q, 0)
. (22)

Unlike the JGM kernel, the bootstrap kernel depends explicitly on the structure of the material through ε−1 and

εRPA, which means that for non-isotropic systems the kernel is different in different directions.

To avoid self-consistency, Rigamonti et al.[41] proposed an alternative but equivalent analytical form for the head

of the Sharma et al.[40] boostrap kernel (Eq. (21)), which is
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fBOh
xc (q) =

1

εM (0)χ0
00(q, 0)

(23)

with

εM (0) = lim
q→0

1

2

(
1 +

χ̄RPA
00 (q, 0)

χ0
00(q, 0)

− v0(q)χ̄RPA
00 (q, 0)

)
+

√
1

4

(
1+
χ̄RPA
00 (q, 0)

χ0
00(q, 0)

− v0(q)χ̄RPA
00 (q, 0)

)2

− χ̄RPA
00 (q, 0)

χ0
00(q, 0)

. (24)

Here, χ̄RPA
00 is defined as in Eq. (4), but without the long-range part of the Coulomb interaction (v̄(G = 0) = 0),

χ̄
(1)
ρρ,G1G2

(q, ω) = χ
(1)
0,G1G2

(q, ω) +∑
G3

χ
(1)
0,G1G3

(q, ω)v̄(G3)χ̄
(1)
ρρ,G3G2

(q, ω), (25)

This form brings results which are indistinguishable with the converged iterative results of the BO kernel.

4. RPA bootstrap

Rigamonti et al. [41] proposed another kernel defined as

fRPA-BOh(q) =
ε−1RPA,00v(q)

1− 1/ε−1RPA,00(q, 0)
, (26)

where the LRC α-parameter is

αRPA-BOh = −
4πε−1RPA,00(0, 0)

1− 1/ε−1RPA,00(0, 0)
. (27)

This kernel is close to the BO kernel in Eq. (21) but there is no self-consistency condition. Moreover, the derivation

of this kernel relies on the assumptions that the kernel is static in the optical range, that the static dielectric constant

can be correctly described in RPA and that it is much larger than 1. BO and RPA-BOh give similar results in

absorption spectra of semiconductors for weak excitons while noticeable changes are present for strong excitons.

Note that an expression similar to Eq. (27) has been obtained in the context of Current-Density-Functional Theory,

assuming a small dielectric constant εRPA,00 < 2 [46].

III. RESULTS

We calculated χ
(2)
αβγ(ω, 2ω) for i) SiC and GaAs bulk semiconductors (cubic zinc-blende), ii) polytypes 2H-SiC, 4H-

SiC, 6H-SiC and ZnO semiconductors (hexagonal wurtzite) and iii) Zn2Ge2P4 (tetragonal). We first calculated the
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electronic structure of the materials in their ground-state within Density-Functional Theory (DFT) in the local-density

approximation (LDA), using norm-conserving Trouiller-Martins pseudopotentials [47, 48] and plane-wave basis set with

the ABINIT code [49–51]. In the case of Gallium, we explicitly included the 3d semicore states as valence states, giving

the valence configuration 3d104s24p1 [52, 53]. Then, we calculated the optical spectra in TDDFT as implemented

in the 2light code [54]. In particular, the TDDFT calculations were always done on top of scissor-corrected LDA

band structure, so that only the excitonic part of the exact exchange-correlation kernel fxc is approximated. We have

considered the head-only version of the kernels presented above. The comparison between the head-only and full form

of the kernel is shown for SiC in the Supplemental Information. Moreover, we emphasise that for all the calculations

we used gxc equal to zero. In fact, even if we know that this kernel behaves as gxc = −β/q3 where β is constant, to

our knowledge the value of β is still not known.
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To fully analyse the role of long-range corrected kernels in χ
(2)
αβγ(ω, 2ω) (see Eq. (1)), we also analyse the impact

of the long-range interactions on εM. In fact, in Eq. (1) εM enters explicitly in the calculation of χ
(2)
αβγ(ω, 2ω) at

frequency ω and 2ω. As εM = ε1 + iε2, we analysed both its real and imaginary parts. Concerning the real part ε1, we

reported here only its static value while the full frequency-dependent spectrum has been reported in the Supplemental

Information.

A. Cubic SiC

We used the experimental lattice constant 4.360 Å and an energy cutoff of 50 Ha [59]. We used 16000 shifted k

points in the Brillouin zone (BZ), 16 unoccupied states and 459 G vectors for the wavefunctions. Crystal local-field
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SiC
IPA RPA LRC RPA-BOh BOh JGM Exp(a)

ε1 6.63 6.09 7.39 7.09 6.86 6.64 6.5
α 0.50 0.40 0.32 0.24

|χ(2)
xyz| 21.05 19.24 37.96 32.95 29.40 26.15

TABLE I. Static values of ε1 and |χ(2)
xyz| [pm/V] for SiC. The α-parameter is reported for the long-range corrected kernels. (a)

from Ref. [55]
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FIG. 6. GaAs : χ
(2)
xyz calculated with IPA, RPA, LRC, RPA-BOh, BOh, JGM kernels and experiment [18].

effects are fully taken into account using 89 G vectors. In order to simulate the quasiparticle energies we used, on

top of an LDA band structure, a scissors shift of 0.84 eV [60]. We obtained a minimum electronic gap of 2.17 eV and

a direct electronic gap of 5.36 eV. In the case of the JGM kernel we used the experimental minimum electronic gap

Eg = 2.40 eV.

In Fig. (1), we show ε2 for the JGM kernel for which we used the experimental gap Eg = 2.40 eV [61]. Comparing

the effect of this kernel with the RPA calculation (fxc = 0) we observed that the energy position of the main peak

is shifted to lower energy and its intensity is increased. Instead, the second peak is almost unaffected by the JGM
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GaAs
IPA RPA LRC RPA-BOh BOh JGM Exp(a)

ε1 11.80 10.73 12.73 11.73 11.55 12.57 10.6
α 0.22 0.12 0.10 0.20

|χ(2)
xyz| 229.73 199.39 349.23 267.38 254.38 335.14 200

TABLE II. Static values of ε1 and |χ(2)
xyz| [pm/V] for GaAs. The α-parameter is reported for the long-range corrected kernels.

(a) from Refs. [57] and [58]

2H-SiC
IPA RPA LRC RPA-BOh BOh JGM

ε1,xx 6.65 6.13 7.58 7.13 6.91 7.32
αxx 0.54 0.40 0.32 0.46
ε1,zz 6.93 6.41 7.89 7.41 7.20 7.75
αzz 0.50 0.36 0.29 0.46

|χ(2)
xzx| 12.01 11.63 24.32 19.59 17.61 22.15

|χ(2)
zzz| 8.80 6.57 13.59 10.92 9.86 12.75

4hSiC
IPA RPA LRC RPA-BOh BOh JGM

ε1,xx 6.58 6.38 7.88 7.38 7.18 7.59
αxx 0.51 0.37 0.30 0.43
ε1,zz 6.82 6.66 8.26 7.66 7.48 8.02
αzz 0.48 0.33 0.28 0.43

|χ(2)
xzx| 12.17 12.07 25.18 19.89 18.21 22.59

|χ(2)
zzz| 17.54 15.90 33.03 25.90 23.84 30.29

6hSiC
IPA RPA LRC RPA-BOh BOh JGM

ε1,xx 6.73 6.14 8.15 7.14 6.96 7.24
αxx 0.54 0.40 0.34 0.43
ε1,zz 6.91 6.42 8.33 7.42 7.25 7.67
αzz 0.50 0.36 0.31 0.43

|χ(2)
xzx| 10.02 10.02 21.08 16.95 15.58 18.41

|χ(2)
zzz| 15.83 15.34 31.81 25.50 23.52 28.57

TABLE III. Static values of ε1,xx, ε1,zz, |χ(2)
xzx| [pm/V] and |χ(2)

zzz| [pm/V] for 2H-SiC, 4H-SiC and 6H-SiC. The α-parameter is
reported for the long-range corrected kernels.

kernel. The results are consistent with the theoretical calculation presented by Trevisanutto et al. [42]. However, to

deeper understand the JGM behaviour we separately calculate the contribution to εM from JGM1 and JGM2. We

recall that JGM3 gives no contribution. We observed that in the case of JGM1 and JGM2 the spectrum of ε2 is very

peculiar as its shape is completely different from the JGM calculation and from experiments. In fact, even if both

JGM1 and JGM2 contain the 1/q2 dependence, we obtained αJGM1 = 10.36 and αJGM2
xc = −10.12, which, in absolute

value, is orders of magnitude different than αJGM = 0.24.

In Fig. (2) we compared all the long-range corrected kernels studied here with IPA and RPA. The kernels have the

same trend which is to shift the energy position of the main peak to lower energy and to increase its intensity keeping

the second peak almost unchanged. Moreover, it is possible to quantify the strength of this effect by comparing the

α values for each kernels. We have that αLRC = 0.50 > αRPA-BOh = 0.40 > αBOh = 0.32 > αJGM = 0.24. The same

trend is found for frequency-dependent ε1 (see Supplemental Information) which static value is reported in Tab. (I).
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In the case of LRC, in order to obtain a better agreement with experiments, a smaller value of αLRC has to be taken

: 0.2 instead of 0.5. [38]

Next, we investigated the behaviour of the JGM kernel and we show χ
(2)
xyz in Fig. (3). In Fig. (4), we compare IPA

and RPA with the long-range kernels. In the case of the second-order response, the kernels do not shift noticeably the

peaks but, instead cause a strong enhancement of the SHG intensity following the same trend observed in the linear

response : αLRC > αRPA-BOh > αBOh > αJGM.

B. Cubic GaAs

We used the experimental lattice constant 5.652 Å and an energy cutoff of 50 Ha. We used 18522 shifted k points in

the Brillouin zone (BZ), 11 unoccupied states and 283 G vectors for the wavefunctions. Crystal local-field effects are

fully taken into account using 89 G vectors. In order to simulate the quasiparticle energies we used a scissors shift of

0.8 eV [60], and obtained a (minimum) direct electronic gap of 1.19 eV. In the case of JGM we used the experimental

minimum electronic gap Eg = 1.52 eV [61].

In Fig. (5), we show the effects of the long-range corrected kernels studied compared to RPA and IPA calculations.

Both in IPA and RPA, the peaks at 3 eV and 5 eV are easily identified. However, the peak at 3 eV is strongly

underestimated compared to experiment because both IPA and RPA do not include excitonic effects. The long-range

kernels can resolve this peak giving good agreement with experiments. Moreover, as already observed for SiC, it is

possible to quantify the effect of each kernel by considering that αLRC = 0.22 > αJGM = 0.20 > αRPA-BOh = 0.12 >

αBOh = 0.10. The same trend is found for ε1 (see Supplemental Information). The static value is shown in Tab. (II)

and one clearly sees that no excitonic effect is needed to recover the experimental results. This holds for the linear

and nonlinear coefficients.

The behaviour of the long-range kernels for the SHG is shown in Fig. (6). The general trend for all the kernels is to

enhance the SHG intensity following the rule αLRC > αJGM > αRPA-BOh > αBOh which is the same trend we already

described for ε1 and ε2.

Moreover, it is interesting to note that, as in the case of SiC, the effects of the SHG kernels do not depend on the

frequency range. In the case of GaAs the kernels give noticeable effects only below 5 eV.

C. Hexagonal SiC polytypes

We studied the hexagonal SiC polytypes : Si-2H, Si-4H and Si-6H. For all the polytypes we used the experimental

lattice constants, which for Si-2H is a=3.075 Å and c=5.048 Å, for Si-4H is a=3.073 Å and c=10.052Å and for Si-6H

is a=3.073 Å and c=15.079Å . We used an energy cutoff of 50 Ha [59, 62] and 5120 shifted k points for Si-2H in the

Brillouin zone (BZ), 3888 shifted k points for Si-4H and 4000 shifted k points for SiC-6H. The number of unoccupied

states are 54 for SiC-2H, 22 for SiC-4H and 26 for SiC-6H, and the number of G vectors for the wavefunctions is 497

for SiC-2H, 489 for SiC-4H and 493 G for SiC-6H. Crystal local-field effects are fully taken into account using 97 G

vectors.
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In order to simulate the quasiparticle energies we used a scissors shift of 0.84 eV [60]. For SiC-2H the minimum

electronic gap is 3.01 eV and the direct electronic gap is 4.72 eV. In the case of JGM we used the experimental

minimum electronic gap Eg = 3.33 eV [59]. For SiC-4H the minimum electronic gap is 3.03 eV and the direct

electronic gap is 4.16 eV. In the case of JGM, we used the experimental minimum electronic Eg = 3.26 eV [59]. For

SiC-6H the minimum electronic gap is 2.81 eV and the direct electronic gap is 3.92 eV. In the case of JGM we used

the experimental minimum electronic Eg = 3.02 eV [59].

In Figs. (7,8) we show the effects of the long-range corrected kernels RPA-BOh, BOh and JGM compared to RPA

and IPA calculations for ε2,xx and ε2,zz.

SiC-2H, SiC-4H and SiC-4H show the same trend, which can be quantified by observing that in the case of ε2,xx

for SiC-2H we have αLRC
xx = 0.54 > αJGM

xx = 0.46 > αRPA-BOh
xx = 0.40 > αBOh

xx = 0.32, for SiC-4H we have αLRC
xx =

0.51 > αJGM
xx = 0.43 > αRPA-BOh

xx = 0.37 > αBOh
xx = 0.30 and for SiC-6H we have αLRC

xx = 0.54 > αJGM
xx = 0.43 >

αRPA-BOh
xx = 0.40 > αBOh

xx = 0.34. The same is found for ε2,zz where we obtain for SiC-2H αLRC
zz = 0.50 > αJGM

zz =

0.46 > αRPA-BOh
zz = 0.36 > αBOh

zz = 0.29, for SiC-4H αLRC
zz = 0.48 > αJGM

zz = 0.43 > αRPA-BOh
zz = 0.33 > αBOh

zz = 0.28,

and for for SiC-6H αLRC
zz = 0.50 > αJGM

zz = 0.43 > αRPA-BOh
zz = 0.36 > αBOh

zz = 0.31.

Identical behaviour was found for ε1 (see Supplemental Information) and in its static value is shown in Tab. (III).

The performance of the long-range kernels for SHG is shown for χ
(2)
xzx in Fig. (9) and for χ

(2)
zzz in Fig. (10). In these

cases the SHG is also enhanced but the main peaks are not noticeably shifted in energy. The enhancement exactly

follows the trend of α found for the optical absorption.

The strong enhancement of SHG due to excitons was already observed in the two-dimensional hexagonal crystals

SiC [19].

D. Hexagonal ZnO

We used the experimental lattice constants a=3.258 Å and c=5.220 Å and an energy cutoff of 50 Ha. We used 5120

shifted k points in the Brillouin zone (BZ), 32 unoccupied states and 487 G vectors for the wavefunctions. Crystal

local-field effects are fully taken into account using 99 G vectors. In order to simulate the quasiparticle energies we

used a scissors shift of 1.6 eV [63]. The (minimum) direct electronic gap is 2.42 eV. In the case of JGM we used the

experimental minimum electronic gap Eg = 3.44 eV [64].

ZnO
IPA RPA LRC RPA-BOh BOh JGM

ε1,xx 4.28 4.16 5.08 5.16 4.92 4.84
αxx 0.90 0.96 0.78 0.71
ε1,zz 4.27 4.16 5.09 5.16 4.93 4.84
αzz 0.90 0.95 0.78 0.71

|χ(2)
xzx| 0.735 0.34 0.73 0.77 0.65 0.61

|χ(2)
zzz| 31.21 30.01 64.85 68.43 57.71 54.07

TABLE IV. Static values of ε1,xx, ε1,zz, |χ(2)
xzx| [pm/V] and |χ(2)

zzz| [pm/V] for ZnO.
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FIG. 11. ZnO : ε2,xx(ω) and ε2,zz(ω) calculated in IPA, RPA, LRC, RPA-BOh, BOh, JGM kernels.

In Fig. (11), we show the effects of the long-range corrected kernels LRC, RPA-BOh, BOh and JGM compared to

RPA and IPA for ε2,xx and ε2,zz. It is possible to quantify the effect of each kernels by considering that αRPA-BOh
xx =

0.96 > αLRC
xx = 0.90 > αBOh

xx = 0.78 > αJGM
xx = 0.71. The same rule is followed by ε2,zz and αzz which values are

reported in Tab. (IV) for each kernels. The trend of ε1 (see Supplemental Information) and in its static value is also

shown in Tab. (IV).

It is interesting to note that in the case of ZnO αLRC does not give the largest value and we suppose that this could

be due to the break down of the model proposed by Botti et al. [38] to obtain αLRC. In fact, they already showed

that this model can fail for materials with a small dielectric constant. In this case they suggested that the value of

αLRC should be higher, which, however, would then deteriorate the low-energy part of the spectrum.

The behaviour of the long-range kernels for SHG is shown for χ
(2)
xzx and χ

(2)
zzz in Fig. (12) and confirms that excitons

enhance the SHG without affecting the energy position of the peaks.

Recently, the optical properties of ZnO have also been calculated in the BSE framework, showing a good agreement
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(2)
zzz calculated with IPA, RPA, LRC, RPA-BOh, BOh and JGM kernels.

ZnGeP
IPA RPA LRC RPA-BOh BOh JGM

ε2,xx 10.27 9.61 10.99 10.61 10.45 13.27
αxx 0.29 0.15 0.13 0.43

|χ(2)
xyz| 137.15 135.15 250.16 189.21 179.24 380.29

TABLE V. Static values of ε1,xx and |χ(2)
xyz| [pm/V] for ZnGeP. The α-parameter is reported for the long-range corrected kernels.

with TDDFT with long-range kernels. [65]

E. Tetragonal Zn2Ge2P4

We used the experimental lattice constants a=5.46 Å and c=10.83 Å and an energy cutoff of 50 Ha [66, 67]. We

used 3456 shifted k points in the Brillouin zone (BZ), 64 unoccupied states and 485 G vectors for the wavefunctions.

Crystal local-field effects are fully taken into account using 97 G vectors. In order to simulate the quasiparticle
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FIG. 14. ZnGeP : χ
(2)
xyz calculated with IPA, RPA, LRC, RPA-BOh, BOh and JGM kernels.

energies we used a scissors shift of 1.04 eV [60]. The minimum electronic gap is 2.23 eV and the direct electronic gap

is 2.34 eV. In the case of JGM we used the experimental minimum electronic gap Eg = 2.34 eV [68].

In Fig. (13), we show the effects of the long-range corrected kernels LRC, RPA-BOh, BOh and JGM compared to

RPA and IPA calculations for ε2,xx. We found αJGM
xx = 0.43 > αLRC

xx = 0.29 > αRPA-BOh
xx = 0.15 > αBOh

xx = 0.13. The

same trend is found for ε1 (see Supplemental Information) and in its static value is shown in Tab. (V).

The behaviour of the long-range kernels for SHG is shown for χ
(2)
xyz in Fig. (14). Here again, excitonic effects

contribute to enhance the SHG signal. However, the enhancement is particularly strong in the case of the JGM

concerning a low energy peak around 3 eV which is set too low in IPA and RPA. The other long-range kernels LRC,

RPA-BOh and BOh are able to increase this peak with respect IPA and RPA, but its intensity is still very low in

comparison with JGM. A similar behaviour of the JGM versus LRC kernel was already observed by Grüning and
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Attaccalite [69] for bulk zinc chalcogenides ZnS, ZnSe and ZnTe.

IV. CONCLUSIONS

The role of excitons in second-harmonic generation has been investigated using different long-range exchange-

correlation kernels (empirical LRC, Bootstrap RPA-BOh and BOh, and JGM) in the framework of TDDFT. Through

the calculation of χ(2) and εM we determined absorption and SHG spectra for different electric-field polarizations and

crystal symmetries : cubic zincblende, hexagonal wurtzite and tetragonal symmetry. Our study indicates that excitons

play an important role in χ(2). They induce a strong enhancement of the SHG signal but do not noticeably shift the

peaks in the spectra even though a large change in position of the spectral peaks is observed for εM. Moreover, the

enhancement follows a simple trend which depends on the magnitude of the long-range corrected α-parameter. We

observe that as a general rule αRPA-BOh > αRPA, but a material dependence on αJGM and αLRC is obtained, which

does not permit to find an absolute trend for the α-parameter for the materials studied. Moreover, comparing with

the available experimental results, we found that it is not possible to identify which is the “best” kernel. The lack of

frequency dependence in the α-parameter implies that the optical properties can be better described in some energy

regions than in others. At the moment, most of the calculations of SHG are performed in IPA which can give very

approximate results. As we show that excitonic effects can be very strong for these systems, we believe that going

beyond IPA is therefore necessary to accurately interpret experiments.
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[4] M. Grüning and C. Attaccalite, Phys. Rev. B 89, 081102 (2014).

[5] A.-M. Janner, H. T. Jonkman, and G. A. Sawatzky, Phys. Rev. B 63, 085111 (2001).

[6] M. Lafrentz, D. Brunne, A. V. Rodina, V. V. Pavlov, R. V. Pisarev, D. R. Yakovlev, A. Bakin, and M. Bayer, Phys. Rev.

B 88, 235207 (2013).

[7] K. L. Seyler, J. R. Schaibley, P. Gong, P. Rivera, A. M. Jones, S. Wu, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, Nature

Nanotech. 10, 407 (2015).
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[22] E. Luppi, H. Hübener, and V. Véniard, Phys. Rev. B 82, 235201 (2010).

[23] R. Del Sole and E. Fiorino, Phys. Rev. B 29, 4631 (1984).

[24] G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002).

[25] E. C. Chang, E. L. Shirley, and Z. H. Levine, Phys. Rev. B 65, 035205 (2001).

[26] R. Leitsmann, W. G. Schmidt, P. H. Hahn, and F. Bechstedt, Phys. Rev. B 71, 195209 (2005).

[27] L. Sponza, H. Amara, F. m. c. Ducastelle, A. Loiseau, and C. Attaccalite, Phys. Rev. B 97, 075121 (2018).

[28] P. Cudazzo, L. Sponza, C. Giorgetti, L. Reining, F. Sottile, and M. Gatti, Phys. Rev. Lett. 116, 066803 (2016).

[29] E. Rebolini and J. Toulouse, The Journal of Chemical Physics 144, 094107 (2016), https://doi.org/10.1063/1.4943003.

[30] A. Riefer and W. G. Schmidt, Phys. Rev. B 96, 235206 (2017).
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